
ARTICLES

Kinetic theory and hydrodynamics of dense, reacting fluids
far from equilibrium
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The kinetic theory for a fluid of hard spheres which undergo endothermic and/or exothermic
reactions with mass transfer is developed. The exact balance equations for concentration, density,
velocity, and temperature are derived. The Enskog approximation is discussed and used as the basis
for the derivation, via the Chapman–Enskog procedure, of the Navier–Stokes reaction equations
under various assumptions about the speed of the chemical reactions. It is shown that the
phenomenological description consisting of a reaction–diffusion equation with a convective
coupling to the Navier–Stokes equations is of limited applicability. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1648012#

I. INTRODUCTION

An understanding of chemically reactive flows is neces-
sary in a wide range of disciplines including astrophysics,
plasma physics, and applied chemistry. Recently, applica-
tions in aerospace engineering have led to a number of stud-
ies aimed at deriving phenomenological equations, the
Navier–Stokes equations coupled to reactions, from the
Boltzmann equation for increasingly complex systems in-
cluding internal degrees of freedom and three-body
interactions.1,2 However, these investigations do not exhaust
the range of interesting applications. A number of important
applications arise in the physiochemistry of cavitating
bubbles.3 A side from obvious examples such as the study of
flames and explosions, a recent area of interest is sonochem-
istry in which ultrasound is used to induce conditions of
extreme temperature and pressure inside bubbles with the
effect of dramatically increasing the rates of chemical
reactions.4 Closely related is the phenomena of
somnoluminescence—in which a fluid irradiated with ultra-
sound emits light—which is believed to be caused by pres-
sure waves acting on small bubbles of gas in the fluid~see,
e.g., Ref. 5!. The bubbles are subjected to such rapid com-
pression that shock waves may develop and the concentrated
energy drives many chemical reactions particularly when the
shocks reach the center of the bubbles giving rise to high
temperatures and densities. In fact, it has been suggested6

that some~endothermic! reactions may play an important
role in limiting the temperatures reached in the center of the
bubble. It is therefore of interest for these applications, as
well as some of the others mentioned above, to understand
the phenomenological equations governing a reacting gas un-
der extreme conditions and far from equilibrium. The Boltz-
mann equation cannot be considered an adequate basis for

such a study due to the fact that it is only applicable at
asymptotically low densities. In fact, the only simple fluid
that is amenable to analytic investigation at finite densities is
one composed of hard spheres. The purpose of this paper is
therefore to review the kinetic theory of reacting hard-sphere
systems and to use this as a basis for a hydrodynamic de-
scription of a reacting fluid far from equilibrium. In particu-
lar, the kinetic theory will be used to derive the exact balance
equations describing the local concentration, density, veloc-
ity, and temperature fields from which the extension of the
Navier–Stokes equations to include reactions is developed
based on the Chapman–Enskog procedure applied to the En-
skog approximation to the kinetic theory. A primary result
will be to show that the usual phenomenological description
consisting of the Navier–Stokes equations coupled to a
reaction–diffusion–advection equation is only applicable if
the chemical reactions take place on a time scale which is
comparable to the dissipative time scalelk2, wherel is a
transport coefficient andk a typical wave vector. If the reac-
tions are slower, then all hydrodynamic relaxation takes
place before the chemistry gets started and chemistry and
hydrodynamics are effectively decoupled. Faster reactions,
with time scale comparable tock, wherec is the sound ve-
locity, leads to additional couplings of the reactions to the
hydrodynamic fields. Even faster reactions lead to the chem-
istry taking place so fast that hydrodynamics is irrelevant.

The hard-sphere interaction model has proven remark-
ably useful as models of single- and multiple-component
simple fluids since, in many respects, the phenomenology of
the hard-sphere systems and atoms interacting via more re-
alistic pair potentials is qualitatively identical. For example,
hard-sphere systems exhibit the full range of transport coef-
ficients found in all simple fluids7 and possess a freezing
transition,8 and the structure of hard-sphere fluids in equilib-
rium is not much different from that of any other fluid.9 On
the theoretical side, the equation of state of hard-sphere flu-a!Electronic mail: jlutsko@ulb.ac.be
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ids is easily modeled.9 Kinetic theory is simplified by the fact
that only binary collisions are important and it is possible to
formulate an extension of the Boltzmann equation—the so-
called revised Enskog theory10 ~RET!—which not only de-
scribes the transport properties of multiple-component hard-
sphere fluids at finite densities, but which also describes
transport in the solid state.11 More recently, inelastic hard
spheres have been used as a model for driven granular fluids
with similar success. The hard-sphere interaction is therefore
an ideal model for understanding the extreme conditions oc-
curring in sonochemical experiments.

The kinetic theory of chemically reacting hard spheres
has in fact been discussed in the literature.12–15The principal
aim of these studies was to investigate contributions to the
reaction rates coming from dense fluid effects~e.g., ring ki-
netic theory leading to mode-coupling models! at equilib-
rium. In these studies, the atoms carry labels indicating their
species~sometimes called their color! and all intrinsic prop-
erties like the atomic radius and mass is specific to the spe-
cies. When the atoms collide, there is a probability that a
reaction takes place in which the species labels and, hence,
atomic properties change. The probability typically depends
on the rest-frame energy of the colliding atoms: if the rest
frame energy is greater than some specified activation en-
ergy, the reaction can take place with a probability that is, in
general, a function of the relative energy. Energy may be
gained or lost~exothermic or endothermic reactions!, but the
sizes of the atoms are generally invariant since, were they to
also vary, a collision could result in one of the atoms over-
lapping a third atom.~Technically, there is no reason that
atoms could not get smaller and most results would apply to
such a model.! Besides being restricted to a chemistry con-
sisting of color labels~and so excluding, e.g., the exchange
of mass upon collision!, a common assumption in earlier
work is that the chemical reactions are slow compared to
other transport processes. Since the rate of chemical reac-
tions is generally determined by the ratio of the temperature
to the activation energies and the difference in the concen-
trations, this implies that the results are only applicable near
equilibrium or for low temperatures. One of the primary
goals of the present work is to indicate how the phenomeno-
logical description~Navier–Stokes equations coupled to a set
of advective–reaction–diffusion equations! must be modified
to account for large deviations from equilibrium.

