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LETTER TO THE EDITOR 
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perturbation theory 
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B-1050 Brussels, Belgium 
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Abstract. it isshown that a simple perturbation expansion around the free energyof a (Bcc/ 
FCC) hard-sphere crystal leads to accurate predictions for the (BCc/m) freezing of soft 
spheres interactingviathe inverse-power potential, V(r)  = e(qb)", for all valuesofninclud- 
ing the extreme case of the one-component plasma (n = 1). In particular, we find that for 
1 s n I 6  there is both a fluid-BCC and BCC-FCC transition whereas for n 5 6 the BCC phase 
is unstable and only the fluid-Fcc transition survives, in agreement with the computer 
simulations. 

The theory of the freezing of classical fluids into perfect crystals (see, e.g., [l]) as based 
onthedensity-functional approach tonon-uniform systems [2], hasobtainedsomemixed 
success [SI. For the case of the hard-sphere (HS) system, usually used as a reference 
system for the description of more realistic potentials, very good results have recently 
been obtained from a variety of approaches [3]. The 'brute force' extension of these 
theories to continuous potentials has, in contrast, produced results of little physical 
interest especially for those systems for which a body-centred cubic (BcC) phase is 
expected [4] and to a lesser extent also for the face-centred cubic (FCC) phases [4]. 

The reason for this failure stems, in our opinion, from the fact that the HS case is a 
degenerate one for which the free energy and the entropy cannot be distinguished. 
Because of our present lack of understanding of bow to circumvent this difficulty we 
have, meanwhile, set up a perturbation theory around the HS solid similar to the one 
currently used in the study of realistic fluids [5 ] .  The theory requires only our previous 
(BCC/FCC) HS density-functional theory results [3] as input and yields good results for all 
of the inverse power potentials [5] including the one-component plasma [SI. In this way 
we are able to study, with little effort, the fluid-Bcc, fluid-FCC and BCC-FCC transitions 
of these systems in a systematic way. 

The formulation of a successful perturbation theory has been a major achievement 
of the theory of fluids [5 ] .  Although many variations of it do already exist, they all have 
in common a Van der Waals-like splitting of the pair-interaction potential, V(r) = 
Vo(r) + W(r) ,  into a steep short-ranged, V,, and a weak long-ranged, W(r), part. Next, 
the (Helmholtz) free energy F corresponding to the system with the original potential 
V(r) is rewritten in terms of the free energy Fo of the system with the potential Vo as: 

(1) 

where rI2 = lr, - r21, p(rt, rz) = Ji dbjo.(r,, rz) and p&,, rz) is the pair density of a 
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systeminteractingwith the potential V,(r) = Vo(r) + mW(r). Equation(1) resultssimply 
from the fact that the functional derivative of Fwith respect to the pair potential is equal 
to one half of the pair density [2]. The final step then, consists in re-expressing the free 
energy F,in terms of the free energy FHs of a fictitious HS system (of 'potential' VHs(r)): 

F o = F i ~ + ~ ~ d r ~ ~ d r z ~ ( r 1 , r ~ ) A ~ r ~ z )  2P (2) 

where 
p = 1 fkBT 

%,rJ =Jbdw,(rl,r2) 

A f W  = exp(-PVHs(r)) - exp(-Pvdr)), 

y d r ~ ,  rd = P&,, 4 exp(Pv,(rd) 
with pa(', , rz) denoting the two-body distribution function corresponding to the poten- 
tial plD(r) = VHs(r) + w(VO(r) - VHs(r)). Equation (Z) ,  similarly, expresses the fact that 
the functional derivative of the free energy with respect to the Mayer function Cf(rl2)) 
isequal to one half of they function [2,5]. Equations (1) and (2) can then be turned into 
perturbation series by expanding p&,, r2) in (1) andy,(r,, r2) in (2) around their values 
at (Y = 0. As already exemplified by the above notation, such a perturbation theory is 
equally applicable to the liquid [5] and to the solid phases although very little work has 
been done in the latter case [6,7], especially for the BCC phases. Notice, however, that 
within perturbation lheory only free energies can be obtained, while some structural 
infonation about the solid is lost. 

