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Velocity Correlations and the Structure of Nonequilibrium Hard-Core Fluids
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A model for the pair-distribution function of nonequilibrium hard-core fluids is proposed based on a
model for the effect of velocity correlations on the structure. Good agreement is found with molecular
dynamics simulations of granular fluids and of sheared elastic hard spheres. It is argued that the incorpo-
ration of velocity correlations are crucial to correctly modeling atomic scale structure in nonequilibrium
fluids.
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The structure of a fluid as characterized by the pair
distribution function (pdf) plays a central role in statistical
mechanics. In equilibrium, it allows one to calculate the
equation of state whereas away from equilibrium it is
required, in the guise of the equal time density-density
correlation function, whenever one wishes to project a
kinetic equation onto the hydrodynamic subspace; see,
e.g., Ref. [1]. In both cases, it can be directly measured
by light scattering [2] and is thus an interesting quantity
in order to make connections with experimental studies.
The theory of the structure of equilibrium fluids is quite
advanced and ranges from simple models for spherical
hard-core systems to perturbative models applicable to
continuous potentials to integral equations applicable to
a wide range of systems [3,4]. Much less is known for
nonequilibrium fluids. Kinetic theory can yield infor-
mation in certain regimes such as low density or large
spatial separations, see, e.g., [5,6], but does not provide
complete models of nonequilibrium structure applicable
to dense fluids. Phenomenological models exist based
on fluctuating hydrodynamics [7–9] or Langevin models
[10,11], but these can be expected to be applicable only
at large length scales. For moderately dense hard-core
fluids, the only realistic and tractable kinetic theory
is the Enskog equation describing the time evolution
of the one-body distribution function (the dense fluid
generalization of the Boltzmann equation) [12]. Recently,
it has been shown that one piece of structural information
is directly accessible in hard-core systems within the
same set of approximations used to derive the Enskog
kinetic theory —namely, the pair distribution function
at contact [13]. The purpose of this Letter is to show
that it is possible to use this information to extend the
simplest class of equilibrium models, the so-called gen-
eralized mean spherical approximation, or GMSA [3,14],
to nonequilibrium systems and to validate the models
constructed against molecular dynamics simulations. In
particular, the models will be compared in the case of a
granular fluid (a homogeneous system violating energy
conservation) as well as strongly sheared elastic hard
spheres. The latter case is particularly interesting due to
the fact that it has motivated previous attempts to model
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nonequilibrium structure, is a realistic model of some
sheared colloidal suspensions, and has been investigated
experimentally for such systems [15].

To construct a model for the structure of a nonequilib-
rium fluid, we begin, as in nearly all models of equilibrium
structure, with the Ornstein-Zernike (OZ) equation for a
uniform fluid

h�r1, r2� � c�r1, r2� 1 r
Z

dr3 c�r1, r3�h�r3, r2� , (1)

where r is the density, the structure function h�r1, r2� is
related to the pdf, g�r1, r2�, by h�r1, r2� � g�r1, r2� 2 1,
and Eq. (1) serves as a definition of the direct correlation
function (dcf) c�r1, r2�. By definition, hard-core atoms
cannot interpenetrate, so the probability of finding two
atoms closer together than the hard-sphere diameter, s, is
zero given the boundary condition Q�s 2 r12�g�r1, r2� �
0, where r12 � jr1 2 r2j and Q�x� is the Heaviside step
function which is equal to 1 for x . 0 and zero otherwise.
Various arguments, based, e.g., on the Mayer expansion
of the various quantities, leads to the conclusion that the
direct correlation function is short ranged and the Percus-
Yevick (PY) theory results from taking it to be zero out-
side the core: Q�r12 2 s�c�r1, r2� � 0. This is sufficient
to completely specify all quantities and, in particular, the
pdf can be analytically determined [3]. However, there is
ambiguity in the equation of state since it may be deter-
mined from either the pressure equation, which involves
the pdf at contact, or from the compressibility equation
involving an integral of the structure function over all
space: these do not yield the same result. A feature
of many, if not most, successful theories of equilibrium
structure is that they force both routes to the equation
of state to yield the same result, a requirement known
as thermodynamic consistency. The GMSA accomplishes
this by giving the direct correlation function a parame-
trized “tail” by requiring Q�r12 2 s�c�r1, r2� � y�r1, r2�
for some function y�r1, r2�. In the original MSA, the tail
is taken to be either the interatomic potential or the Meyer
function constructed from it (thus reducing to the PY ap-
proximation in the case of hard spheres). In the original
© 2001 The American Physical Society
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GMSA of Waisman [14], the tail is taken to be a Yukawa
y�r1, r2� � Ae2B�r1221��r12 and the two parameters are de-
termined by requiring that both the routes to the equation
of state yield the Carnahan-Starling equation. The pressure
equation therefore fixes the pdf at contact, whereas the
compressibility equation fixes its area. This model may be
solved analytically and gives a good model of the pdf even
for dense fluids and can be adapted to give reasonable mod-
els other systems such as plasmas [16]. In all cases, the
two elements which depend on the system being in equi-
librium are (1) the arguments for the nature of the direct
correlation function outside the core, and (2) the equations
of state and the condition of thermodynamic consistency.

