
OFFPRINT

Nonlinear diffusion from Einstein’s master
equation

J. P. Boon and J. F. Lutsko

EPL, 80 (2007) 60006

Please visit the new website
www.epljournal.org



Europhysics Letters (EPL) has a new online home at
www.epljournal.org

Take a look for the latest journal news and information on:

• reading the latest articles, free!

• receiving free e-mail alerts

• submitting your work to EPL

TAKE A LOOK AT
THE NEW EPL

www.epl journal.org



December 2007

EPL, 80 (2007) 60006 www.epljournal.org

doi: 10.1209/0295-5075/80/60006

Nonlinear diffusion fromEinstein’smaster equation

J. P. Boon(a) and J. F. Lutsko(b)
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Abstract – We generalize Einstein’s master equation for random-walk processes by considering
that the probability for a particle at position r to make a jump of length j lattice sites, Pj(r),
is a functional of the particle distribution function f(r, t). By multiscale expansion, we obtain a
generalized advection-diffusion equation. We show that the power law Pj(r)∝ f(r)

α−1 (with α> 1)
follows from the requirement that the generalized equation admits scaling solutions (f(r; t) =
t−γφ(r/tγ)). The solutions have a q-exponential form and are found to be in agreement with
the results of Monte Carlo simulations, so providing a microscopic basis validating the nonlinear
diffusion equation. Although its hydrodynamic limit is equivalent to the phenomenological porous
media equation, there are extra terms which, in general, cannot be neglected as evidenced by the
Monte Carlo computations.

Copyright c© EPLA, 2007

Introduction. – A standard procedure to describe
the microscopic mechanism of a diffusion process is to
consider a test particle executing a random walk on
some substrate. The idea goes back to Einstein who, in
one of his celebrated 1905 articles [1], showed how the
diffusion equation follows from a mean-field description
written in terms of the probabilities that the particle
performs elementary displacements at each time step. The
distribution function f(r, t), that is the probability that,
given the particle was initially at r= 0 at t= 0, it will
be at position r at time t (for t large compared to the
duration of an elementary displacement) is obtained as
the solution to the Fokker-Planck equation for diffusion,
and one finds that, in the long-time limit, f(r, t) is
Gaussian in space [2]. This result had been known since
Fick’s law was established for diffusion; what was new in
Einstein’s work was the microscopic content, in particular
the expression of the diffusion coefficient in terms of the
particle velocity autocorrelation function, a form that
was further generalized to the general class of transport
coefficients known since the 1960s as the Green-Kubo
coefficients [3].
The classical diffusion equation has been extensively

used and successfully applied to a large class of phenom-
ena (ranging from particle dispersion in suspensions to
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diffusion of innovations in social networks) and is indeed
applicable as long as the system responds linearly to a
change in the quantity that is being transported. But
the linear response hypothesis does not hold in more
complicated situations such as when there is an interac-
tive process between the particle and the substrate, or in
heterogeneous media. In the 1930s, a nonlinear diffusion
equation was proposed on a purely phenomenological basis
devised in particular to describe diffusive transport in
porous media, hence the name porous media equation [4]:

∂

∂t
f(r; t)=D

∂2

∂r2
fα(r; t) , (1)

where D is the diffusion coefficient. This equation, when
generalized with an advective term, has a q-Gaussian
solution [5] and exhibits the interesting feature that the
scaling 〈r2〉 ∝ tγ can be non-classical (γ �= 1)1. It was
not until the 1990s that a more fundamental basis was
proposed for the (generalized) porous media equation
using various statistical mechanical approaches. The
reason for the various approaches can be found in the
variety of problems where non-classical (non-Gaussian)
distributions are observed: transport in porous media,
viscous fingering, information diffusion in social networks
or in the internet, financial market distributions, . . . .

1When α= 1, eq. (1) is the usual diffusion equation with a
Gaussian solution [2] and classical scaling (γ = 1); note also that
the scaling holds for all moments: 〈rn〉 ∝ tnγ/2.
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The proposed approaches use formulations such as the
generalized entropy [6], the Langevin equation [7,8],
the master equation [9], the nonlinear response [10], the
escort distribution [11], or the generalized generating
function [12]; for a review, see [13].