For the first step of our perturbation theory, we proceed as usual and determine the 
HS diameter d to be used in (2) by the Weeks-Chandler-Anderson prescription [8] that 
the first-order correction to Fo = FHs(d) in (2), i.e. the second term in the RHS of (2) 
evaluated with y(r, ,  rz) = yo(r , ,  should vanish. This yields an implicit equation ford 
and we then expand this d-value around its Barker-Henderson approximation [9] dBH 
as proposed by Verlet-Weis [lo]: d = dBH(l + 26(1 + . . .)),where the ellipsis denotes 
a density-dependent correction term which depends on the structure of the HS solid via 
y&,, rz ) .  For the densities of interest here this correction terms is usually small and we 
propose therefore to use ford the value given by: 

d = dBH(1 - 26) (3) 

which has the great advantage of being determined by the potential Vo(r) only. For the 
latter we adopt the Kang-Lee-Ree-Ree [ll] separation, V(r) = Vo(r) + W(r), defined 
by: 

Vo(r) = {V(r) - V(A) - (r - A)V'(A)}e(A - r )  (6) 
where I is a break point and e ( A  - r) = 1 for A >  r and zero otherwise. This form of 
Vo(r) guarantees that both V,(r) and &(r) = dVo(r)/dr vanish at r = A. For the break 
point h we adopt the simple approximation [ll]: 

A = ( f i f p ) ' p  (7) 
which corresponds to the nearest-neighbour distance of a compact lattice structure with 
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p being the average number density. Notice that this choice of A makes V,(r),  and hence 
also d ,  density-dependent quantities. We now substitute the result, Fo = FHs(d), back 
into (1) and approximate the second term in the RHS of (1) by taking p(rl ,  r2) = 
pa=o(rl ,r2).  Whereas, in a liquid, all of the structural information contained in 
po(rl,r2) is produced by the pair correlation function [5] (po(rl ,  r2) = pZgo(r12)), 
this is not the case for a solid where po(rl ,  r2) = p(rl)p(r2)go(rl, 2) and the produd 
p(rl)p(r2) almost entirely exhausts the structural information: in this case, the main 
purpose of g,,(rl, r2) is to produce a correlation hole for r12 smaller than the range 
of Vo(r12) (go(.], r2) - 0(rl2 - d) ) .  If, moreover, the particles are well localized (as one 
expects to be the case for a solid) then p(r)  will resemble a set of delta functions at the 
lattice sites. Using this rough approximation for po(rl ,  r2) in (1) the latter becomes 

where ri is the distance of the jth lattice site to the site at P = 0 and N is the total number 
of particles. In the course of going from Fo to FHs(d) we have consistantly approximated 
in (1) the range of Vo(r)  by d so that the restriction r, > din  (8) expresses the existence 
of a correlation hole. Our final approximation (8) is thus very simple since it requires 
only the evaluation of the integrals (4) and (5) involving Vo(r), a lattice sum for W(r)  
and FHs(d) for which we can use the results of our previous HS density-functional theory 

We will now use (8) for the evaluation of the free energy of the soft-sphere solids. 
Soft spheres are systems of point particles interacting via repulsive inverse-power poten- 
tials of the form, V(r) = &(u/r)", where E and U fix the energy and length scales, 
respectively, while the index n determines the range of the potential. In the limit where 
n+ m the soft spheres become hard spheres of diameter U. When n < 3 the soft-sphere 
system has to be stabilized by a continuous background in which casen = 1 willreproduce 
the one-component plasma (OCP) [12] of ions of charge e such that e' = &U. For n > 3 
the equilibrium properties of soft spheres are usually described [5] in terms of the 
dimensionless density, x = ( P ~ ) ~ / = p d ,  whereas for n S 3 one usually uses 1121 the 
coupling parameter, r = B&(u/a)", with x = (3/41c)r~'~, a = (41cp)-'/~ and p being the 
average number density. From (8) with F;$'(d) and FL:'(d) taken from our previous 
[3] HS density-functional theory, we find that for all n-values (1 s n s m) there is a first- 
order BCC-FCC transition from a low-density BCC phase to a high-density ~ c c p h a s e  with 
a small density change which decreases with decreasing n. Near melting, the BCC phase 
is thus favoured, just as in the Alexander-McTague theory [13], but since the BCC-FCC 
transition could still be pre-empted by the fluid-BCC and fluid-Fcc transitions we have 
investigated the latter by using the fluid free energies obtained from the Rogers- 
Young (PY-HNC interpolation) theory 1141. We then find that for n > 6 the BCC phase is 
metastable so that only the fluid-Fcc transition survives while for n s 6 there is a fluid- 
BCC transition followed at higher densities by a BCC-FCC transition. This is consistent 
with then = 4,6,9 and 12 computer simulation findings of Hoovereray-Johnson [U], 
Notice, however, that in their present stage both the theory and the simulation probe 
only the stability of these solids with respect to particle localization while some of these 
phases could be shear unstable [16]. In figures 1 and 2 we show the free energies and 
pressures of the different phases. Notice from figure 1 that the pressures obtained from 
(8) agree extremely well with the available simulation results [15]. We also find that the 
value of the coexisting fluid-solid densities are extremely sensitive to the input free 

[31. 