The first result that suggests the applicability of these
models away from equilibrium is the work of Yuste and
Santos on the structure of more complex hard-core systems
[17]. They show that the pdf can be written in terms of an
auxiliary function which is then parametrized as a Padé ap-
proximant. This approximant is then taken to be the sim-
plest possible that satisfies three physical conditions: the
pdf is finite at contact; the pdf goes to one at large sepa-
rations; the Fourier transform of the structure function is
finite at all wave vectors. These conditions are sufficient to
completely specify the auxiliary function and the result is
the PY pdf. Extending the approximant by one additional
term in the numerator and denominator (the relative order
of the two is fixed by the constraints) is exactly equivalent
to the Yukawa closure and the imposition of thermody-
namic consistency and the Carnahan-Starling equation of
state yields the GMSA. By recasting the GMSA solely in
terms of general physical requirements and extendable ana-
lytic approximations, this work accentuates the fact that in-
sofar as the tail of the direct correlation function is simply
being parametrized, the GMSA is generic. However, be-
fore this model can be used in nonequilibrium systems,
some substitute for the equation of state, used as input,
must be found. One role of the equation of state is, as men-
tioned above, to fix the value of the pdf at contact. The sec-
ond ingredient needed to complete the model is the recent
result showing that it is possible to calculate any two-body
function, evaluated for two atoms in contact, with the same
degree of approximation as is used in the Enskog equation
(the dense fluid generalization of the Boltzmann equa-
tion for hard-core systems) [13]. A slightly more gen-
eral form of the result than that given in Ref. [13] is that
the (nonequilibrium) average value of any two-body func-
tion at contact, say U�r� � �

P
i,j u�ij�d�qij 2 r�� where

we use the abbreviated notation u�ij� � u�qi , qj , pi , pj�,
is given by
U�sr̂� �

*X
i,j

d�qij 2 sr̂�u�ij�

+
0

1

*X
i,j

d�qij 2 sr̂�

"
Q�2q̂ij ? pij�

1
a

u0�ij� 2 Q�q̂ij ? pij�u�ij�

#+
0

, (2)
where the parameter a characterizes the inelasticity of the
hard spheres (a � 1 corresponds to elastic hard spheres),
r̂ � r�r denotes a unit vector, and u0�qi , qj , pi , pj� �
u�qi , qj , pi 2

11a

2 q̂ij�q̂ij ? pij�, pj 1
11a

2 q̂ij�q̂ij ? pij��
is the value of the two-body function just after the
collision has occurred. (This result is easily obtained by
applying the method of Ref. [13] to the pseudo-Liouville
equation for inelastic hard spheres [18].) The notation
�· · ·�0 indicates on average that it is to be performed
with the factorized two-body distribution function
f2�qi , qj , pi , pj� � f1�qi , pi�f1�qj , pj�g0�qi , qj� where
f1�qi , pi� is the one-body distribution (normally derived
from the Enskog equation) and g0�qi , qj� is typically
the local-equilibrium pdf. The first term on the right
represents the average over the nonequilibrium state when
all velocity correlations are neglected, whereas the second
gives the effect of velocity correlations generated by
the collision. As discussed previously [13], the Enskog
equation also takes account of these velocity correlations
whereas both it and Eq. (2) neglect correlations that
persist for more than one collision.