The organization of this paper is as follows: Section II
develops the formal statistical description of the system. The
discussion of possible collision rules is followed by the de-
velopment of the Liouville equation and the exact balance
laws describing the evolution of the local mass, energy, mo-
mentum, and partial densities. The Enskog approximation is
also introduced. Section III discusses the Chapman–Enskog
solution of the Enskog equation and, particularly, the differ-
ence between the assumptions of fast and slow chemical re-
actions. It is shown that, if the chemical reactions are suffi-
ciently slow, the fluid may be described by the Navier–
Stokes equations for the total mass, energy, and momentum
densities and a reaction–diffusion–convection equation for
the concentrations with the only coupling between the two
being the convective term occurring in the latter~i.e., the

‘‘usual’’ description!. However, under less restrictive as-
sumptions, the reactions are shown to depend in a much
more complicated way on the hydrodynamic fields. The pa-
per concludes with a discussion of the physical meaning of
the different assumptions.

II. STATISTICAL MECHANICS
OF REACTING HARD SPHERES

Consider a system ofN hard spheres of various species
confined to a volumeV with positions$qW i% i 51

N and momenta
$pW i% i 51

N . The combination of the position and the momentum
of a given atom, i.e., its phase, will be denoted below by the
letter x. Each atom will also be described by a set of discrete
labelsl i for the i th atom, which fix its ‘‘chemical’’ properties
~mass, hard-sphere diameter, and reaction parameters!. When
two atoms collide, both the mechanical variables and the
species labels of the atoms change. The dynamical variables
are altered according to some deterministic collision rule so
that for collisions between thei th and j th atoms,

xi→xi85b̂
l i l j

l i8 l j8xi ,

~1!
xj→xj85b̂

l i l j

l i8 l j8xj ,

where the collision operatorb̂
l i l j

l i8 l j8 describes a collision in-

volving the reaction l i1 l j→ l i81 l j8 ~i.e., the i th atom
changes from speciesl i to l i8 , etc.! and, clearly, one expects

that b̂
l i l j

l i8 l j85b̂
l j l i

l j8 l i8. Because the species change instantaneously

and randomly upon collision, the species labels must be
viewed as discrete random variables. Attention here will be
restricted to the model in which the probability of making a
particular transition is given by some function of the relative

phases of the two colliding atomsK
l i l j

l i8 l j8 (xi j ) where the no-

tation indicates that this probability depends on the relative
velocity vW i j 5vW i2vW j and positionqW i j @e.g., through the com-
bination (vW i j •qW i j )

2].

A. Collision rules

The coupling between chemistry and hydrodynamics can
be captured simply by considering atoms that carry a label
~e.g., color! that can change during collisions. Allowing for
the nonconservation of energy gives a relatively broad model
that includes endothermic and exothermic reactions. How-
ever, in the interest of generality, the problem of modeling
reactions that not only violate energy conservation, but that
also allow for the exchange, or even loss, of mass will be
considered.

The modeling of the collision rules in the case that mass
is either exchanged or lost upon collision is somewhat prob-
lematic. To understand why, consider the usual arguments
leading to specular collision rules in the case that mass is
invariant. Defining the total and relative momenta, respec-
tively, as

PW 5pW 11pW 2 ,
~2!

pW 5pW 12pW 2 ,
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the conservation of total momentum means that

PW 85PW ,
~3!

pW 85pW 1gW
l 1l 2

l 18 l 28,

where gW
l 1l 2

l 18 l 28 (x1 ,x2)52gW
l 2l 1

l 28 l 18 (x2 ,x1) is to be determined.

Second, the energy balance equation can be written as

E~x18 ,x28!1dE
l 1l 2

l 18 l 28~x1 ,x2!5E~x18 ,x28!, ~4!

wheredE
l 1l 2

l 18 l 28 (x1 ,x2) is the energy lost during the collision.

Substitution of Eq.~3! gives

~g
l 1l 2

l 18 l 28!212S pW 1
ml 2

2ml 1

ml 1
1ml 2

PW D •gW
l 1l 2

l 18 l 2818m l 1l 2
dE

l 1l 2

l 18 l 2850, ~5!

where the reduced mass ism l 1l 2
5ml 1

ml 2
/(ml 1

1ml 2
). In D

dimensions, this gives one constraint on theD independent

components ofgW
l 1l 2

l 18 l 28 so, for example, it fixes the magnitude

of gW
l 1l 2

l 18 l 28 if its direction is known: In one dimension, the prob-

lem is therefore solved. In higher dimensions, the conserva-
tion of angular momentum gives the needed additional con-
straint. This reads

PW 83
qW 11qW 2

2
1

1

2
pW 128 3qW 125PW 3

qW 11qW 2

2
1

1

2
pW 123qW 12 ~6!

or, using the conservation of total momentum,

gW
l 1l 2

l 18 l 283qW 1250, ~7!

thus fixing the direction ofgW
l 1l 2

l 18 l 28 as being along the line join-

ing the centers of the atoms. In this case, Eq.~5! gives

gW
l 1l 2

l 18 l 2852m l 1l 2S 2vW 12•q̂12

2A~vW 12•q̂12!
22

2

m l 1l 2

dE
l 1l 2

l 18 l 28D q̂12. ~8!

