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STATISTICAL MECHANICAL THEORIES OF FREEZING: WHERE DO 
WE STAND? 

Marc BAUS I and James F. LUTSKO 
Physique Statistique, Plasmas et Optique Non Lindaire, Universit~ Libre de Bruxelles, 
C.P. 231 Campus Plaine, B-lOS0 Brussels, Belgium 

The basic advantages of the density functional theory over the other statistical mechanical 
theories of freezing are outlined. The feasibility of a density functional based calculation is 
illustrated m *.he case of the hard sphere freezing. The difficulties encountered in the 
extension of the.se results to continuous potentials are discussed and a possible solution is 
presented. 

1. Introduction: the theories of freezing 

Ordering phase transitions can (and do) occur in many systems made up of 
subatomic, atomic, molecular or supramolecular items. At sufficiently high 
pressures and low temperatures, such transitions from disordered to an ordered 
state usually become unavoidable. Indeed, the loss in configurational entropy 
resulting from this ordering can then be compensated by the gain in correla- 
tional entropy resulting from the more efficient packing, which characterizes 
the ordered state. Any ordered state can, moreover, usually be described in 
terms of the broken symmetries corresponding to the "freezing in" of a 
number of translational, rotational or compositional degrees of freedom. Such 
states may be further characterized in terms of the underlying "order parame- 
ters", for which the corresponding Landau theory [1] can then be constructed. 

Although such a theory can give important clues to symmetry-based restric- 
tions and similar qualitative information, it cannot by itself give a quantitative 
description of the ordering phenomena. The reasons for this are well known: 
the Landau theory was designed to describe second-order phase transitions and 
hence it ~.o.nsiders the order parameters to be small, whereas many ordering 
transitions have a pronounced first-order character; while the theory also 
provides no means to compute the coefficients of the expansion ,-,¢ the free 
energy with respect to these order parameters. As a consequence, ;uantita- 
tive description of ordering or freezing transitions is possible only ,,,thin the 
general framework of equilibrium statistical mechanics 
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Notwithstanding a century long practice of the latter, progress in this general 
area of molecular physics has been rather slow. Some of the reasons behind 
this are easily understood. Indeed, in the traditional [1] partition-function 
based approach to statistical thermodynamics, one is immediately faced with a 
complicated N-body problem, which has proven to be intractable even for the 
much simpler disordered phases (except when dilute). The situation is however 
less trivial for the theories [2] based on the Born-Green-Yvon hierarchy for 
the N-body distribution functions. Indeed, the celebrated Kirkwood-Monroe 
truncation [3] of the equivalent Kirkwood hierarchy for a Lennard-Jones solid, 
performed half a century ago, did describe the solid but failed to produce the 
proper freezing behaviour and the situation has remained unsatisfactory till 
now. This could be due to the fact that the solution to this hierarchy has a 
delicate and explicit dependence on the interaction potential whereas once this 
solution is known, there is still a long way to go before the final thermo- 
dynamic data for the solid can be obtained. 

It may thus be considered as a surprise when successful results were 
announced for freezing by Ramakrishnan and Yussouff [4] within a related but 
different theory, which today goes under the name of the "density functional 
theory" because it views the free energy as a functional of the one-body density 
[5]. It is true tha~. this theory yields a framework which is a priori much better 
suited to the description of phase transitions than any of the previous theories. 
Indeed, the central item of this theory is the free energy whereas it is precisely 
the thermodynamic data which a theory of phase transitions should describe 
accurately. Within density functional theory, this free energy is moreover 
obtained in terms of the one- and two-body structural information, avoiding 
hereby the complicated N-body problems. Finally, the ordered equilibrium 
state can be found by minimizing this free energy expression without having to 
solve explicitly for the structural data. This theory is thus fairly close in spirit to 
the phenomenological Landau theory of which it constitutes so to say a 
statistical mechanical version. 

It is nevertheless also clear today that the enthusiasm following the original 
success [4] has to be tempered somewhat since many problems have arisen, 
some of which have been circumvented (see our previous discussions [6, 7]), 
while ,_'~+~hers remain ~_.4 will bc . . . .  ;n~..,~n • n~.oa ~-~,~l,~,,, O U U I  ~ . v . J t I ~ I U I . ~ I ~ . , U  I n  m o l ' e  ~ , L a l l  v _ ~ w t v v , .  