6550 Letter to the Editor 

Flgure 1. The compressibility factor, Z = @PIP,  for the Fcc phases of the inverse-power 
potentials of index n as functions of the reduced density x (for the om, we show -2 
versus r/50 where r is the coupling parameter). The curves have been calculated from the 
perturbation theory while the points are from simulation [15.17]. Note that the available 
~ccpressurescamot be distinguishedfrom the FCC resultsshown here. 

FigoreZThe freeenergyperparticle q relative totheliquidphase. A/3q = /3qzalld -@qlis.d 
for the FCC (full curves) and BCC (broken curves) solid phases of the inverse 6th potential 
and the ocp. The variable x is defined as in figure 1 and the simulation data. full circles for 
the FCC phases and open circles for the BCC phase of the ocp, are taken from the same sources. 
Note the scale: the relative difference between the theory and simulation is in the order of 
0.1% in all cases. Also, the apparent non-monoticity i s  due to errors in extrapolating the 
Liquid-state free energies into the supercooled region. 
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Table 1. The reduced densities, x s (Be)””pd, for n 6 and coupling parameters, 
r = ($z.r)’b, for n = 1 of the various coexistencies for the inverse-power potentials of 
index n compared to the available simulation results (the other valuer of n have been 
deleted here because they add very little to the trends already displayed). For n 4 the 
simulation results are taken from [I51 while for n = 1 they are taken from [17]. Notice 
that the fluid-Fcc transitions for n b 6 refer to metastable solids. 

fluid-FCC fluid-Bcc 
BCC-Fcc 

n equation (8) SIM equation (8) SIM equation (8) 

m 0.96-1.04 0.94-1.04 - - -  
9 1.24-1.28 1.33-1.37 - 
6 2.22-2.24 2.12-2.21 2.14-2.16 - 2.32-2.33 
1 194.3-1940 192 187.2-187.0 178 207.0-207.1 

- -  

energies for the fluid phases. For instance, the small discrepancies between the fluid 
free energies obtained from the Rogers-Young scheme (with a density-independent 
interpolation constant) [I41 and those of the simulation results [15] lead to very large 
shifts in the coexisting fluid-solid densities. In order to make sure that we are testing (8) 
we have calculated the coexisting densities by taking the simulation results [I51 for the 
fluid-phase free energies as input. As can be seen from table 1 the agreement is fair over 
the whole range of n-values. Unfortunately, no data, either from simulations or theory, 
are available to test our fluid-Bcc and BCC-FCC transition values for 1 < n < 31. In the 
particular case of the OCP (n  = 1) such data do exist for the fluid-BCC [17] and the 
(metastable) fluid-Fcc [17,18] transitions but nat for the BCC-FCC transition. Here also, 
the agreement obtained from (8) is good (see figures 1 and 2 and table 1). One minor 
defect of the present approach is that for n = 1 the width of the transition (Ar) is very 
small (Ar/r - 

The scheme presented here is extremely simple, being the result of many approxi- 
mations and yet gives fair agreement with simulations without using any input from 
simulation with respect to the solid phase. We believe that most of the approximations 
are as good as the underlying perturbation theory with the clear exception of the 
replacement of the two-body distribution function by a sum of delta functions. We hope 
to discuss in a future publication a slightly more complicated approximation for the two- 
body distribution function which, while still based solelyon HS density-functional theory 
results, improves the prediction for the fluid-Fcc transition in the case of large n (n  > 6) 
where at present the discrepancy with simulation is the greatest. We also hope to 
investigate the application of the present scheme to more complicated continuous 
potentials but it may be observed here that de Kuijper etnl[4] have already shown that 
treating the attractive tail of the Lennard-Jones potential perturbatively gives better 
results than treating the full potential within density-functional theory. 

but not strictlyzero as expected theoretically [19]. 
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