Taking dE
l 1l 2

l 18 l 2850 gives the usual result for elastic hard

spheres, whereas setting the loss to be a fixed fraction of the
contribution to the rest-frame kinetic energy due to the ve-

locity along the line joining the atoms,dE
l 1l 2

l 18 l 28

5l
l 1l 2

l 18 l 28 1
2m l 1l 2

(vW 12•q̂12)
2, is the model used for inelastic hard

spheres~i.e., granular fluids! and gives a coefficient of resti-

tution a
l 1l 2

l 18 l 285A12l
l 1l 2

l 18 l 28 .

When mass can be exchanged upon collision, it is useful
to introduce the total massMl 1l 2

5ml 1
1ml 2

, the center of

massQW 5(ml 1
qW 11ml 2

qW 2)/Ml 1l 2
, and the center-of-mass ve-

locity VW 5PW /Ml 1l 2
. Notice that even with the conservation of

total mass, the center of mass is not generally invariant if
mass is exchanged and the positions are kept fixed. So the
conservation of angular momentum gives

Ml
18 l

28
VW 83QW 81m l

18 l
28
v83qW 125Ml 1l 2

VW 3QW 1m l 1l 2
vW 3qW 12 ~9!

or, using the conservation of total momentum,

Ml 1l 2
VW 3~QW 82QW !1~m l

18 l
28
vW 82m l 1l 2

vW !3qW 1250. ~10!

In general, this equation cannot be satisfied since it implies

@VW 3~QW 82QW !#•qW 1250, ~11!

which is not generally true. The conclusion is that any colli-
sion rule which does not leave invariant the center of mass
will necessarily result in a violation of the conservation of
angular momentum at the microscopic level. It is not pos-
sible to compensate by allowing the positions of the atoms to
shift during the collision since this could lead to overlapping
configurations involving a third atom. In fact, one would
expect that the inclusion of internal degrees of freedom, in
particular of rotation of the spherical atoms, would allow for
a Galilean-invariant collision law and this will be explored at
a later date. For present purposes, given that the collision
rule cannot be uniquely fixed by appealing to general prin-
ciples, the only recourse is to try to construct reasonable
models. One possibility is to conserve the angular momen-
tum in the center of mass~c.m.! rest frame since then
VW 50 and angular momentum can indeed be conserved. An-
other is to work in analogy to the case of invariant masses
and to require that either all momentum transfer be alongqW 12

~sopW 85pW 12m l 1l 2
g

l 1l 2

l 18 l 28q̂12). However, since the former is not

Galilean invariant when mass is transferred@since in a frame
moving at velocity uW the relative momentum ispW boosted

5pW 1(ml 1
2ml 2

)uW ], it is not clear how to uniquely apply it.
In fact, if one tries to enforce this constraint in the c.m.
frame, it gives the same result as fixing the angular momen-
tum in the c.m. frame. A second possibility is to demand that

all velocity change be alongqW 12 ~so vW 85vW 1ḡ
l 1l 2

l 18 l 28q̂12). For

illustrative purposes, both options will be considered.
For the sake of generality, it is also interesting to con-

sider the consequences when mass is not only exchanged,
but is lost. It is clear that the previous considerations con-
cerning the specification of the collision rule under mass
exchange apply to this case as well so that, again, a model
must be introduced in order to specify the relation between
the lost mass and the total momentum and energy. Without
considering specific applications, it is not clear that any
unique conclusions can be drawn, so by way of illustration I
will assume that the mass is carried away in such a way that
the total momentum in the c.m. frame is conserved. This
means in general that the law of conservation of momentum
becomes

PW 85PW 2dm
l 1l 2

l 18 l 28VW , ~12!

where dm
l 1l 2

l 18 l 285ml 1
1ml 2

2ml
18
2ml

28
. The model adopted

here is that the mass is carried away byn
l 1l 2

l 18 l 28 particles with

massesmi
0 so thatdm

l 1l 2

l 18 l 285(
i 51

n
l 1l 2

l 18 l 28

mi
0 and with rest-frame ve-
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locities vW i
0 satisfying(

i 51

n
l 1l 2

l 18l 28

vW i
050. For the case in which the

angular momentum in the rest c.m. frame is held constant, it
is natural to also require that these particles carry no net
angular momentum.

Finally, some model must be specified for the energy lost

~or gained!, dE
l 1l 2

l 18 l 28, which might include contributions due to

kinetic energy that is carried away by the lost mass and en-
ergy lost~or gained! through other mechanisms~excitation of
internal degrees of freedom, radiation, exothermic, and en-
dothermic chemical reactions, etc.!. Suppressing the species
indices for a moment, the energy differential can be written
as the sum of two contributions,dE5dEm1dE0 , where the
first is the energy carried away with the lost mass, and the
second is due to any other inelastic processes. In the c.m. rest

frame, dEm5( i 51
n 1

2mi(vW i
0)2[dEm so in the laboratory

frame, dEm5( i 51
n 1

2mi(vW i
01VW )25dEm1 1

2dmV2. Further, I
assume, as is commonly done, that the remaining energy loss
~or gain! is frame independent~which means in particular
that it can only be a function of the relative velocity of the

colliding atoms!. The energy balance equation therefore
reads

1

2ml
18

p18
21

1

2ml
28

p28
21dE

l 1l 2

l 18 l 281
1

2
dm

l 1l 2

l 18 l 28V2

5
1

2ml 1

p1
21

1

2ml 2

p2
2, ~13!

where it is understood thatdE
l 1l 2

l 18 l 285dE
l 1l 2

l 18 l 28(x1 ,x2) is a

Galilean-invariant function of the phases. This expression
depends on the model for the lost mass~if any!, but is inde-
pendent of any other assumptions concerning the collision
rule.