2. Density functional theory of freezing: the success story 

The general setup of the density functional theory is fairly simple. One starts 
from a classical equilibrium system of volume V, temperature T and chemical 
potential /~. Next, all broken symmetry elements are described in terms of a 
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formal external potential, ~b(r) (for presentational convenience, we will assume 
that the molecules have only translational (r) degrees of freedom). These 
include: (i) the finite size of the system, (ii) the location of the coexisting 
phases and (iii) the symmetries of the ordered phases. Within the Gibbsian 
equilibrium statistical mechanics, the grand canonical potential of this system, 
~O, will be a function of T and a functional of this generalized external field or 
equivalently of the local chemical potential, u ( r ) = g -  ~b(r). Indicating this 
functional dependence by square brackets, we have O = O(T, [u]), and omit- 
ting for simplicity the T-dependence, we henceforth write: 12 = ~O[u]. It is then 
easily seen that the first two functional derivatives of 12[u] with respect to u(r) 
read 

 121.1 
- p ( r ) ,  ( 1 )  

 212[.1 ~u(r) ~u(r') = -~8{p(r,  r ' ) -  p(r) p(r') ~, p(r) 8 ( r -  r ' ) ) ,  (2) 

where/3 = 1 /knT and p(r), p(r, r ' )  denote respectively the one- and two-body 
densities. On the basis of (1), we are tempted to view p(r) and u(r) as a pair of 
conjugate variables, and to eliminate the more formal variable u(r) in favor of 
the physically more accessible variable p(r) by performing a functional Legen- 
dre trallsformation from the grand potential 12 to the (Helmholtz) free energy 
F according to 

f F[pl = 12[u l  - d r  u ( r )  ' (3) 

where F = F[p] is now viewed as a functional of the density, p(r), obtained by 
eliminating u(r) in the r.h.s, of (3) in favor of p(r) by formally solving (1). The 
relations conjugate to (1)-(2) can then be shown to read: 

 F[0l 
$p(r) - u(r) , (4) 

~2F[p] ~(r - r )  C(r,r,;[pl ) (5) 
~p(r) ~p(r') - p(r) 

where C(r, r') is the Ornstein-Zernike direct correlation function (d.c.f.) Eq. 
(5) can, finally, be functionally integrated in the space of p(r) iunctions to yield 
(A t~eing the thermal wavelength) 

13F[p] = J dr p(r) (ln{A3p(r)} - 1) 

1 A 

- f d r f ~ ,  f ~ f ~ p(r)p(r')C(r, r'; [A'p]), (6) 
0 1} 
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which is the integral form corresponding to the differential relation (5). Eq. (6) 
provides us with a compact and first principles link between the free energy (or 
the thermodynamic data) and the structural information embodied in p(r) and 
C(r, r'; [p]). It is this relation which is at the basis of the most recent density 
functional theories of freezing [8]. In order to implement eq. (6), one can 
evaluate its r.h.s, with a suitably parametrized expression for the one-body 
density p(r). The nature of this expression will depend on the type of order 
present; for instance, for a crystalline ordering, one can use Gaussian density 
profiles around the lattice sites {rj}, so that 

(O~) 
3/2  

p( r )=  j~. \ ~ /  e x p { - a ( r -  ri)2}, (7) 

where the inverse width parameter a is playing the role of an order parameter 
(a > 0 for the ordered phase and a = 0 for the disordered phase), which, just 
as in Landau's theory, can be determined by minimizing the free energy with 
respect to a. As such, eq. (7) is only approximate but there is no difficulty in 
systematically improving it (at the expense of introducing more order parame- 
ters, usually with little gain, at least in the freezing context [7]). The crux of 
the method now rests on our ability to also (analytically) implement the 
two-body information contained in the d.c.f, appearing in (6). Today, the 
d.c.f, of the ordered phases are however still unknown and therefore we will 
take advantage of the fact that, in (6), they appear on!y under the integral 
signs in order to approximate them in terms of the d.c.f, of the disordered 
phase. At present, the value of this approximation is not known but, in 
principle, it could be tested as sot, n as more information about the structure of 
the ordered phases becomes available. 

It is, moreover, fairly obvious that the (angular) averaged structures of the 
coexisting ordered and disordered phases should be fairly similar because of 
the similar packings. The problem then boils down to finding which disordered 
phase yields a structure which can mimic the (angular) averaged structure of a 
given ordered phase. The difficulty now is that there does not appear to exist a 
systematic recipe to find the "effective" disordered phase which does this. 
Therefore, a we,,,,,n amount of guessing is "'~"" ~ , '  ~) ,hi~ ~t~,~. C~ne thing ~,,.,.,.SB,,, 3 .......... t~ ............ 

