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We report the study of a fluid of hard-disk particles in a contracting cavity. Under supersonic contraction
speed, a shock wave converges to the center of the cavity where it implodes, creating a central peak in
temperature. The dynamics of the fluid is studied by solving the Euler and Navier-Stokes equations, as well as
by molecular dynamics simulations and the Enskog direct simulation Monte Carlo method. The value of the
maximum temperature reached at the center of the cavity is systematically investigated with the different
methods which give consistent results. Moreover, we develop a scaling theory for the maximum temperature
based on the self-similar solutions of Euler’s equations and mean-free-path considerations. This scaling theory
provides a comprehensive scheme for the interpretation of the numerical results. In addition, the effects of the
imploding shock wave on an passively driven isomerization reactionA
B are also studied.
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I. INTRODUCTION

In recent years, there has been much interest in the dy-
namics of collapse of a periodically driven bubble in a liquid
[1,2]. Much effort has been devoted to determine the high
temperature reached at the center of the bubble at the instant
of collapse. The mechanisms studied range from a uniform
heating due to adiabatic compression to the implosion of a
shock wave if the bubble interface reaches gaseous super-
sonic speed. This last mechanism has been investigated on
the basis of Euler’s equations which predicts an infinite tem-
perature at the instant and location the shock wave focuses at
the center of the bubble[3]. This infinite temperature is an
artifact of Euler’s equations which neglect the effects of dis-
sipation due to collisions between the particles in the gas.
The simulation of the bubble collapse with the Navier-Stokes
equations has shown that the maximum temperature is finite
[2,4,5]. Recent molecular dynamics simulations have been
carried out which also provide the maximum temperature
[1,6,7]. However, no systematic comparison between the
continuum and molecular dynamics descriptions exists and
little is known analytically about the value of this maximum
temperature and its possible effects on chemical reactions.

The purpose of the present paper is to study the maximum
temperature reached during the implosion of a shock wave
and the induced chemical reaction by molecular dynamics
simulations of hard disks in elastic collision in a contracting
circular piston. We systematically compare the descriptions
based on Euler’s equations and the Navier-Stokes equations
with molecular dynamics simulations. Molecular dynamics is
very appropriate for the study of an imploding shock wave
on the scale of the mean free path. In strong planar shocks,
the width of the front is indeed known to be of the order of
the mean free path. In an imploding shock wave, we should
thus expect a smoothing of the discontinuities predicted by
Euler’s equations on the scale of the mean free path. For our
aims, we have therefore carried out a study of the imploding
shock wave with molecular dynamics simulations. We con-
sider a hard-disk system which is less time consuming than
hard-sphere systems, albeit the scaling properties of an im-

ploding shock wave being qualitatively similar in two and
three dimensions. Our principal conclusion is that the hydro-
dynamic description of the fluid is in good agreement with
the molecular dynamics simulations, thus providing support
for the use of hydrodynamics to understand the behavior of
fluids even under the extreme conditions arising from bubble
cavitation.

In typical cavitation conditions, the bubble is periodically
driven by the acoustic field and its radius obeys nonlinear
equations of the Rayleigh-Plesset type[2,8]. The time depen-
dence of the radius is highly anharmonic, especially, around
the time of collapse. The time dependence is determined by
the coupling between the gas dynamics inside the bubble and
the motion of the surrounding liquid. Studies have shown
that spherical bubbles remain stable over a large domain of
physical parameters[2,9]. Beside the question of stability,
much effort has been devoted to understanding the condi-
tions under which a shock may be generated or not[2,10,11].
In the present paper, our goal is to study a situation with the
formation of a shock wave and to understand the saturation
of the temperature due to dissipative effects by using mo-
lecular dynamics simulations in particular. For this purpose,
we may consider a simplified dynamics with a uniformly
contracting cavity, ignoring the effects of wall acceleration.
Thanks to this simplifying assumption, we can perform a
detailed quantitative comparison between the hydrodynamic
equations and molecular dynamics simulations, and validate
theoretical results about the maximum temperature at col-
lapse.

The paper is organized as follows. In Sec. II, we describe
the system we consider and its basic properties such as its
equations of states and its transport properties. In Sec. III, the
theory of self-similar solutions of Euler’s equations is pre-
sented, which leads to a theoretical estimation of the maxi-
mum central temperature. In Sec. IV, we present the descrip-
tion of the phenomenon in terms of the Navier-Stokes
equations. Numerical results of the molecular dynamics
simulations are given and discussed in Sec. V. In Sec. VI, we
show how an isomerization chemical reaction is induced by
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heating due to the imploding shock wave. Conclusions are
drawn in Sec. VII.

II. DESCRIPTION OF THE SYSTEM

A. System

The system is a fluid ofN hard disks inside a circular
cavity (or piston) which contracts at a constant speed during
some time interval. The radius of the cavity decreases in time
according to

Rstd = R0 − ct, for 0 ø t , tf , s1d

where the final timetf is shorter than the time required for
the fluid to reach the maximum possible close-packing den-
sity for the hard disks.R0 is the initial radius of the cavity
andc is the speed of the wall of the contracting cavity. Fig-
ure 1 depicts the time evolution of such a fluid in a contract-
ing cavity and shows the formation of a concentric shock
wave converging to the center of the cavity and imploding
around timet.15.5. Behind the shock front, the density and
the temperature jump to higher values than before the front.
The heat generated by the shock may induce chemical reac-
tions as shown in Fig. 1. When the shock wave collapses at
the center around timet.15.5, the temperature culminates at
a peak value more than 100 times the initial temperature,
while the density is only multiplied by a factor of 4 or less.
The purpose of the present paper is to describe quantitatively
the implosion of the shock wave and its effects.

B. Dynamics

The N hard disks have masseshmiji=1
N and radii haiji=1

N .
Their positions and velocities arehr iji=1

N and hviji=1
N . The

Hamiltonian of the system of hard disks is given by the
kinetic energy

H = o
i=1

N
1

2
mivi

2. s2d

As a consequence, the disks are in free flight between the
collisions occurring at timeshtnj:

tn , t , tn+1:Hr istd = r istnd + vi
s+dstndst − tnd,

vistd = vi
s+dstnd,

s3d

wherevi
s+dstnd is the velocity of disk No.i after thenth col-

lision. We shall denote byvi
s−dstnd the velocity before this

collision. The disks are constrained to move in the domain

ir i − r ji ù ai + aj , s4d

ir ii ø Rstd − ai , s5d

for i , j =1,2, . . . ,N at all times. These conditions imply that
the velocities of both disksi and j involved in a binary col-
lision change according to