Generalized master equation. – Here we use the
microscopic approach by going back to Einstein’s original
derivation based on the random walk. For simplicity,
consider a one-dimensional lattice where the particle hops
to the nearest-neighboring site (left or right) in one time
step, a process described by the discrete equation

n(r; t+1) = ξ−n(r+1; t)+ ξ+n(r− 1; t) , (2)

where the Boolean variable n(r; t) = {0, 1} denotes the
occupation at time t of the site located at position r and
ξ± is a Boolean random variable controlling the particle
jump between neighboring sites (ξ++ ξ− = 1). The mean-
field description follows by ensemble averaging eq. (2).
With 〈n(r; t)〉= f(r; t) and 〈ξj〉= Pj (using statistical
independence of ξ and n), and extending the possible jump
steps over the whole lattice, one obtains Einstein’s master
equation [1]:

f(r; t+ δt)=

+∞
∑

j=−∞

Pj(r− jδr; t) f(r− jδr; t) , (3)

where Pj(ℓ) denotes the probability that the walker at
site ℓ make a jump of j sites2. Using the normalization
1 = P0 (ℓ; t)+

∑

j �=0 Pj (ℓ; t), eq. (3) takes the form of a
Boltzmann-like difference equation:

f (r; t+ δt)− f (r; t) =
∞
∑

j=0

[Pj (r− jδr; t) f (r− jδr; t)−Pj (r; t) f (r; t)] ,
(4)

which simply describes the rate of change of the particle
distribution as the difference between the incoming and
outgoing fluxes at location r.
As discussed in the introductory section, in more

complex situations, when the linear response hypothesis
is no longer valid, one observes non-Gaussian behav-
ior, i.e. the long-time dynamics is different from that
described by the classical Fokker-Planck equation (or the
usual advection-diffusion equation). At the level of the
mean-field description, the breakdown of linear response
means that the particle motion depends on the occupation
probability in a non-trivial way. The jump probability
then becomes a functional of the particle distribution
function and Einstein’s equation describing the space-
time evolution of the particle motion must be generalized
in order to account for the functional dependence. So
introducing in (4) Pj(ℓ; t) = pj F (f(ℓδr; t)) , with j �= 0
and where pj is a given distribution of displacements

3, we

2In Einstein’s formulation the particle jumps are restricted to
symmetrical displacements, i.e. P+j = P−j .
3Any distribution for which the moments are finite, for instance,

pj ∼ e
−j or pj ∼ t

−µ with a cutoff.

obtain the generalized master equation

f (r; t+ δt)− f (r; t) =
∑

j=0

pj [F (f(r− jδr; t)) f (r− jδr; t) − F (f(r; t)) f (r; t)] .

(5)

Generalized diffusion equation. – Along the same
lines as the classical diffusion equation is obtained from
Einstein’s master equation, we perform a multi-scale
expansion of the generalized master equation (5) using an
expansion of the time and space derivatives of the form4

∂

∂t
= ǫ
∂(1)

∂t
+ ǫ2
∂(2)

∂t
+ . . . ,

∂

∂r
= ǫ
∂

∂r
+ ǫ2

∂2

∂r2
+ . . . ,

(6)

and a corresponding expansion of the distribution as

f (r; t) = f0 (r; t)+ ǫf1 (r; t)+ . . . . (7)

To first order, we have

O(ǫ1):
∂(1)

∂t
f0 (r; t)=−

(

J1
δr

δt

)

∂(1)

∂r
F (f0 (r; t)) f0 (r; t),

(8)
and to second order

O(ǫ2):
∂(1)

∂t
f1 (r; t)+

∂(2)

∂t
f0 (r; t)

+
1

2
(δt)
∂(1)2

∂t2
f0 (r; t) =

−

(

J1
δr

δt

)

∂(1)