which is certain however is that, in the ordered phase, the two-body correla- 
tions are weaker and of shorter range than in the cocxisting disordered phase, 
and therefore this "effective" disordered phase has to correspond to a different 
thermodynamic state than the coexisting disordered phase. It so happens that, 
in the particular case of the freezing of a hard sphere fluid, the range of the 
direct correlations in both phases is given to a good approximation (see the 
Percus-Yevick theory) by the hard sphere diameter, i.e., the shortest range 
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possible, whereas the amplitude of these correlations is completely determined 
by the density (packing fraction), which ~educes the search of the effective 
hard sphere fluid to the determination of its effective density alone. In the hard 
sphere case, it is thus only necessary to find the hard sphere fluid whose density 
is small enough so that its correlations can describe (both with respect to its 
amplitude and its range) those of the angular averaged solid. O.n.e recipe (but 
not the only one), which appears to do this fairly well, is to determine the 
effective density, /~, corresponding to a given solid density, p(r), from the 
following self-consistency relation: 

, / , ,o,[pl = 4 , , ,q (b ) ,  (8) 

between the excess free energy per particle (~b) of the solid (~bsol[p]) and of this 
effective liquid or fluid (~b~iq(t~)). This then leads to hard sph,.re freezing results 
which are quite spectacular [8]; e.g. the packing fractions of the fluid (0.495) 
and the (fcc) solid (0.545) are within the error bars of the simulation results 
(respectively 0.494 and 0.545). The corresponding hard sphere equation of 
state is shown in fig. 1. The underlying freezing mechanism is seen to be a 
competition between the configuration entropy (favoring disorder) and the 
excess or correlation entropy (favoring ordered packings) [6]. 

Not only the above scheme [8] but also several other variations on the same 
theme (see ref. [7]) do lead to similar hard sphere freezing results, which 
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Fig. 1. The complete ;~ard sphere phase diagram in the pressure(p* =/3ptr~)-density(r/= -~,trpo "3) 
plane. The stable and mLtastable portions of the fluid and (fcc) solid branches are separated by the 
tie-line. The full lines correspond to the theoretical results (see text) and the dots represent the 
computer simulation results [8]. 
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appear therefore to be fairly robust. The extension of this approach to other, 
more complicated, hard core systems has produced results which, although 
more difficult to check, appear to be equally sound. This is the case for, e.g., 
the freezing of hard spheres in the presence of an external field, the partial 
freezing of hard sphere mixtures, the freezing of hard sphere mixtures into 
substitutionally disordered solids, the freezing of hard "spheres" of various 
spatial dimensionalities, etc. (for a recent review, see ref. [7]). This remains 
true also for the studies concerning the orientational freezing of systems 
composed of non-spherical objects with purely hard core interactions (see e.g. 
ref. [9]) although it should be realized that, for such systems, the description of 
the disordered phase is already far less accurate than for the simple hard 
sphere system, while the consequences of this for the density functional 
description of the ordered phases are more difficult to estimate. 

in conclusion, it can be stated that, between all the statistical mechanical 
approaches to freezing, it is the density functional approach which, for the 
reasons given above, has reached its goal with the most success. 

3. Density functional theory of freezing: the difficulties 

Some of the difficulties encountered in the early applications of the density 
functional techniques to freezing problems can be qualified as purely technical. 
For instance, the use of a Fourier series representation for the local density 
instead of the real space representation given in eq. (7) has produced Fourier 
series with slow oscillatory convergence properties. Similarly, expansions of the 
free energy (6) around the free energy of the disordered phase, as in the 
Landau theory, has produced series which are presumably only asymptotic in 
nature. As shown above, such difficulties can easily be circumvented (for a 
detailed discussion see ref. [7]). The real problem of the density functional 
theory of freezing, in its present stage, is concerned instead with the extension 
of the theory to systems with continuous, and hence more realistic, interaction 
potentials. Indeed, some recent studies (see ref. [10]) have shown that a 
straightforward (or brute force) extension of the hard sphere theory to more 
realistic potentials lead~ to results of very limited value. It is important to 
realize here that the prob!em appears to be unrelated to the presence of 
attractive forces, since it is present already for purely repulsive continuous 
potentials, such as the inverse power potentials. It is our opinion that what is at 
stake here is the proper definition of the effective liquid whose correlations are 
supposed to model those of the solid. It is, indeed, well known that, in the 
liquid, the amplitude and the range of the correlations are tightly bound to 
each other, whereas in the solid the corresr, onding relation is unknown. This 
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then raises the question of how to consistently relate the amplitude to the 
range of correlations in the effective liquid corresponding to a given potential. 
In the hard sphere case, this problem was very much simplified because the 
range of the correlations was fixed by the hard sphere diameter, leaving only 
the density as a free parameter to adjust the amplitude self-consistently. In the 
case of the more general potentials, it could then well be that another effective 
parameter, besides the effective density, needs to be introduced in order to 
achieve the required self-consistency between the amplitude and the range of 
the direct correlation function of the effective liquid. Since it is, at present, not 
obvious how to do this, we will now describe one way to circumvent the 
problem in a more pedestrian manner. 