vi
s+d = vi

s−d − 2
mj

mi + mj
sei j ·vi j

s−ddei j ,

v j
s+d = v j

s−d + 2
mi

mi + mj
sei j ·vi j

s−ddei j , s6d

where

ei j ;
r i

s±d − r j
s±d

ai + aj
s7d

is the unit vector joining the centers of the disks and

FIG. 1. Time evolution of a fluid ofN
=10 135 hard disks of unit mass and diameter in
a cavity contracting at the speedc=5. We observe
the formation of a circular shock wave converg-
ing to the center of the cavity. Behind the shock,
the heat induces an isomerizationA↔B with the
activation energyEa=50. The solvent and reac-
tant particlesA are depicted as dots and the prod-
uct particlesB appearing behind the shock as
disks. Initially, the fluid is at rest with density
n0=0.1 and temperatureT0=1. The unit of posi-
tions x and y is the diameter of the hard disks.
The other units are set by taking hard disks of
unit mass andkB=1.
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vi j
s−d ; vi

s−d − v j
s−d s8d

is the relative velocity. The positions are unchanged at the
instant of the collision:r i =r i

s+d=r i
s−d. Total energy and mo-

mentum are conserved during binary collisions.
When a disk collides with the wall of the contracting cav-

ity, it undergoes a specular collision so that its velocity
changes according to

vi
s+d = vi

s−d − 2sei ·vi
s−ddei − 2cei , s9d

wherec is the speed of the wall and

ei ;
r i

s±d

ir i
s±di

s10d

is the unit vector in the direction of the position of diski
from the center of the cavity, which is also, in the cylindrical
geometry, the normal to the wall at the point of collision.
Total energy and momentum are not conserved during the
collision of a particle with the moving wall.

The dynamics(3)–(10) is simulated by an event-driven
algorithm based on the redetermination of the next collision
after each collision. This algorithm is at the basis of the
molecular dynamics simulations of the system.

C. Initial conditions

We consider a fluid of identical particles

mi = m, ai = a, for all i = 1,2, . . . ,N, s11d

of unit massm=1 and unit diameter 2a=1.
The initial state of the system is a thermal equilibrium at

temperatureT0 and densityn0 when the cavity has the radius
Rst=0d=R0. The initial density is therefore

n0 .
N

V0
=

N

pR0
2 . s12d

The state of thermal equilibrium is obtained during a tran-
sient period of equilibration under the molecular dynamics
itself while keeping constant the radius of the cavity.

D. Thermodynamics and the equations of state

Here, we use the intensive thermodynamic quantities
mass densityr=mn, the specific energye=E/M, and the
specific entropys=S/M whereM is the total mass. We sup-
pose that the fluid is locally at equilibrium and that the fol-
lowing local Gibbs relation is satisfied:

ds=
1

T
de+

p

T
d

1

r
, s13d

wherep is the local pressure andT the local temperature. We
introduce the specific enthalpy as

h = e+
p

r
. s14d

A fluid of identical particles at equilibrium at the tempera-
ture T and densityn is characterized by two equations of

state. The equation of state for the energy is simply

e=
D

2m
kBT, with D = 2. s15d

(In the numerical calculations, we take units where Boltz-
mann constant is equal to unity,kB=1.) On the other hand,
the equation of state for the pressure is given by

p = nkBT + R, s16d

where the rest is calculated with the virial theorem by a time
averaging under equilibrium conditions as

R= lim
V→`
K 1

2VD
o

aÞb=1

N

Fsr abd · r abL
eq

s17d

= lim
V,t→`

1

2tVDo
n

Dpi
snd · r i j

sndust − tnd, s18d

whereD is the dimension,Fsr abd is the force acting on the
particlea due to particleb, r ab=r a−r b, tn is the time of the
collision between disksi and j , Dpi

snd=mfvi
s+dstnd−vi

s−dstndg
=−Dp j

snd, and r i j
snd=r istnd−r jstnd. In this way, we have been

able to calculate numerically the pressure depicted in Fig. 2.
Since the energy is purely kinetic, the dynamics at differ-

ent temperatures is the same after a rescaling of time. Hence,
the pressure has the form

psT,nd = nkBTfsyd, with y = pa2n. s19d

For a hard-disk fluid, we use Henderson’s empirical equation
of state[12]

fsyd =
psT,nd
nkBT

=

1 +
y2

8

s1 − yd2 . s20d

The pressure equation of state can be reexpressed as

FIG. 2. Pressurep versus densityn for a system of 128 hard
disks of unit mass and diameter at the temperaturekBT=1 calcu-
lated numerically by Eqs.(16)–(18) (dots and solid line). The
dashed line is the Henderson’s empirical equation of state(19) and
(20) valid in the fluid phase. The unit of pressure iskBT/ s2ad2 and
the unit of density is 1/s2ad2 where 2a is the diameter of the hard
disks.
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fsyd =
psT,nd
nkBT

= 1 + 2pa2nYsnd = 1 + 2yYsyd, s21d

in terms of the Enskog factor

Ysyd =

1 −
7y

16

s1 − yd2 . s22d

Figure 2 compares the numerical calculation of the pressure
with Eqs. (16)–(18) with the analytical expression(19) and
(20). The agreement is excellent at low density in the whole
fluid phase before the fluid-solid transition.

The system undergoes a fluid-solid transition in the coex-
istence interval of densitynf ,n,ns with

fluid-solid transition: nf .
0.87 ± 0.01

s2ad2 ,

ns .
0.90 ± 0.01

s2ad2 , s23d

independently of the temperature. The pressure diverges at
the close-packing density:

close-packing density: ncp =
1

a22Î3
.

1.1547

s2ad2 , s24d

where the hard disks form a perfect triangular lattice.
The specific enthalpy(14) is thus given by

h =
kBT

m
f1 + fsydg =

p

mn
F 1

fsyd
+ 1G . s25d

The specific entropy of the fluid can be calculated by
integrating Gibbs’ relation(13) with both equations of states
to get

s=
kB

m
ln

p

yfsydexp E fsyd
y

dy

+ s* , s26d

with a constant of entropys* . For the equation of state(20),
we obtain the specific entropy

s=
kB

m
ln

ps1 − yd23/8

y2S1 +
y2

8
Dexp

9

8s1 − yd

+ s* , s27d

which can be rewritten in the form

s=
kB

m
ln

p

yg expCsyd
+ s* , s28d

with the exponentg=2 and the function

expCsyd =

1 +
y2

8

s1 − yd23/8 exp
9

8s1 − yd
= 1 + 4y + Osy2d.

s29d

The adiabatic is thus given by

p = p*y
g expCsyd, s30d

with the constant of pressurep* =expfmss−s*d /kBg.
The sound velocity is given by

cs =ÎS ]p

]r
D

s
, s31d

where the derivative is taken at fixed entropy, sound being
supposed an adiabatic process in first approximation. Ac-
cordingly, we obtain

cs
2 = S ]p

]r
D

s
=

kBT

m
S f + f2 + y

df

dy
D , s32d

with

df

dy
= 2

1 +
y

8

s1 − yd3 . s33d

For our hard-disk fluid at densityn0=0.1 and temperature
T0=1, the sound velocity iscs0.1.66.