From Eq. ~10!, conservation of angular momentum in
the rest frame then gives

vW 128 5
m l 1l 2

m l
18 l

28
~vW 121l

l 1l 2

l 18 l 28q̂! ~14!

for some scalarl
l 1l 2

l 18 l 28(x1 ,x2). Substituting into Eq.~13! gives

l
l 1l 2

l 18 l 2852vW •q̂1A~vW •q̂!22~12m l
18 l

28
/m l 1l 2

!v22
2m l

18 l
28

m l 1l 2
2 dE

l 1l 2

l 18 l 28 2
m l

18 l
28

m l 1l 2
2 dm

l 1l 2

l 18 l 28V2 ~15!

and one then finds that

gW
l 1l 2

l 18 l 2852m l 1l 2
l

l 1l 2

l 18 l 28q̂121S ml
18
2ml 1

ml 1
1ml 2

2
ml

28
2ml 2

ml 1
1ml 2

D PW . ~16!

Demanding that the change in the relative velocity be along the line joining the atoms gives a very similar result

vW 128 5vW 121l
l 1l 2

l 18 l 28q̂12, ~17!

with

l
l 1l 2

l 18 l 2852vW 12•q̂121A~vW 12•q̂12!
22~12m l 1l 2

/m l
18 l

28
!v12

2 2
2

m l
18 l

28
dE

l 1l 2

l 18 l 282

dm
l 1l 2

l 18 l 28

m l
18 l

28
V2 ~18!

and

gW
l 1l 2

l 18 l 285S m l
18 l

28

m l 1l 2

21D pW 1212m l
18 l

28
l

l 1l 2

l 18 l 28q̂121Fml
18
2ml

28

ml 1
1ml 2

2
m l

18 l
28

m l 1l 2
S ml 1

2ml 2

ml 1
1ml 2

D GPW . ~19!

Note that these two models coincide in the special case that the reduced mass is invariant, which obtains in one of two
circumstances: the atomic masses are invariant or if the atoms just exchange masses so thatml

18
5ml 2

and vice versa. In both

cases, mass is necessarily conserved,dm
l 1l 2

l 18 l 2850, and all other conclusions are model-independent consequences of Galilean

invariance.
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B. Evolution of phase functions

The dynamics of any hard-sphere model consists of free
streaming interrupted by binary collisions. In nonreacting
fluids, the collisions lead to an instantaneous change of the
velocities of the colliding atoms. The generalization to the
reacting fluid only requires that the chemical species labels
and, hence, the masses and any other species-specific prop-
erties to be viewed as dynamical variables as well and so as
part of an enlarged phase space.

Two atoms—say, atomsi andj—collide at timet i j when
their centers are separated by their relative hard-sphere di-
ameters l i l j

:

uqW i~t i j !2qW j~t i j !u5qi j
2 ~t i j !5s l i l j

2 , ~20!

where—e.g., for additive models—the relative hard sphere
diameter is simply the sum of the atom radiis l i l j

5 1
2s l j

1 1
2s l j

. The atoms do not have to all have the same size~e.g.,
an acceptable possibility is that different species have differ-
ent sizes, but chemical reactions always transform atoms
from a species of a given size to other species of the same
size!. An exceptional possibility in which size could change
is one in which atoms only get smaller upon collision: this
might be useful to model certain granular materials that frag-
ment upon collision~e.g., the ice composing the rings of
Saturn! and could be handled within the present formalism as
long as the position of the center of mass of each atom is
invariant. From Eq.~20!, one has that the time of the colli-
sion is

t i j ~G!52
1

v i j
2 vW i j •qW i j 2

1

v i j
2 A~vW i j •qW i j !

22v i j
2 ~qi j

2 2s l i l j

2 !,

~21!

where the sign has been chosen according to give the physi-
cal solution. If the right-hand side is imaginary, then no col-
lision takes place for the given initial conditions. This aspect
of the dynamics is independent of what actually happens
after the collision and is the reason that the structure of the
pseudo-Liouville equation is independent of the collision
rule. The pseudo-Liouville equation describing the time
evolution of an arbitrary phase function,A(G;t)
5A (x1 ,l 1 ,...,xN ,l N ;t), then follows immediately by anal-
ogy with the nonreacting fluid and is

d

dt
A5

]

]t
A1L̂1A,

L̂15(
i

ẋi

]

]xi
1(

i , j
T̂1~ i j !, ~22!

where the binary collision operators are

T̂1~ i j !52q̂i j •vW i j d~qi j 2s l i l j
!Q~2q̂i j •vW i j !

3S (
l 18 l j8

M
l i l j

l i8 l j8~xi j !b̂l i l j

l i8 l j821D . ~23!

As discussed in Appendix A, this can be derived directly for
a system of two atoms by writing the exact solution to the
two-body problem and differentiating; the generalization to

N atoms follows immediately due to the fact that only binary

collisions occur. HereM
l i l j

l i8 l j8 (xi j ) is a random matrix which,

in any realization, takes on the value 1 for some single com-
bination of l i8 , l j8 and is zero otherwise and which is distrib-
uted according to

^Ml 1l j

l 18 l 28~xi j !& react5K
l i l j

l i8 l j8~xi j !. ~24!