∂r

(

dgF (g)

dg

∣

∣

∣

∣

g=f(r;t)

f1 (r; t)

)

−

(

δr

δt
J1

)

∂(2)

∂r
F (f0 (r; t)) f0 (r; t)

+
1

2

(

(δr)
2

δt
J2

)

∂(1)2

∂r2
F (f0 (r; t)) f0 (r; t) , (9)

where Jn denotes the moments Jn =
∑

j �=0 j
npj . Resum-

mation of these results (see [14] for details) yields the
hydrodynamic limit of the generalized master equation:

∂

∂t
f (r; t)+C

∂

∂r
[F (f (r; t)) f (r; t)] =

D
∂2

∂r2
[F (f (r; t)) f (r; t)] +

1

2

(

C2δt
) ∂

∂r
E(r; t). (10)

This result is the generalized diffusion equation where C
and D are the drift velocity and the diffusion coefficient,
respectively:

C=
δr

δt

∑

j �=0

jpj , D=
(δr)

2

2δt

⎛

⎜

⎝

∑

j �=0

j2pj −

⎛

⎝

∑

j �=0

jpj

⎞

⎠

2
⎞

⎟

⎠
,

(11)

4The smallness parameter is defined as the ratio of δr to the
length scale over which the relative variation of the distribution is
of order one and similarly for the time scale; see [14].
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and

E(r; t) =
∂

∂r
[F (f (r; t))f (r; t)]

−

(

∣

∣

∣

∣

dgF (g)

dg

∣

∣

∣

∣

g=f(r;t)

∂

∂r
[F (f (r; t))f (r; t)]

)

. (12)

When there is an external force acting on the particle,
eq. (10) is further generalized as discussed elsewhere [14].

Scaling solution. – Under which conditions is there a
scaling solution to the generalized equation? For simplic-
ity, consider the diffusion equation with no drift, i.e. the
jump probability is space symmetrical and consequently
the first moment J1 = 0 and C = 0, and (10) reduces to

∂

∂t
f (r; t) =D

∂2

∂r2
[F (f (r; t)) f (r; t)]. (13)

Assuming that f(r; t) = t−γ/2φ(r/tγ/2) = t−γ/2φ(x), and
expressing the time and space derivatives in terms of x,
eq. (13) is rewritten as (see [14] for details)

−γ
d

dx
xφ (x) = 2Dt1−γ

d2

dx2
F
(

t−γ/2φ (x)
)

φ (x) . (14)

The time dependence on the right can only be eliminated
if F (g) = gη = t−ηγ/2 φη for some number η, and hence
1 = t1−γt−ηγ/2, i.e.

γ =
2

2+ η
. (15)

Thus, when η �= 0, this describes anomolous diffusion:
〈

r2
〉

∼ t
2
2+η (and more generally 〈rn〉 ∼ t

n

2+η ). In this case,
eq. (14) becomes

D
d2

dx2
φ1+η (x)+

1

2+ η

d

dx
xφ (x) = 0 , (16)

and admits a q-exponential solution (see [14] for details)

φ(x) =

(

1+2η

1+ η
B

)
1
η

[

1−
η

2 (2+ η) (1+ 2η)BD
x2
]
1
η

,

(17)

where B is an integration constant. With η= 1− q, and
returning to the original space and time variables, (17)
takes the canonical q-exponential form

f(r; t)=Bqt
− 1
3−q

[

1− (1− q)Mq
r2

D t
2
3−q

]
1
1−q

(18)

with

Bq =

[(

1+
1− q

2− q

)

B

]
1
1−q

,

M−1q = 2(3− q) (3− 2q)B. (19)

So, with no drift and no external field, the generalized
random-walk model describes anomalous diffusion with

q-distributions5. It also follows from (18) that the
distribution of the values taken by f(r; t) at any fixed
value of time has the form of a power law [15]; defining

f̃(r; t) =B−1q t
1
3−q f(r; t), we have

P(f̃)=

∫ ∞

−∞

dr D−
1
2 t−

1
3−q δ(f̃(r; t)− f̃)∼

f̃−q
√

1− f̃1−q
.