E. Transport properties of the hard-disk fluid

Beside the equilibrium equations of state, the fluid is also
characterized by its transport properties which are the shear
h and bulk z viscosities and the heat conductivityk. The
transport coefficients are given in the Enskog approximation
by [13]

h = h0brS 1

brY
+ 1 + 0.8729brYD , s34d

z = h0brs1.246brYd, s35d

k = k0brS 1

brY
+

3

2
+ 0.8718brYD , s36d

with

br = 2pa2n = 2y s37d

and

h0 =
1.022

4a
ÎmkBT

p
, s38d

k0 =
1.029

a
ÎkB

3T

mp
. s39d

These transport properties arise because the fluid is com-
posed of particles which have the mean free path

, .
1

4Î2anYsnd
s40d

in a dilute-to-dense hard-disk fluid at equilibrium, where
Ysnd is Enskog’s factor of the Enskog kinetic theory of dense
fluids [14]. The mean free path is the characteristic spatial
scale of dissipative and kinetic effects in the fluid.
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III. SELF-SIMILAR SOLUTIONS OF EULER’S
EQUATIONS

A. Euler’s equations

On large scales, a supersonic flow is well described by
Euler’s equations because dissipation only manifests itself on
small scales of the order of the mean free path. In this non-
dissipative approximation, the processes are adiabatic—i.e.,
isentropic—andds/dt=0.

We assume that the flow keeps a rotational symmetry as
observed in molecular simulations. Therefore, the velocity
macrofield is radialu=uer and Euler’s equations become

]tr + ]rsrud +
D − 1

r
ru = 0, s41d

]tu + u]ru +
1

r
]rp = 0, s42d

]ts+ u]rs= 0, s43d

whereD is the dimension of space, and the entropy is related
to the pressure and the mass density by

s=
kB

m
ln

p

rg expCsrd
+ s*8. s44d

The fluid is not polytropic becauseCÞ0.
Equations(41)–(43) form a system of three partial differ-

ential equations for the three unknown macrofields which are
the mass densityr, the velocityu, and the pressurep. Equa-
tion (43) implies that the specific entropys is locally con-
stant so that the state equation(44) relates the pressure to the
mass density.

B. Self-similar solutions

We are looking for self-similar solutions of Eqs.
(41)–(44). For polytropic gases, such self-similar solutions
have been previously studied[15,16]. However, the problem
has to be reformulated because we have here a nonpolytropic
fluid, which is a case not treated in Refs.[15,16].

The implosion of the shock wave occurs whenr =0 at
some timet= t* . Thereafter, it reflects on itself and moves
outward at timest. t* . Here, we restrict our attention to the
period t, t* . We introduce the scaling variable

j ;
r

Ast* − tda , s45d

with an exponenta to be determined. The converging shock
corresponds to the valuej=1; i.e., the front of the shock
wave follows the trajectory

rshock= Ast* − tda. s46d

We further notice that the time of implosiont= t* corre-
sponds toj=`.

The macrofields are assumed to be of the form

r = r0Gsjd, s47d

u =
ar

t − t*
Vsjd, s48d

p =
a2r2

gst − t*d2GsjdZsjd, s49d

with unknown dimensionless functionsGsjd for the density,
Vsjd for the velocity,Zsjd for the ratio of pressure to density,
andr0 a reference density. We notice that the functionZsjd
in Eq. (49) describes the behavior of the temperature mac-
rofield.

C. Reduction to ordinary differential equations

The self-similar solutions have the mathematical advan-
tage to be expressed in terms of functions depending on the
single variablej. Therefore, the three partial differential
equations reduce to the following three ordinary differential
equations in the case of self-similar solutions:

dV

d ln j
+ sV − 1d

d ln G

d ln j
+ DV = 0, s50d

sV − 1d
dV

d ln j
+

Z

g

d ln G

d ln j
+

1

g

dZ

d ln j
+

2

g
Z − VS 1

a
− VD = 0,

s51d

s1 − gd
d ln G

d ln j
+

d ln Z

d ln j
− C8sGd

dG

d ln j
+ 2

1

a
− V

1 − V
= 0,

s52d

whereC8sGd=dC/dG. This system of ordinary differential
equations can be written in an explicit form. In the case
whereD=2 andg=2 which concerns us, we obtain

dV

d ln j
=

VsV − 1dS 1

a
− VD + F1 −

1

a
+ S2 +

C8

G
DVGZ

sV − 1d2 − S1 +
C8

2G
DZ

,

s53d

dZ

d ln j
=

Z

1 − V5−
2

a
+ 2S2 +

C8

G
DV + S1 +

C8

G
D

3

VsV − 1dS 1

a
− VD + F1 −

1

a
+ S2 +

C8

G
DVGZ

sV − 1d2 − S1 +
C8

2G
DZ 6 ,

s54d
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d ln G

d ln j

=
1

1 − V

352V +

VsV − 1dS 1

a
− VD + F1 −

1

a
+ S2 +

C8

G
DVGZ

sV − 1d2 − S1 +
C8

2G
DZ 6 ,

s55d

with C8=C8sGd.
The solution we are looking for starts from some initial

conditionsVs1d, Zs1d, andGs1d determined by the disconti-
nuity of the macrofields along the shock itself,j=1 or lnj
=0. The solution ends atj=` or ln j=` at the originV=Z
=0 in the planesV,Zd. If we linearize Eqs.(53) and (54)
around the origin, we obtain aroundV.0 andZ.0:

dV

d ln j
. −

V

a
− S 1

a
− 1DZ, s56d

dZ

d ln j
. −

2

a
Z. s57d

The solutions of these linearized equations are

V .
KV

j1/a , Z .
KZ

j2/a , s58d

with some constantsKV andKZ. Equation(58) describes the
divergence of the velocity, pressure, and temperature mac-
rofields at the implosion. We notice that the divergence of the
temperatureZ goes like the square of the divergence of the
velocity, as expected by a simple kinematic argument. On the
other hand, Eq.(55) for the density reduces atV.0 andZ
.0 to

d ln G

d ln j
. S2 −

1

a
DV + S1 −

1

a
DZ → 0, s59d

so that we can conclude that the densityG remains finite at
j=`.

The system of ordinary differential equations(53)–(55) is
defined in the phase space of the three variablessV,Z,Gd.
Between the initial conditionsfVs1d ,Zs1d ,Gs1dg and the fi-
nal conditionsfVs`d=0,Zs`d=0,Gs`dg, the trajectory meets
a surface of singularity where Eqs.(53)–(55) diverge. This
singularity surface is located where the denominator van-
ishes:

Z =
sV − 1d2

1 +
C8

2G

. s60d

On the other hand, this singularity is compensated by the
vanishing of the numerator on the null surface:

Z =

Vs1 − VdS 1

a
− VD

1 −
1

a
+ S2 +

C8

G
DV

, s61d

which intersects the singularity surface(60) along lines in
the three-dimensional phase space. The initial conditions are
separated from the lineV=Z=0 of final conditions by both
surfaces(60) and (61). For an arbitrary value ofa, the tra-
jectory will meet the singularity surface and will not be able
to reach the line of final conditions. Nevertheless, there ex-
ists a critical value ofa to be found numerically such that the
trajectory crosses both surfaces on a line at their intersection
where Eqs.(53)–(55) are not singular. This critical value of
a determines the exponent of the self-similar solution we are
looking for.