~The notation used here indicates stochastic quantities by
means of calligraphic type and uses carets to denote opera-
tors and averages over the stochastic process are denoted as
^¯& react.! For a nonreacting system, it becomes

M
l i l j

l i8 l j8(xi j )5d l
i8 l i

d l
j8 l j

. The only other formal difference from

the nonreacting case is that the momentum transfer operator

b̂
l i l j

l i8 l j8 has the effect of altering both the mechanical variables

and the species labels. So just as this operator instanta-
neously changes the position in phase space of thei th atom
from xi(t2) before a collision at timet to xi(t1)5xi8(t2), it
also instantaneously alters the species labels froml i(t2) to
l i(t1)5 l i8(t2), the difference being thatxi8(t2) is a deter-
ministic function ofxi(t2) and xj (t2), whereas the evolu-
tion of l i8(t2) is stochastic. For phase functions which have
no explicit time dependence, the Liouville equation can be
formally solved to get

A~G,t !5exp~L̂1t !A~G!, ~25!

which has the meaning that the system evolves from the
initial phaseG.

The most important difference from the nonreacting sys-
tem appears in the evaluation of statistical averages. In the
presence of reactions there are two statistical processes that
must be considered: the distribution of initial conditions
and the stochastic process that alters species labels at
the collisions. For a given distribution of initial conditions
r (0)(G)5r l 1l 2¯ l N

(0) (x1 ,x2 ,...,xN) ~giving the probability that

the first atom begins with speciesl 1 and phasex1 , and so
on!, one has

^A;t&5E dG r~0!~G!^A~ t !& react

5E dG r~0!~G!^exp~L̂1t !A~G!& react ~26!

and the notation should be understood as implying a sum
over the initial species labels

E dG r~0!~G!^exp~L̂1t !A~G!& react

[ (
l 1¯ l N

E dx1¯dxNr l 1¯ l N
~0! ~x1 ,...,xN!

3^exp~L̂1t !& reactA~G!, ~27!

whereA(G) can be taken outside of the average over reac-
tions since it depends only on the initial conditions. Now,
since each collision involves an independent stochastic pro-
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cess, it follows that̂ exp(L̂1t)& react5exp(̂ L̂1& reactt), which
is evaluated using Eq.~24!. Thus the time averages become

^A;t&5 (
l 1¯ l N

E dx1¯dxNr l 1¯ l N
~0! ~x1 ,...,xN!exp~ L̂1t !A~G!,

~28!

with the deterministic operator

L̂15(
i

ẋi

]

]xi
1(

i , j
T̂1~ i j ! ~29!

and the~reaction-averaged! collision operators are

T̂1~ i j !52q̂i j •vW i j d~qi j 2s l i l j
!Q~2q̂i j •vW i j !

3S (
l i8 l j8

K
l i l j

l i8 l j8~xi j !b̂l i l j

l i8 l j821D . ~30!

This shows that, from the point of view of evaluating the
statistical averages, it suffices to work with the deterministic
dynamics defined byL̂1 , which no longer treats the species
labels as discrete stochastic variables. Instead, the phase
functions are at all times averaged over the reactions and so
do not explicitly represent dynamical quantities as might be
realized in a computer simulation. In fact, they correspond to
the average result of an ensemble of simulations, all begin-
ning with identical initial conditions, but differing in the re-

alization of the reaction processM
l i l j

l i8 l j8(xi j ).

C. Evolution of the distribution function

The adjointL̂1
A of the Liouville operatorL̂1 is defined as

E dG B~G!L̂1A~G!5E dG@ L̂1
A B~G!#A~G!, ~31!

from which one finds~see Appendix B!

L̂1
A 52(

i
ẋi

]

]xi
1(

i , j
T̂1

A ~ i j !, ~32!

with the adjoint collision operator

T̂1
A ~ i j !52F(

a,b
Jab

l i l j~xi ,xj !~ b̂ab
l i l j !21Kab

l i l j~xi j !21G
3Q~2vW i j •q̂i j !d~qi j 2s l i l j

!vW i j •q̂i j , ~33!

with

Jab
l 1l 2~xi ,xj !5U]„~ b̂ab

l i l j !21xi ,~ b̂ab
l i l j !21xj…

]~xi ,xj !
U21

. ~34!

Here the operator (b̂ab
l i l j)21 is the inverse ofb̂ab

l i l j both in
terms of the change of the mechanical variables as well as
the species labels so that for an arbitrary function
(b̂ab

l i l j)21 B(xi ,l i ;xj ,l j )5B „(b̂ab
l i l j)21 xi ,a; (b̂ab

l i l j)21 xj ,b….
To illustrate the structure of this operator, consider the case
of inelastic hard spheres used to model granular fluids. Spe-
cializing to a single species, one has

vW i j8 5b̂vW i j 5vW i j 2~11a!vW i j •q̂i j , ~35!

wherea is a constant, from which it follows that

vW i j 5bW 21vW i j8 5vW i j8 2S 11a

a D vW i j8 •q̂i j , ~36!

giving

U]~ b̂21xi ,b̂21xj !

]~xi ,xj !
U5U12S 11a

a D U5 1

a
, ~37!

so that

T̂1
A ~ i j !B~xi ,l i ;xj ,l j !