Since we know how to compute the free energy of the hard sphere solid, we 
will now try to compute the free energy of the solid corresponding to a 
continuous potential, say V(r), by thermodynamic perturbation theory [11]. In 
other words, we will proceed for the solid in the same way as usually done for 
the liquid [12]. Although thermodynamic perturbation does not always work, 
even for the liquid, we can nevertheless hope to learn something more about 
the above difficulties by applying it to the solid. In order to avoid having to 
face too many problems at one time, we will consider the n = 12 soft spheres, 
V(r) = E(o'/r)', which in many aspects behave similarly to hard spheres (corre- 
sponding to n----> ~), except that the purely repulsive potential is now continu- 
ous and of slightly longer range. Let us expand then the free energy of the 
1 / r 12 solids as 

l f f  
/3F=/3Fns(6) 2pV drl dr2 YHS(rl' r2; • ) 

× (exp{ - /3 V(rl2 ) } - -  exp{-/3 Vns (r,z) } ) ,  (9) 

where yHs(rl, rz; 6) = p ( r l ,  r2; 6)exp{/3Vtts(r12)) and 8 denotes the hard 
sphere (HS) diameter corresponding to the soft sphere diameter o- (~6) .  Next, 
we split V(r) = Vo(r ) + W(r) into a core part, V0(r ) = V(r) O( A - r) + F(r) x 
0 ( A -  r), and a repulsive tail, W(r)= V(r)O(r-  A ) -  F(r )0 (A-  r), with A a 
cutoff pzrameter, F(r) a linear interpolation function [12] and O(x) the 
Heaviside step function. We then determine 6 in such a manner that 

f f 
dr, j dr  2 yHs(r,, r2; 6) (exp{-/3Vo(r,,) } - exp{-/3VHs(r,2) }) : 0 (10) 

so that (9) can be rewritten, to the same level of approximation [11], as 

f l F "  flFl~s(6) + ~pV dr, dr  z p , , s ( r , , r 2 ; 6 ) ( 1 - e x p { - f l W ( r l z ) } ) ,  
(ll) 
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or treating/3 W as a small perturbatiop: 

l f f  /3F= /3Fus(8 ) + ~pV dr1 dr  2 pns(r,,r2; 3) /3W(r,2 ) , (12) 

which we rewrite finally as 

/ 3F= /3FHs(3 )+2~ 'p  drr gns ( r ;~ ) /3W(r ) ,  
0 

,, 2 ^  r where o2(r; 3) = O gns( ; 6) is the angular averaged pair density, 

(13) 

t)z(r; 3) = ~ dr  I dr~ p .s( r l ,  r2 ;6 )  6 ( r -  r,2 ) 
- 4 7 r r  2 ' 

(14) 

and p the average density of the solid. Eq. (10) becomes then 

or; 

J 
0 

2 ^ dr  r yHs(r; ~) (exp{-flVo(r)} - O(r-  ~)) = 0  (15) 

r o ~ .  ^ with Y,s(  , 3) g , s ( r ;  3) exp/3V, s(r). The structure of the solid is now com- 
pletely buried in ~ ,s ( r ;  6) ,  for which we use the Weis parametrization [13] with 
the parameters fixed in such a way that the pressure equation and the 
compressibility equation as obtained from the HS density functional theory be 
satisfied while ~.s(r ;  tS) also yields the correct number of nearest neighbours. 
The final expression (13) is then ultimately minimized with respect to the cutoff 
distance A (the latter comes out to be virtually identical to the nearest 
neighbour distance). The same theory can then be used for the fluid phase also 
and the fluid-solid coexistence can then be constructed as usual by equating 
the pressures and the chemical potentials of both phases. In terms of the 

,-~ x 3 1 n  3 reduced density, x = (pe) ptr ,  the fluid-fcc coexisting densities found in this 
way for the n = 12 soft sphere system are x(fluid) = 1.165 and x(fcc) = 1.215, 
which is to be compared to the simulation results [12] x(fluid)= 1.141 and 
x(fcc) = 1.193. This clearly shows that the freezing of the n = 12 soft spheres 
(and presumably also of the Lennard-jones system) is still monitored by the 
freezing of the underlying hard sphere system and that the density functional 
theory of freezing can indeed be extrapolated to continuous potentials by using 
a hard sphere perturbation theory. The question which remains open however 
is what will happen to the hard sphere perturbation theory for continuous 
potentials, which introduce a qualitatively new feature (such as bcc freezing)? 
Can this still be reached by starting from 0ilc metastable bcc) hard sphere 

solid? 
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