D. Matching equations

The initial conditionsfVs1d ,Zs1d ,Gs1dg are determined
by the matching equations which rule the flow at the discon-
tinuity of the shock wave[15]. In a frame moving with the
shock, the matching equations to be satisfied at the disconti-
nuity are

r1u1 = r2u2, s62d

p1 + r1u1
2 = p2 + r2u2

2, s63d

h1 +
u1

2

2
= h2 +

u2
2

2
, s64d

where the subscript 1 denotes the quantities before the shock
and the subscript 2 those after the shock. In a fixed frame, the
velocities are

v1 = 0, v2 = u2 − u1, s65d

for the converging shock at negative timest,0, because the
fluid is initially at rest.

Assumingp2@p1, Eqs.(62)–(64) are solved to obtain the
results that

r2 = r1F1 +
2

fsy2dG , s66d

p2 =
r1u1

2

1 +
fsy2d

2

, s67d

v2 = −
u1

1 +
fsy2d

2

, s68d

and
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u1 = − ṙshock=
arshock

t − t*
. s69d

The density before the shock is here the initial density of the
fluid at rest,r1=r0. After the shock, the density is given by
Eq. (66) at j=1 so that

r2 = r0Gs1d = r1Gs1d, s70d

where the equation

Gs1d = 1 +
2

fXpa2

m
r0Gs1dC , s71d

has to be numerically solved by the Newton-Raphson
method to determine the initial valueGs1d. Immediately after
the shock, the velocity is given by

v2 =
arshock

t − t*
Vs1d, s72d

and the pressure by

p2 =
a2rshock

2

gst − t*d2r0Gs1dZs1d. s73d

Inserting in Eqs.(67) and (68), we obtain the further initial
values

Vs1d = 1 −
1

Gs1d
, s74d

Zs1d = g
Gs1d − 1

Gs1d2 . s75d

E. Numerical construction of the self-similar solutions

The exponenta and the self-similar solutions can then be
obtained numerically for each initial densityr0. The values
are given in Table I, where we observe thata is less than
unity.

Figure 3 depicts the functionsVsjd, Zsjd, and Gsjd for
several values ofr0. We observe that we have asymptotic

expansions in powers ofj−1/a. For instance forr0=0.1, we
find numerically thata.0.796 and

Gsjd . 3.19 −
0.81

j1/a + ¯, s76d

Vsjd .
0.43

j1/a +
0.14

j2/a + ¯, s77d

Zsjd .
0.52

j2/a −
0.06

j3/a + ¯, s78d

for j→`.
There remains to determine the constantA. The shock

starts at the initial timet=0 when

rshock= rpiston= R0. s79d

Since the position of the shock is given by Eq.(46), we find
that

R0 = At*
a. s80d

On the other hand, the fluid velocity at the piston must be
equal to the speed −c of the piston. Since the fluid velocity is
known to be Eq.(48), we get the other result that

u = −
aR0

t*
Vs1d = − c, s81d

which shows that the time of implosion is

t* = aVs1d
R0

c
. s82d

Inserting this result in Eq.(80), we obtain the constant as

A =
R0

t*
a = R0F c

aVs1dR0
Ga

, caR0
1−a. s83d

F. Maximum temperature

According to Eq.(58), the macrofields behave att= t*
near the center of the cavity as

TABLE I. Values of the parameters of the self-similar solutions of Euler’s equations for the fluid of hard
disks of massm=1 and diameter 2a=1, versus the initial mass denisityr0=mn0.

r0 a Vs1d Zs1d Gs1d Gs`d KV KZ

0.0 0.80011 0.66667 0.44444 3.00000 4.55271 0.51173 0.46186

0.01 0.79984 0.65630 0.45114 2.90952 4.36333 0.50278 0.46970

0.05 0.79856 0.61672 0.47275 2.60905 3.74678 0.46849 0.49724

0.1 0.79634 0.57073 0.48999 2.32954 3.19073 0.42834 0.52456

0.2 0.78942 0.48741 0.49968 1.95088 2.46971 0.35515 0.56042

0.3 0.77975 0.41276 0.48478 1.70289 2.02502 0.28998 0.57309

0.4 0.76872 0.34492 0.45190 1.52654 1.72831 0.23230 0.56124

0.5 0.75778 0.28290 0.40574 1.39451 1.52073 0.18199 0.52451

0.6 0.74795 0.22617 0.35003 1.29227 1.37065 0.13887 0.46580

0.7 0.73976 0.17450 0.28811 1.21139 1.25937 0.10246 0.39067
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r . r0Gs`d, s84d

u . aKVA1/ar1−1/a, s85d

p .
a2r0Gs`dKZ

g
A2/ar2−2/a, s86d

for r →0. Therefore, we obtain the temperature as

kBT =
p

nfsyd
.

ma2KZ

gfXpa2

m
r0Gs`dCA2/ar2−2/a, s87d

with the constantA given by Eq.(83), whereupon the diver-
gence of the temperature field according to Euler’s equations
is

kBT = mc2 KZ

gVs1d2f„pa2n0Gs`d…
SR0

r
Ds2/ad−2

, s88d

for r →0, with fsyd=1+2yYsyd.
However, this divergence is smoothed out on the scale of

the mean free path which is given in Enskog’s theory for a
hard-disk fluid by

,snd .
1

4Î2anYspa2nd
sD = 2d, s89d

with a density n taking a value in the interval
n0,n,n0Gs`d between the initial density before the shock
and the density after the shock. The densityn is thus propor-
tional ton0 and we consider here the valuen.n0Gs`d which
has been reached at the moment of the implosion.

Finally, the maximum temperature at the center of the
cavity is given by

kBTmax. mc2 KZ

gVs1d2ffpa2n0Gs`dgH R0

,fn0Gs`dgJs2/ad−2

.

s90d

In D=2, we get

kBTmax. mc2 KZ

gVs1d2ffpa2n0Gs`dg

3h4Î2an0Gs`dYfpa2n0Gs`dgR0js2/ad−2.

s91d

We notice that the exponenta as well asVs1d, Gs`d, andKZ

depend on the initial densityn0 in nonpolytropic fluids.
The expression(91) shows that(i) the maximum tempera-

ture is independent of the initial temperatureT0 as long as
mc2@kBT0, (ii ) the maximum temperature is proportional to
the massm of the particles,(iii ) the maximum temperature is
proportional to the square of the speedc of the wall of the
contracting cavity,(iv) the maximum temperature scales as
R0

s2/ad−2 with respect to the initial radiusR0 of the contracting
cavity, and(v) in the dilute-gas limitn0→0, the maximum
temperature scales with the initial densityn0 as n0

s2/a0d−2

wherea0.0.8 is the dilute-gas value of the exponent.
As shown in the Appendix, similar results hold inD=3

because Eq.(90) also applies to a system inD=3 with the
corresponding mean free path.

If the fluid is a mixture of particles of different masses
hmiji=1

s , the Eulerian description predicts that the molar frac-
tions xi =ni / soi=1

s nid remain constant in time on a time scale
shorter than the time scale of diffusion. As a consequence,
the maximum temperature should be proportional to the av-
erage massmav=oi=1

s xi0mi instead of the massm in Eq. (90),
wherexi0 are the initial molar fractions.