52F 1

a
b̂2121GQ~2vW i j •q̂i j !d~qi j 2s l i l j

!vW i j

•q̂i j B~xi ,l i ;xj ,l j !, ~38!

which is the usual result.16

An important generalization of this result concerns the
case that the inverse transformationb̂ab

l i l jxi is not unique. This
can happen even in the single-species, inelastic case if the
coefficient of restitution depends on the velocities. For ex-
ample, if a5a(vW i j •q̂i j ), then the inverse collision rule is
determined by solving

vW i j8 •q̂i j 52a~vW i j •q̂i j !vW i j •q̂i j , ~39!

which may or may not have a unique solution. In the latter
case,T̂ 1

A must be written in terms of a sum over the various
branches and must include step functions which restrict the
domain of integration in Eq.~31! to the appropriate domain
for each branch. In practical calculations, it is usually most
convenient to recast integrals overT̂ 1

A ( i j ) into integrals in-
volving T̂1( i j ) so as to avoid this complication.

Given the adjoint operatorL̂1
A , Eq. ~28! can be written

as

^A;t&5E dG@exp~LAt !r~0!~G!#A~G!

[E dGr~G;t !A~G!, ~40!

where the second equality defines the time-dependent distri-
bution function. Its time dependence is given by the pseudo-
Liouville equation

S ]

]t
1(

i
ẋi

]

]xi
1(

i , j
T̄2~ i j ! D r50, ~41!

where in the standard notation7

T̄2~ i j !52T1
A ~ i j !. ~42!

The Born–Bogoliubov–Green–Kirkwood–Yvon~BBGKY!
hierarchy follows immediately from the Liouville equation.
Defining the reduced distribution functions as

f l 1¯ l m
~x1¯xm!

5
N!

~N2m!! (
l m11¯ l N

E dxm11¯dxNr~G!, ~43!
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integrating the pseudo-Liouville equation overxm11¯xN ,
and summing over the corresponding species labels gives the
mth equation of the hierarchy:

S ]

]t
1(

i 51

m

vW i•
]

]qW i
1 (

1< i , j <m
T̄2~ i j !D f l 1¯ l m

~x1¯xm!

52(
i 51

m

(
l m11

E dxm11T̄2~ im11! f l 1¯ l m11
~x1¯xm11!.

~44!

The first equation of the hierarchy is the starting point for the
Enskog kinetic theory as described below.

III. EXACT BALANCE EQUATIONS

Now consider the phenomenology of the reacting fluid
which is expressed in terms of the macroscopic hydrody-
namic fields. The results presented here are derived using
only the general form of the collision rule, Eq.~3!, and the
microscopic energy balance equation~13!, so that the only
assumptions made with respect to the collision model are
those concerning the energy transported by any lost mass.

The local fields of interest are the number fractions

nl~rW,t !5K (
i

d~rW2qW i !d l l i
;tL 5E dvW 1f l~rW,vW 1 ;t ! ~45!

and the mass, momentum, and energy densities, defined, re-
spectively, as

r~rW,t !5(
l

mlnl~rW,t !,

r~rW,t !uW ~rW,t !5K (
i

ml i
vW id~rW2qW i !;tL

5(
l

mlE dvW 1vW 1f l~rW,vW 1 ;t !,

D

2
n~rW,t !kBT~rW,t !5K (

i

1

2
ml i

Vi
2d~rW2qW i !;tL

5(
l

1

2
mlE dvW 1V1

2f l~rW,vW 1 ;t !, ~46!

where the excess velocity isVW i(t)5vW i(t)2uW (qW i ,t) and the
total number density is

n~rW,t !5(
l

nl~rW,t !. ~47!

It is also convenient to introduce the number fractions, or
concentrations,xl(rW,t)5nl(rW,t)/n(rW,t). The balance equa-
tions for these quantities follow directly from their defini-
tions and the first equation of the BBGKY hierarchy. The
details of the derivation are given in Appendix C and only
the results summarized here.

A. Number, mass, and concentration

Integrating over the positions and velocities gives the
balance equation for the local partial number density,

]

]t
nl1¹W •~uW nl !1¹W • jW l5Sl

~n! , ~48!

with the source

Sl
~n!~rW,t !52 1

2 (
abl1l 2

E dx1dx2~ q̂12•vW 12!d~q122s l 1l 2
!

3Q~2q̂12•vW 12! f l 1l 2
~x1 ,x2 ;t !

3d~rW2qW 1!Kl 1l 2
ab ~x12!~dal1dbl2d l l 1

2d l l 2
! ~49!

and the number currentjW l5 jW l
K1 jW l

V , with

jW l
K~rW,t !5E dvW 1f l~rW,vW 1 ,t !VW 1 ~50!

and

jW l
V~rW,t !52 1

2 (
abl1l 2

E dx1dx2qW 12~ q̂12•vW 12!d~q122s l 1l 2
!

3Q~2q̂12•vW 12! f l 1l 2
~x1 ,x2 ;t !

3Kl 1l 2
ab ~x12!~dal2dbl2d l l 1

1d l l 2
!

3E
0

1

dx d„rW2xqW 12~12x!qW 2…. ~51!