(20)

An important result of the present analysis is that the
power law dependence of the transition probability, Pj =
pj F (f) with F (f) = f

η, is not introduced as an ansatz,
but follows from the demand for a scaling (or self-similar)
solution to the generalized diffusion equation.
Now introducing the power law dependence F (f) = fη

(with η� 0 for normalization
∑

j Pj = 1) in the general-
ized equation (10), we obtain (with η= α− 1)

∂

∂t
f (r; t)+C

∂

∂r
fα (r; t) =

D
∂2

∂r2
fα (r; t)+

1

2

(

C2δt
) ∂

∂r
E(r; t),

(21)

with

E(r; t)=
(

1−αfα−1 (r; t)
) ∂

∂r
fα (r; t) . (22)

Comparison of eq. (21) and eq. (1) shows that the two
equations are the same in the absence of drift (C = 0).
With non-zero drift, this corresponds to a generalized
porous media equation when the second term on the r.h.s.
of (21) vanishes, i.e. for δt→ 0. So the phenomenological
generalized porous media equation is an approximation
which can be obtained in the hydrodynamic limit from
the generalized master equation with a power law depen-
dence for the transition probability (and in the absence
of external force [14]). However eq. (21) contains an
additional term which, in general, cannot be neglected
(see next section).

Microscopic simulations. – Monte Carlo simu-
lations are performed with the generalized master
equation (5) using the power-law–dependent jump
probabilities and prescribed pj distributions: pj =

1
5 for

j = [−2,+2] (space-symmetrical jumps and, so, C=0)
and pj =

j+3
15 for j = [−2,+2] (space-asymmetrical jumps

and so with non-zero drift velocity), and the results are
compared with the numerical solution of the generalized
diffusion equation (21). Figure 1 illustrates the case
without drift for η= 2 (α= 3 and q=−1) showing
perfect agreement between the Monte Carlo data and the
q-exponential solution (18); for comparison the classical
Gaussian result (η= 0, q= 1) is also shown.
Two examples with drift are given in figs. 2 and 3 for

α= 1.1 (q= 0.9) and α= 2 (q=−1), respectively, showing

5One verifies straightforwardly that for q→ 1, one retrieves the
classical Gaussian distribution.
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Fig. 1: (Color online) Generalized diffusion with no drift: the
distribution function f(r; t= 2000 time steps) obtained from
Monte Carlo simulations (symbols) and the solution (18) of
the generalized diffusion equation (solid lines) for α= 3 (upper
curve) and α= 1 (105 walkers; initial condition: f(r, t= 0) =
δ(r)).
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Fig. 2: (Color online) Generalized diffusion with drift: the
distribution function f(r; t= 100 to 1600 time steps) obtained
from Monte Carlo simulations (symbols) and the numeri-
cal solution of the generalized diffusion equation (21) (solid
lines) for α= 1.1, i.e. q= 0.9 (105 walkers; initial condition:
f(r, t= 0) = δ(r)).

excellent agreement between the simulation data and the
solution of the nonlinear equation. We also computed
the solution of the generalized diffusion equation without
the extra term E(r; t) for the value α= 2; the results are
given by the dashed lines in fig. 3. The systematic discrep-
ancy with the simulation results gives clear evidence that
the term given by (22) in the generalized equation (21)
cannot be neglected. To the best of our knowledge
the present results provide the first microscopically
based demonstration of the nonlinear diffusion equation.
Further results, including the case where the transition

-10 0 10 20
r/δr

0

0.05

0.1

P(r)δr

t=100δt

t=200δt

t=400δt

t=800δt

t=1600δt

Fig. 3: (Color online) Same as fig. 2 for α= 2, i.e. q=−1.
Dashed lines: see text.

probabilities have full spatial dependence (i.e. not only
on the distribution at the originating location) and the
generalization with an external force (i.e. the nonlinear
advection-diffusion equation) are discussed in [14].
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