FIG. 3. Self-similar solutionsVsjd, Zsjd, and Gsjd of Eqs.
(53)–(55) for a fluid of hard disks of unit mass and diameter of
initial density r0=n0 in a contracting cavity. These quantities are
dimensionless.
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G. Macrofield profiles versus time

Euler’s equations allow us to determine the macrofields of
velocity, temperature, and density for a fluid initially at the
densityr0=0.1 in a contracting cavity of wall velocityc=5.
For this purpose, the self-similar solutions(76)–(78) are
used. The result is depicted in Fig. 4. In the Eulerian descrip-
tion, the velocity and temperature blow up to infinity at the
center of the cavity at the instant of the implosion. In con-
trast, the density saturates at a finite value. The shock front
propagates according to Eq.(46) with the exponenta
.0.796. The macrofields are discontinuous at the shock
front.

IV. DESCRIPTION BY THE NAVIER-STOKES
EQUATIONS

Euler’s equations do not take into account the dissipative
effects which tend to smooth the front of the shock wave and
lead to a saturation of the temperature at implosion. In order
to investigate these effects, we have solved the Navier-
Stokes equations in a radial geometry. It is known that the
Navier-Stokes equations are able to describe the profile of a
shock wave in the limit of a weak shock[15]. As we shall see
in the following, the Navier-Stokes equations allow us to
obtain values for the maximum temperature which are in
excellent agreement with the molecular dynamics simula-
tions.

The radially symmetric Navier-Stokes equations are

]tr + ]rsrud +
D − 1

r
ru = 0, s92d

rs]tu + u]ru + ]rpd = Sz + 2
D − 1

D
hD]rS]ru +

D − 1

r
uD + S]rz

−
2

D
]rhDS]ru +

D − 1

r
uD + 2]rh]ru,

s93d

rs]te+ u]red + rpS]ru +
D − 1

r
uD =

1

rD−1]rsrD−1k]rTd

+ 2hFs]rud2 +
D − 1

r2 u2G + Sz −
2

D
hDS]ru +

D − 1

r
uD2

,

s94d

for the mass densityr, the fluid velocityu, and the tempera-
ture T. For a fluid of hard disks, the specific energye is
related to the temperatureT by the equation of state(15),
while the pressurep is given by the other equation of state
(20). The shear and bulk viscosities(h andz) as well as the
heat conductivityk are given by Eqs.(34)–(36).

We have integrated the Navier-Stokes equations for a con-
tracting cavity with a wall moving at speedc. The first pos-
sible comparison is with the motion of the shock which can
be localized as the point of maximum pressure gradient. Fig-
ure 5 shows the position of the imploding shock versus time
and we observe good agreement with the scaling(46) pre-
dicted by the similarity solution to the Euler equations. Here,
the fitted power isaNS.0.78 in excellent agreement with the
predictiona.0.796.

FIG. 4. Profiles of velocity, temperature, and density at successive timest for a fluid at initial densityr0=0.1 and temperatureT0=1 in
a contracting cavity of wall velocityc=5, according to Euler’s equations which ignore dissipation. The units are set by taking hard disks of
unit mass and diameter andkB=1.
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Figure 6 depicts the temperature macrofield versus time
and shows the steep increase of temperature at the center at
the moment of the implosion. However, contrary to the pre-
diction of Euler’s equations the temperature is not infinite
but reaches a maximum, as predicted by our equation(90).
Comparing the Navier-Stokes results in Fig. 6 with the Eu-
lerian prediction of Fig. 4(b), we observe that the shock has
a nonzero width according to the Navier-Stokes equations.
Moreover, the temperature profiles at successive times do not
superpose in the Navier-Stokes description although they do
so in the Eulerian description. The reason is that the dissipa-

tion included in the Navier-Stokes description continues to
heat up the fluid behind the shock due to the viscosities and
the heat conductivity, although these dissipative effects are
not taken into account in Euler’s equations.

In Fig. 7, we have plotted the rescaled central temperature
T/c2 versus the rescaled timect for cavities contracting at
different speedsc. We observe how the temperature increases
to a maximum in each case. Asc→`, the rescaled curves
tend to superpose as expected because we approach the limit
where the shock is well described by Euler’s equations. In
particular, the superposition of the curves is evidence that the
maximum temperature scales asc2 as predicted by Eq.(90).
We also observe that for a subsonic speedc=0.5 the curve
differs from the other curves. Figure 8 confirms that the
shock is sharper and sharper asc increases because its width

FIG. 5. Propagation of the shock wave in the radial coordinater
versus time, according to the Navier-Stokes equations(dots), for a
fluid of inital densityn0=0.1 and temperatureT0=1. The wall of the
circular cavity contracts at the speedc=5 from the initial radius
R0=224. The implosion happens at the timet* .19.5. The solid line
is a fit with the exponentaNS=0.78. The units are set by taking hard
disks of unit mass and diameter andkB=1. The small discontinui-
ties are artifacts of the algorithm used to track the position of the
shock, which is not well defined in the beginning and during reflec-
tion at the center.

FIG. 6. Time evolution of the temperature macrofield according
to the Navier-Stokes equations for a fluid of inital densityn0=0.1
and temperatureT0=1 in a circular cavity contracting at speedc
=5 from the initial radiusR0=180.1. The implosion happens at the
time t* .15.5. We observe that, thereafter, the shock wave propa-
gates outward and bounces back on the wall of the cavity which
continues to contract. The units are set by taking hard disks of unit
mass and diameter andkB=1.

FIG. 7. Central temperatureT/c2 versus timect, both rescaled
by the speed velocityc of the circular wall of the contracting cavity
starting fromR0=180.1, according to the Navier-Stokes equations
for a fluid of initial densityn0=0.1 and temperatureT0=1, and for
different speedsc=0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The sound
velocity of the initial fluid iscs0.1.66, which marks the transition
between the subsonic and supersonic regimes. The units are the
same as in Figs. 5 and 6.

FIG. 8. Half-width of the shock wave versus the rescaled timect
for different contraction speedsc=0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
according to the Navier-Stokes equations with the same conditions
and units as in Fig. 7.
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decreases and tends to a value which is of the order of the
mean free path. At subsonic speed, we no longer have a
shock but instead a broad front.