The source term represents the gain or loss of atoms of type
l due to chemical reactions. The kinetic part of the number
current is familiar from the study of multiple-component,
nonreacting systems7 where it takes the form jW l

K

5( jDl j ¹W nj1Ll¹W T1o(¹2) and, e.g., gives rise to Fick’s
law when substituted into Eq.~48!. Here it is seen that this
diffusive current is enhanced by a second contribution, Eq.
~51!, that arises solely from the reactions~i.e., it vanishes if
Kl 1l 2

ab 5dal1
dbl2

). This is due to the transport of type-l atoms

due to the reaction process. The conservation of total number
density immediately follows by summing over the species
label

]

]t
n1¹W •~uW n!1¹W •(

l
jW l
K50, ~52!

where the sum over the species of the collisional contribu-
tions to the number current vanishes. Similarly, multiplying
by ml and then summing gives the balance equation for the
local mass density,

]

]t
r1¹W •~uW r!1¹W •QW 5S~r!, ~53!

where the mass flux is

QW ~rW,t !52 1
2 (

abl1l 2
E dx1dx2qW 12~ q̂12•vW 12!

3d~q122s l 1l 2
!Q~2q̂12•vW 12! f l 1l 2

~x1 ,x2 ;t !

3Kl 1l 2
ab ~x12!~ma2mb2ml 1

1ml 2
!

3E
0

1

dx d„rW2xqW 12~12x!qW 2…, ~54!
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which vanishes if no mass is transported during collisions,
and the mass source term is

Sl
~r!~rW,t !5 1

2 (
abl1l 2

E dx1dx2~ q̂12•vW 12!d~q122s l 1l 2
!

3Q~2q̂12•vW 12! f l 1l 2
~x1 ,x2 ;t !

3d~rW2qW 1!Kl 1l 2
ab ~x12!dml 1l 2

ab , ~55!

which is only nonzero if the collisions do not conserve mass.
Finally, using the definition of the concentrations,xl

5nl /n, the reaction equation is found to be

]

]t
xl1uW •¹W xl1n21F¹W • jW l2xl¹W •(

l
jW l
KG5n21Sl

~n! ,

~56!

where the term on the right is now identified as the reaction
rate.

B. Momentum and velocity fields

The balance equation for the local momentum, written in
terms of the local velocity, is

]

]t
ruW 1¹W •~ruW uW !1¹W •~PJ1QW uW !5SW̄ ~p!1uW Sl

~r! , ~57!

with the pressure tensorPJ5PJK1PJV1PJM, where the kinetic
contribution is

PJK~rW,t !5(
l

mlE dvW 1f l~rW,vW 1 ,t !VW 1VW 1 ~58!

and the collisional contribution is

PJV~rW,t !52 1
2 (

l 1l 2l 18 l 28
E dx1dx2qW 12~ q̂12•vW 12!

3d~q122s l 1l 2
!Q~2q̂12•vW 12! f l 1l 2

~x1 ,x2 ;t !

3K
l 1l 2

l 18 l 28~x12!gW̃ l 1l 2

l 18 l 28E
0

1

dx d„rW2xqW 12~12x!qW 2…,

~59!

wheregW̃
l 1l 2

l 18 l 28 is the change of momentum in the rest frame,

gW
l 1l 2

l 18 l 285gW̃
l 1l 2

l 18 l 281~ml
18
2ml 1

1ml
28
2ml

28
!VW 12. ~60!

Finally, the contribution from the instantaneous exchange of
mass is

PJM52 1
2 (

l 1l 2l 18 l 28
E dx1dx2qW 12~ q̂12•vW 12!d~q122s l 1l 2

!

3Q~2q̂12•vW 12! f l 1l 2
~x1x2!Kl 1l 2

l 18 l 28~x12!~VW 122uW !

3~ml
18
2ml 1

2ml
28
2ml 2

!E
0

1

dx d„rW2xqW 12~12x!qW 2….

~61!

The source terms arise due to momentum being carried away
by the lost mass and the new term is given by

SW̄ ~p!~rW,t !5 1
2 (

l 1l 2l 18 l 28
E dx1dx2~ q̂12•vW 12!

3d~q122s l 1l 2
!Q~2q̂12•vW 12!~VW 122uW !

3 f l 1l 2
~x1 ,x2 ;t !Kl 1l 2

l 18 l 28~x12!dm
l 1l 2

l 18 l 28~rW2qW 1!.

~62!

By using the balance equation for the total mass density the
equation of motion for the velocity field is found to be

]

]t
uW 1uW •¹W uW 1r21~¹W •PJ1QW •¹W uW !5r21SW̄ ~p!. ~63!

C. Energy density and temperature

The balance equation for the total energy density is

]

]t
E1¹W •~uW E!1¹W •qW 1¹W •~uW •PJ !1¹W •S 1

2
u2QW D

5j1uW •SW̄ ~p!1
1

2
u2S̄~r!, ~64!

where the new source term, arising if energy is not conserved
by the collisions, is

j~rW,t !5
1

2 (
l 1l 2l 18 l 28

E dx1dx2~ q̂12•vW 12!d~q122s l 1l 2
!

3Q~2q̂12•vW 12!FdE
l 1l 2

l 18 l 281
1

2
dm

l 1l 2

l 18 l 28~VW 2uW !2G
3 f l 1l 2

~x1 ,x2 ;t !Kl 1l 2

l 18 l 28~x12!d~rW2qW 1!, ~65!

which is recognized as the generalization of the source term
studied in the context of granular fluids. The heat flux is
written as a sum of several contributions

qW 5qW K1qW V1qW m1qW dE, ~66!

where the kinetic part has the usual form

qW K~rW,t !5(
l

1
2 mlE dvW 1f l~rW,vW 1 ,t !VW 1V1

2,

as does the first part of the collisional contribution,
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qW V~rW,t !52 1
2 (

l 1l 2l 18 l 28
E dx1dx2qW 12~ q̂12•vW 12!