In summary, I therefore propose to use a GMSA-like
parametrized closure of the OZ equation and to fix the pa-
rameters using information coming from Eq. (2) which, in
the case u�ij� � 1, gives a generalization of the pressure
equation applicable to nonequilibrium fluids. The form of
the parametrization of the tail of the dcf will be guided
from results from kinetic theory: the Yukawa form will be
used when the pdf is expected to decay exponentially, as
in the case of a granular system [9] (note that this corrects
a previously reported algebraic decay [8] for this system)
whereas a power law will be used when the decay is ex-
pected to be algebraic (as for shear flow).

Granular fluids are often modeled as hard spheres which
lose energy upon collision, in which case the undriven sys-
tem cools at a steady rate. The energy loss per collision,
and hence the cooling rate, is controlled by the inelasticity
parameter a, introduced in Eq. (2) above. In this homoge-
neous cooling state (HCS) Eq. (2) gives g�r12 � s; a� �
11a

2a x where x is the equilibrium pdf at contact (since the
HCS is translationally invariant, all two-body quantities
depend only on the relative separation). The validity of
Eq. (2) for this system has been studied in some detail by
means of a set of molecular dynamics simulations which
will be presented at a later time. The simulations show that
it is a reasonable approximation in the range 1 . a * 0.5
at which point mode-coupling effects become important.
Here, we present only one comparison, Fig. 1, between
the pdf as determined from simulation and the nonequilib-
rium GMSA with the Yukawa closure for a relatively dense
fluid, ns3 � 0.5, and a large rate of dissipation, a � 0.5.
The model is seen to be good not only near the core but
also in its representation of the decay of the nonequilibrium
contribution to the structure. A measure of the signifi-
cance of the nonequilibrium effects shown is that they are
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FIG. 1. The difference between the pdf for a model granular
fluid with ns3 � 0.5 and a � 0.5 and the PY pdf for an equi-
librium fluid of the same density. The circles are from simulation
and the line is the GMSA result.

comparable in magnitude to the equilibrium pdf which,
for this density, varies between a maximum of 2.16 (at the
core) and zero, with an asymptotic value of 1. In applying
the GMSA in this case, we use the known analytic solution
of this model [19], and must determine the two parameters
introduced by the Yukawa tail by the constraints. One con-
straint comes from the value of the pdf at contact, but there
is no obvious replacement for the compressibility equation
used in equilibrium so we continue to enforce it, using the
expression for the pressure given in Ref. [20]. Some ex-
perimentation shows that the model is relatively insensitive
to the latter approximation. A more realistic constraint, to
be pursued in a future publication, would be to replace the
compressibility equation by the requirement that the area
under the pdf agree with that obtained from fluctuating hy-
drodynamics calculations [9].

A second and more complex test is the application
of the nonequilibrium GMSA to shear flow. We use a
Cartesian coordinate system in which the macroscopic
flow field is v�r� � ayx̂, where a is the shear rate. In this
case, an expression for the pdf at contact has been studied
in some detail [13] and, while it is possible to calculate
its full angular dependence, in the illustrative calculation
presented here, we will use the simple approximation
g�sr; a� � x�1 1 Ar̂x r̂y� with A chosen to give the
calculated value at r̂x � r̂y � s�

p
2 [13], which is the

dominant contribution. To model this, we must use an
anisotropic tail for the dcf and therefore take y�r1, r2� �
y0�r12� 1 y1�r12�r̂12x r̂12y . The solution of the OZ equa-
tion with an anisotropic potential is well known [3,21]
and will only be sketched here. To begin, the structure
function and the dcf must be expanded in terms of their
angular dependencies: h�r12� � hlm�r12�Ylm�r̂12� where
repeated indices are summed and Ylm�r̂� is a spherical har-
monic. We will also need the Fourier transforms of these
expansions which takes the form h̃�k� � hlm�k�Ylm�k̂�,
where hlm�k� may be calculated from hlm�r12� via a
Hankel transformation (in the case l � 0 this reduces to a
Fourier transform). Fourier transforming the OZ equation
3346
and multiplying by Y�
ij�k̂� and integrating then gives an

infinite set of coupled equations. The minimal set of
components that we can work with are the spherically
symmetric component, h00�r12�, and the components that
combine to produce the angular dependence of the tail,
r̂12x r̂12y , namely h22�r12� and h222�r12�. Furthermore, we
know that at contact, these give the dominant contributions
to h�r12�. For illustrative purposes, we therefore keep only
these three components and the corresponding equations
in the hierarchy with the result that we must solve the
system

h00 � c00 1 n

s
1

4p
�c00h00 1 c22h222 1 c222h22� ,

h22 � c22 1 n

s
1

4p
�c00h22 1 c22h00� , (3)

h222 � c222 1 n

s
1

4p
�c00h222 1 c222h00� ,

together with the boundary conditions described above.
Furthermore, a consideration of the symmetry of the prob-
lem and the form of the boundary conditions shows that
h22 must be purely imaginary and that h22 � h�

222 so that
the independent equations can be written as

�h00 6 ih22� � �c00 6 ic22�

1 n

s
1

4p
�h00 6 ih22� �c00 6 ic22� , (4)

which has the form of two decoupled OZ equations (at this
point, the solution maps to that of the dipolar hard-sphere
model [3]). The full pdf now has the form g�r� � 1 1

1
p

4p
h00�r� 1 i

q
15
2p h22�r�r̂x r̂y . The only element that re-

mains is to specify the tails of the dcf. At contact, we
know that h00�r� should be unchanged from its equilib-
rium value, whereas h22�r� is substantial. This suggests
that we take y0�r12� � 0, although in a more sophisticated
treatment we might want to use a Yukawa so as to fix the
value of h00�r� at contact (from the model for the pdf at
contact, this should be unchanged from equilibrium, but
Eq. (4) will not necessarily respect this —however, upon
solving the model, the change of this component at con-
tact is found to be minimal). For the anisotropic part, the
simplest choice we can make is to take y1�r12� � B�r3

12
(since then these equations may be solved using the PY re-
sults [3]). Although kinetic theory calculations [5] indicate
the presence of a long-ranged tail for h22�r� that decays as
1�r, we nevertheless proceed using y1�r12� � B�r3

12 be-
cause (a) even using a longer-ranged 1�r tail for the dcf
will not yield 1�r behavior in the pdf [16], and (b) no
matter what tail we choose, there will be a 1�r3 decay
[3]. The constant B is determined so as to give agree-
ment with the predicted value of the pdf at contact and
since there are no other parameters, the ad hoc use of the
compressibility equation is not needed in this case. The
solution then follows closely that for dipolar hard spheres,
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FIG. 2. The quantity h�
00�r� �

1
p

4p
h00�r� for a fluid of sheared

hard spheres with density ns3 � 0.5 and reduced shear rate
at00 � 0.5 where t00 is the Boltzmann collision time. The circles
are from simulation and the line is the GMSA result.

see, e.g., [3]. To test this, I have performed molecular
dynamics computer simulations, following the procedures
described in Ref. [13], to determine the functions h00�r�
and h22�r�, and a comparison to the nonequilibrium GMSA
model is shown in Figs. 2 and 3 for a moderately dense
fluid, ns3 � 0.5, in a strongly driven state, at00 � 0.5
where t00 � s��4n�

p
pkBT � is the Boltzmann collision

time. For h00�r�, there is little difference between the theo-
retical result, which is virtually identical to the PY pdf, and
the simulation indicating little or no change to this projec-
tion of the pdf due to the shear flow. For the more interest-
ing h22�r� component, the agreement is not exact but this
crude calculation nevertheless gives a reasonable approxi-
mation to the amplitude and peak of the oscillations of this
quantity which arises solely from the nonequilibrium state
and which is seen by comparison to Fig. 2 to be compa-
rable in magnitude to the equilibrium pdf. A more com-
plete solution to this model is in preparation.

These results on two very different strongly nonequi-
librium systems show that the knowledge of the velocity
correlations produced when two atoms collide, and the
consequent contribution to the pdf, is sufficient to gener-
alize a simple class of structural models to nonequilibrium
fluids. While these models may be useful as input to ki-
netic theory or for the interpretation of light-scattering ex-
periments, the most important point to be made here is the
critical role played by the velocity correlations in determin-
ing the atomic-scale structure in nonequilibrium systems.
Theories of nonequilibrium structure which do not explic-
itly take into account atomic-scale velocity correlations,
such as the phenomenological theories of Hess [10,11]
and Ronis [7] and the semiphenomenological theory of
Eu [22], are, at least when applied to hard-core systems,
a priori unlikely to be able to model the small-length scale
distortions of the fluid structure produced by nonequilib-
rium processes while, as shown above, even the simplest
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FIG. 3. Same as Fig. 2 except showing the quantity h�
22 �

i
q

15
2p h22�r�.

theories which do take them into account compare reason-
ably well to simulation.
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