V. MOLECULAR DYNAMICS SIMULATIONS

The dynamics in a contracting cavity has first been simu-
lated by molecular dynamics simulations by an event-driven
algorithm. Figure 9 depicts the velocity, temperature, and
density macrofields versus time as calculated by averaging
the microscopic quantities over concentric annuli, as well as
over ten runs of the full dynamics from different initial con-
ditions of a fluid at rest, at initial densityn=0.1 and tempera-
ture T=1. Comparing these results of molecular dynamics
with the Eulerian description in Fig. 4, we first of all notice
the remarkable similarity. In particular, the time evolution of

the velocity and density macrofields are already very well
described by Euler’s equations. However, upon closer in-
spection, differences are noticeable. The molecular dynamics
simulations show that the shock wave has a width. Moreover,
the temperature at the center of the cavity at the instant of
implosion t* .15.5 reaches a finite maximum value at about
T.150. Besides, the temperature continues to increase be-
hind the shock. This is evidenced by the upward shift of the
temperature profiles in Fig. 9(b), though it is not the case in
Fig. 4(b). All these features are due to the dissipation which
is not taken into account in the Eulerian description. The
comparison of the temperature profiles in Fig. 9(b) with
those of Fig. 6 given by the integration of the Navier-Stokes
equations shows the excellent agreement. This agreement is
an evidence that the three aforementioned features can be
explained by the Navier-Stokes equations and are therefore
the consequences of the dissipation due to the viscosities and
the heat conductivity.

The propagation of the shock can be observed for each
macrofield in Fig. 9. Using the loci of maximum gradient of
each macrofield to define the position of the shock, we can
determine its trajectory in Fig. 10 where we observe the near
coincidence of the shock position using the different mac-
rofields. Figure 10 shows the remarkable agreement of the
power law predicted by the Eulerian self-similar solutions
(46) with the molecular dynamics. This result confirms that
the propagation of the shock wave is already remarkably
well described by Euler’s equations, which capture the phe-
nomenon in a very good first approximation. However, dis-
sipative effects are present which requires the Navier-Stokes
equations to be described.

Figure 11(a) depicts the central temperature versus time
for ten individual runs of the molecular dynamics, as well as
their average. After the implosion of the shock wave, the
temperature increases to its maximum. Important fluctuations
affect the value of the central temperature which can be de-
fined by averaging over different realizations from random
initial conditions. Figure 11(b) shows the very good agree-
ment of the central temperature with the result of the inte-
gration of Navier-Stokes equations.

We have also simulated the time evolution using the En-
skog DSMC method(i.e., direct simulation Monte Carlo
method based on Enskog kinetic equation[17]). This sto-
chastic method is in superb agreement with the molecular
dynamics. Figure 12 shows the trajectory of the shock ob-
tained using the DSMC method, which scales with the expo-
nent aDSMC.0.77 in agreement with the predicted power
law a.0.796. The agreement is also excellent with the tra-
jectory calculated by using the Navier-Stokes equations and
depicted in Fig. 5 for the same conditions as in Fig. 12.

Finally, the maximum temperature as a function of the
initial radius R0 is depicted in Fig. 13 for the different cal-
culations with the Navier-Stokes equations, the Enskog
DSMC method, and the molecular dynamics(MD). Our scal-
ing law (90) predicts a powern=s2/ad−2=0.51–0.56 for
a=0.796–0.780 depending on whether the density to con-
sider is the densityn=0.1 before the shock or the densityn
.0.3 at the implosion. We observe in Fig. 13 reasonable
agreement of this prediction with the results of different cal-
culations. The power obtained by fits has the valuennum.

FIG. 9. Molecular dynamics simulations of a fluid ofN
=10 135 hard disks of unit mass and diameter in a circular cavity
contracting at speedc=5 from an initial radiusR0=180.1. Initially
the fluid is at rest with initial densityn0=0.1 and temperatureT0

=1: (a) profiles of the radial velocity at successive timest versus the
radial coordinater, (b) the same for the temperature macrofield, and
(c) the same for the density macrofield. The macrofields are ob-
tained by averaging in concentric annuli of widthDr =5 using the
10N=101 350 particles of 10 runs. The units are set by taking hard
disks of unit mass and diameter andkB=1.
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=0.59–0.60 which is slightly higher than the prediction. A
reason could be that the scaling law results from an assump-
tion on the value of the density which changes during the
process. A complete theory should be based on the
asymptotic resolution of the Navier-Stokes equations around
Eulerian self-similar solutions. Given the limitations of the
present theory, we think that the agreement with the predic-
tion is reasonably good.

The conclusion here is that the dissipative effects are very
well described already by the Navier-Stokes equations which
allow us to calculate the maximum temperature at implosion
in good agreement with the MD and Enskog DSMC results.
The theory based on the Eulerian self-similar solutions and
mean-free-path considerations provides a comprehensive
scheme for understanding the numerical results.

Remark: The molecular dynamics simulations of a binary
mixture show that the molar fractions of species of different
masses remain unchanged during the short time interval of

the shock-wave implosion in agreement with the theoretical
prediction of Sec. III F.

VI. ISOMERIZATION CHEMICAL REACTION

The reaction we consider is an isomerization between two
speciesA
B in the solventS and without heat exchange so
that there is no feedback of the reaction on the hydrodynam-
ics. This reaction is thus passively driven by the hydrody-
namics. The advantage is that the reaction acts as a probe of
the hydrodynamics. Moreover, it allows us to understand the
effects of the coupling between the hydrodynamics and a
reaction essentially preserving the energy and the total num-
ber of particles.

The reaction is supposed to occur with probability 0ø P
ø1 if the center-of-mass energy is higher than an activation
energy, which means that the reactive cross section is con-
stant above the thresholdEa. The reaction scheme is

S+ S→ S+ S, s95d

FIG. 10. Propagation of the shock front in a fluid ofN
=10 135 hard disks of unit mass and diameter in a circular cavity
contracting at speedc=5 from an initial radiusR0=180.1. Initially
the fluid is at rest with initial densityn0=0.1 and temperatureT0

=1. The radial positionr of the front is determined by the radial
coordinate of the steepest gradient of the macrofields in Fig. 9.(a)
Radial positionr of the shock front versus time.(b) Same as in(a)
but in the log-log plot of the radial positionr versus the timet* − t
counted with respect to the collapse timet* in order to display the
Eulerian scaling with exponenta.0.796(lines). The units are the
same as in Fig. 9.

FIG. 11. Time evolution of the central temperature in a fluid of
N=10 135 hard disks of unit mass and diameter in a circular cavity
contracting at speedc=5 from an initial radiusR0=180.1. Initially
the fluid is at rest with initial densityn0=0.1 and temperatureT0

=1. The central temperature is calculated by averaging the kinetic
energies of the hard disks in a circle of radial coordinate 0, r ,5.
(a) Molecular dynamics simulations of the central temperature for
ten individual runs(dots) and their average(open circles connected
by a line). (b) Comparison between the MD average values(open
circles) with the result of the integration of the Navier-Stokes equa-
tions (solid line). The units are the same as in Figs. 5–10.
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A + S→ A + S, E , Ea ∨ hE . Ea ∧ prob. s1 − Pdj,

s96d

A + S→ B + S, E . Ea ∧ prob. P, s97d

B + S→ B + S, E , Ea ∨ hE . Ea ∧ prob. s1 − Pdj,

s98d

B + S→ A + S, E . Ea ∧ prob. P, s99d

A + A → A + A, E , Ea ∨ hE . Ea ∧ prob. s1 − 2Pdj,

s100d

A + A → A + B, E . Ea ∧ prob. P, s101d

A + A → B + A, E . Ea ∧ prob. P, s102d

B + B → B + B, E , Ea ∨ hE . Ea ∧ prob. s1 − 2Pdj,

s103d

B + B → A + B, E . Ea ∧ prob. P, s104d

B + B → B + A, E . Ea ∧ prob. P, s105d

A + B → A + B, E , Ea ∨ hE . Ea ∧ prob. s1 − 2Pdj,

s106d

A + B → A + A, E . Ea ∧ prob. P, s107d

A + B → B + B, E . Ea ∧ prob. P, s108d

where∨ stands for “or” and∧ for “and.”
We introduce the concentration difference

c =
m

r
snA − nBd, s109d

for which the equation of evolution is

]tc + u]rc = − 2k+sr,Td
r

m
c, s110d

with r=msnS+nA+nBd. The reaction ratek+ can be calcu-
lated using Enskog kinetic theory[13,14] for the above re-
action as

k+ = 8PaYsndFÎEa

m
e−Ea/kBT +ÎpkBT

4m
erfcSÎ Ea

kBT
DG ,

s111d

whereP is the reaction probability,a the disk radius,Ea the
activation energy, andYsnd is Enskog’s factor given here
above by Eq.(22). The validity of the kinetic result(111) has
been checked in the absence of hydrodynamics by molecular
dynamics simulations with an immobile wall of speedc=0.
Figure 14 shows good agreement with theory.

The reaction has been simulated in a contracting cavity, as
depicted in Fig. 1. The initial condition contains only solvent
S particles and reactantA particles, so that the products are
theB particles. We observe that theB particles are produced
behind the shock after heating by the shock. There is no
significant reaction within the shock itself. Figure 15(a) de-

FIG. 13. Compilation of our numerical data for the maximum
temperature at the center of the cavity at the instant of implosion
versus the initial radiusR0 of the cavity. Initially, the fluid of hard
disks is at rest with the densityn0=0.1 and the temperatureT0=1.
The speed of the wall of the contracting cavity isc=5. The crosses
are the data from the molecular dynamics simulations(MD), the
stars from the Enskog DSMC method, the open circles from the
Navier-Stokes equations, and the diamonds from the Navier-Stokes
equations but with an average of the temperature macrofield over
0, r ,5. The reason is that we compare with the MD and DSMC
data where the temperature is calculated by averaging the kinetic
energies of the particles in 0, r ,5. The solid line is a fit to the
Navier-Stokes data. The dashed line is a fit to the Navier-Stokes
data averaged over 0, r ,5. The power-law exponents of the MD
and DSMC data are:nMD =0.59±0.07 andnDSMC=0.52±0.20. The
units are the same as in Figs. 5–12.

FIG. 12. Simulations with the Enskog DSMC method of the
propagation of the shock wave in a fluid of initial densityn0=0.1
and temperatureT0=1 in a circular cavity contracting at speedc
=5 from an initial radiusR0=224 in the same conditions as in Fig.
5. The implosion happens at timet* .19.3 and the trajectory of the
shock front scales with the exponentaDSMC.0.77. The units are
the same as in Fig. 5.
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picts the concentrationcB of products as a function of time
calculated using Euler’s self-similar solutions. We already
see that the products accumulate behind the shock due to the
heating, but the rate is lower than it should be because the
heating is underestimated by Euler’s equations. Figure 15(b)
depicts the result with the Navier-Stokes equations coupled
to Eq. (110) and a better agreement is obtained with the
molecular dynamics simulations[see Fig. 15(c)]. Indeed, we
observe that the increase of the concentrationcB behind the
shock wave is somewhat larger in the molecular dynamics
simulations and the Navier-Stokes calculations than accord-
ing to the Eulerian description. Here, we see the effects of
the heating that we have already observed for the tempera-
ture in Figs. 6 and 9(b) due to the viscosities and the heat
conductivity. We notice that, at the end of the contraction, the
temperature has become so high with respect to the activa-
tion energy that an equilibrium has been reached between the
A andB particles so that the concentration of theB particles
reaches its equilibrium valuecB= 1

4 for cR= 1
2.

VII. CONCLUSIONS

In the present paper, we have studied the formation of a
shock wave and its implosion in a circular cavity contracting
at a supersonic speed. As a vehicle of our study, we have
considered a two-dimensional system of hard disks because
it can be efficiently simulated by molecular dynamics using
an event-driven algorithm with aboutN.104 particles.(In
D=3, a comparable simulation would requireN.106 par-
ticles, which is very much more time consuming.) The ad-
vantage to work inD=2 is thus a gain in CPU time albeit the
properties of theD=2 andD=3 systems are very similar. For
instance, the scaling exponent of the Eulerian self-similar
solutions remain in the interval 0,a,1 in both D=2 and
D=3. Therefore, the results inD=2 can be extrapolated to
D=3. We notice that long-time tail effects on the transport

FIG. 14. Reaction ratek+ versus the activation energyEa for
different mass densitiesr and reactant fractionscR=snA+nBd / snS

+nA+nBd. The dots and crosses are the results of the molecular
dynamics simulations while the lines are given by Eq.(111) result-
ing from Enskog’s theory. The simulations are carried out in a fluid
of hard disks of unit mass and diameter in elastic and reactive
collisions in a circular cavity of constant radiusR=180.1. The tem-
perature isT=1 and the reaction probabilityP=0.1. The units are
set by taking hard disks of unit mass and diameter andkB=1.

FIG. 15. Time evolution of the concentrationcB of productB
particles in a fluid ofN=101 35 hard disks of unit mass and diam-
eter in a circular cavity contracting at speedc=5 from an initial
radius R0=180.1. Initially the fluid is at rest with initial density
n0=0.1 and temperatureT0=1 and it contains solventS particles in
the concentrationcS= 1

2 and reactantA particles in the initial con-
centrationcA0= 1

2. The productB particles are absent. The activation
energy isEa=100 and the reaction probabilityP=0.1.(a) Prediction
of Eq. (110) coupled to the Eulerian self-similar solutions
(76)–(78). We notice the steep increase ofcB due to the discontinu-
ous shock front.(b) Results of the integration of Eq.(110) coupled
to the Navier-Stokes equations. Here, we notice that the increase of
cB is not so steep as in(a) because of the effect of the width of the
shock front. Moreover,cB increases slightly faster behind the shock
than in (a) because of the heating due to the viscosities and heat
conductivity. (c) Results of the molecular dynamics simulations.
The macrofieldcB is obtained by averaging in concentric annuli of
width Dr =5 over the 10N=101 350 hard disks in 10 runs from
random initial conditions. We notice the nice agreement with(b).
The units are set by taking hard disks of unit mass and diameter and
kB=1.
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coefficients are important for long-time relaxations and can
thus be neglected in the description of a finite-time blowup
phenomenon such as the shock-wave implosion.

The main purpose of the present paper has been to inves-
tigate the maximum temperature reached at the implosion of
the shock wave in the center of the contracting cavity. The
Eulerian description predicts a singularity in the temperature
macrofield resulting in an infinite maximum temperature at
the implosion, which is unphysical. In reality, the fact that
the fluid is composed of particles and is, thus, affected by
molecular fluctuations leads to dissipative effects, such as the
shear and bulk viscosities as well as the heat conductivity,
which precludes such a singularity in the temperature. It is
for a similar reason that the shock wave has a smooth front
with a width of the order of the mean free path, instead of
presenting a discontinuity as described by the nondissipative
Euler equations. Actually, the results of the integration of the
Navier-Stokes equations, which incorporate the effects of the
viscosities and heat conductivity, are in excellent agreement
with the molecular dynamics simulations as well as the En-
skog DSMC results. This agreement shows that the dissipa-
tion due to the shear and bulk viscosities and the heat con-
ductivity is responsible for(i) the nonvanishing width of the
shock front, (ii ) the heating proceeding behind the shock
front, and(iii ) the finite maximum value of the central tem-
perature at the instant of the shock-wave implosion.

Nevertheless, these dissipative effects manifest them-
selves on top of the profiles of the macrofields predicted by
the self-similar solutions of Euler’s equations, which are thus
smoothed out by the dissipative effects on the spatial scale of
the mean free path. The self-similar solutions obey a scaling
law with an exponenta depending on the system dimension,
on the equations of state of the fluid, and in the case of a
nonpolytropic fluid such as the hard-disk fluid, on the density
of the fluid before the shock front. This scaling exponent
given by the theory of the self-similar solutions is remark-
ably well confirmed by the MD and Enskog DSMC simula-
tions, as well as by the Navier-Stokes calculations. The in-
crease of temperature at the shock-wave implosion can
therefore be very well described by the Eulerian self-similar
solutions on spatial scales larger than the mean free path.
However, we have to suppose that the infinite singularity of
the temperature predicted by Euler’s equations is smoothed
out on a dissipative length scale of the order of the mean free
path. These considerations have led us to derive an analytic
expression for the maximum temperature in Sec. III F for
D=2 and in the Appendix forD=3. This analytic expression
for the maximum temperature provides us with a comprehen-
sive scheme for understanding the results of the MD and
Enskog DSMC simulations, as well as of the Navier-Stokes
calculations. A good agreement is found for the dependence
of the maximum temperature on the mass of the particles and
the speed of the wall of the contracting cavity, as well as on
its initial radius in the supersonic regime.

In the subsonic regime, a wave also propagates from the
moving wall to the center but its width is much broader than
in the supersonic regime so that it cannot be considered as a
shock wave. As the wall speedc increases the width of the
wave front decreases and tends to a value of the order of the
mean free path, while the maximum temperature increases as

the square of the wall speedc. In the supersonic regime, the
maximum temperature can be analytically derived from the
Eulerian self-similar solutions, which describe in detail how
the energy is focused to the center of the contracting cavity.
The dependence of the maximum temperature on the wall
speed and on the mass of the particles can be predicted by a
simple dimensional analysis. However, the dependence on
the initial radiusR0 of the contracting cavity is very non-
trivial because it involves the exponenta of the self-similar
solutions.

The implosion of the shock wave is a very fast process on
a time scale over which the dissipative effects have no time
to manifest themselves on spatial scales larger than the mean
free path. A consequence is that the large gradients of tem-
perature in the process have negligible effects on a mixture
of particles of different masses on the time scale of the im-
plosion. The ratio of concentrations of species of different
masses thus remains essentially constant, as predicted by the
nondissipative Eulerian description and confirmed by mo-
lecular dynamics simulations.

Besides, we have also studied the effects of the shock
wave on a simple reaction which is passively driven by the
hydrodynamics. It is an isoenergetic isomerizationA
B
with a given activation energy. This reaction is simple
enough that its reaction rate can be analytically derived from
Enskog’s kinetic theory for a dense fluid. This reaction rate is
very well verified by molecular dynamics simulations in a
fluid at rest. In the contracting cavity, the reaction is ob-
served to be induced by(i) the heating due to the passage of
the shock wave which provides the main contribution to the
productB, and(ii ) the heating by the viscosities and the heat
conductivity behind the shock which contribute to a small
amount. The concentration profiles of the productB are very
well described by the Navier-Stokes equations coupled to the
reaction equation for the concentration difference between
the reactive speciesA andB.

Recently, it has been noted that the applicability of the
coupled Navier-Stokes equations(92)–(94) and reaction
equation(110) is limited to systems in which the time scale
of the chemical reactions is neither too slow nor too large
relative to the hydrodynamic time scales[18]. The hydrody-
namic time scales are those related to sound propogation and
to dissipation. Near a shock, the hydrodynamic gradients be-
come of order one over a distance of the mean free path so
that the hydrodynamic time scales are comparable to the
mean free time. On the other hand, when the temperature is
comparable to, or larger than, the energy barrier for chemical
reactions, the time scale of the chemical reactions becomes
the mean free time multiplied by the reaction probability and
the latter is finite if the concentrations are not near their
equilibrium values. The conclusion is that if the concentra-
tions are not near their equilibrium values and the tempera-
ture is not small compared to the reaction energy barrier,
then(a) near a shock, the chemical time scale is likely to be
comparable to the hydrodynamic time scales, and(b) away
from a shock, the chemical time scales are likely to be much
shorter than the hydrodynamic time scales. Case(a) corre-
sponds to what are termed in Ref.[18] as “slow” or “mod-
erate” reactions, for which the phenomenological descrip-
tion, or some small generalization thereof, is applicable.
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Case(b) corresponds to “fast” reactions for which the phe-
nomenological description is likely to be invalid. However,
for the system studied in the present paper, case(b) may
never occur as the chemical reaction exhausts itself during
the period of shock focusing, when the system is still de-
scribed by case(a), thus explaining the good agreement be-
tween theory and simulation.

In conclusion, the main features of an imploding shock
wave can be described in terms of the Eulerian self-similar
solutions considering the dissipative effects of the viscosities
and the heat conductivity on the length scale of the mean free
path. These considerations provide us with an analytic ex-
pression for the maximum temperature reached at the implo-
sion.
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APPENDIX: MAXIMUM TEMPERATURE
IN THREE DIMENSIONS

In a three-dimensional(3D) hard-sphere fluid, the equa-
tion of state of the scaled-particle theory is given by[12]

psT,nd = nkBTfsyd, sA1d

where

fsyd =
1 + y + y2

s1 − yd3 , with y =
4p

3
na3 sD = 3d. sA2d

The Enskog factor is obtained as

Ysyd =
fsyd − 1

4y
. sA3d

The mean free path is thus estimated to be

,snd .
1

4Î2pa2nYS4p

3
a3nD sD = 3d. sA4d

The temperature profile at the instant of the implosion of
the shock wave is again given by Eq.(88) so that, by a
reasoning similar to the one in Sec. III F, the maximum tem-
perature at the center of the cavity is given inD=3 by

kBTmax. mc2 KZ

gVs1d2fX4p

3
a3n0Gs`dC

3H4Î2pa2n0Gs`dYX4p

3
a3n0Gs`dCR0Js2/ad−2

,

sA5d

with the 3D values of the quantitiesa, Vs1d, Gs`d, andKZ.
Therefore, the maximum temperature has properties similar
as inD=2.
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