3d~q122s l 1l 2
!Q~2q̂12•vW 12! f l 1l 2

~x1 ,x2 ;t !

3K
l 1l 2

l 18 l 28~x12!~VW 2uW ~qW 1!!•gW̃
l 1l 2

l 18 l 28

3E
0

1

dx d„rW2xqW 12~12x!qW 2…, ~67!

which is a measure of energy displacement during the colli-
sion ~i.e., one atom experiences a net gain of energy, the
other a net loss, and this represents an instantaneous move-
ment of energy from the location of the second atom to the
location of the first!. Qualitatively new contributions arise
from the instantaneous transfer of mass,

qW m~rW,t !52
1

2 (
l 1l 2l 18 l 28

ml
28
ml 1

2ml
18
ml 2

~ml
28
1ml

18
!~ml 2

1ml 1
!

3E dx1dx2qW 12~ q̂12•vW 12!d~q122s l 1l 2
!

3Q~2q̂12•vW 12! f l 1l 2
~x1 ,x2 ;t !Kl 1l 2

l 18 l 28~x12!

3m l 1l 2
v12E

0

1

dx d„rW2xqW 12~12x!qW 2…, ~68!

and from the loss of energy,

qW dE~rW,t !52
1

2 (
l 1l 2l 18 l 28

ml
18
2ml

28

ml
18
1ml

28
E dx1dx2qW 12~ q̂12•vW 12!

3d~q122s l 1l 2
!Q~2q̂12•vW 12!

3 f l 1l 2
~x1 ,x2 ;t !Kl 1l 2

l 18 l 28~x12!dE
l 1l 2

l 18 l 28

3E
0

1

dx d„rW2xqW 12~12x!qW 2…. ~69!

Alternatively, noting the relation between the total energy
and the kinetic temperature,

E5
D

2
nkBT1

1

2
ru2, ~70!

the evolution of the kinetic temperature is found to be given
by

S ]

]t
1uW •¹W DT2

T

n
¹W •(

l
jW l
K1

2

DnkB
@PJ :¹W uW 1¹W •qW #

5
2

DnkB
j. ~71!

D. Enskog approximation

The expressions for the balance equations are exact. As a
consequence, they depend on both the exact one-body and
two-body distribution functions which are, in principle, de-

termined by the BBGKY hierarchy. For example, the equa-
tion for the one-body distribution is explicitly

S ]

]t
1vW 1•

]

]qW 1
D f l 1

~x1 ;t !

52 (
a,b,l 2

E dqW 2dvW 2FU]~ b̂ab
l 1l 2x1 ,b̂ab

l 1l 2x2!

]~x1 ,x2!
U21

3~ b̂ab
l 1l 2!21Kab

l 1l 2~x12!2d l 1ad l 2bGQ~2vW 12•qW 12!

3d~q122s l 1l 2
!vW 12•q̂12f l 1l 2

~qW 1 ,vW 1 ,qW 2 ,vW 2 ;t !. ~72!

However, since the latter cannot be solved exactly, except in
the special case of equilibrium, it is necessary to introduce an
approximation. The most common approximation is to as-
sume that the velocities of two colliding atoms are uncorre-
lated prior to the collision~they are of course correlated after
the collision since the collision itself generates correlations!.
That this approximation is sufficient to decouple the BBGKY
hierarchy is seen from the right-hand side of Eq.~72! since
the step functionQ(2vW 12•qW 12) is nonzero only for atoms
approaching one another and thed function restricts the do-
main to the instant of contact. Thus the assumption that at-
oms are uncorrelated just prior to a collision, Boltzmann’s
‘‘assumption of molecular chaos,’’ is precisely the statement
that

Q~2vW 12•qW 12!d~q122s l 1l 2
! f l 1l 2

~qW 1 ,vW 1 ,qW 2 ,vW 2!

.Q~2vW 12•qW 12!d~q122s l 1l 2
!

3g~qW 1 ,qW 2 ;t ! f l 1
~x1 ;t ! f l 2

~x2 ;t !, ~73!

which, when substituted into Eq.~72! gives the Enskog ap-
proximation to the one-body distribution function. The factor
of g(qW 1 ,qW 2 ;t), the spatial pair distribution function, allows
for spatial correlations which always exist. In the revised
Enskog theory, it is approximated by the equilibrium func-
tional of the density evaluated for the local density field of
the fluid.10 The same approximation can be above to give the
corresponding Enskog approximation to the balance equa-
tions. A final consequence follows from the second equation
of the BBGKY hierarchy, which has the form

S ]

]t
1vW 1•

]

]qW 1
1vW 2•

]

]qW 2
1T̄2~12! D f l 1l 2

~x1 ,x2 ;t !

52nE d3@ T̄2~13!1T̄2~23!# f l 1l 2l 3
~x1 ,x2 ,x3 ;t !. ~74!

Since atoms cannot interpenetrate, the two-body distribution
must have the form f l 1l 2

(x1 ,x2 ;t)5Q(q122s l 1l 2
)

3yl 1l 2
(x1 ,x2 ;t) for some functionyl 1l 2

(x1 ,x2 ;t) which is
continuous atq125s l 1l 2

. Then one expects that the singular
terms in Eq.~74!, arising from the gradient acting on the step
function and from the definition ofT̄2(12), must cancel,
gives the constraint
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vW 12•q̂12d~q122s l 1l 2
! f l 1l 2

~x1 ,x2 ;t !

52T̄2~12! f l 1l 2
~x1 ,x2 ;t ! ~75!

and some rearrangement, together with the approximation of
Eq. ~74! gives

d~q122s l 1l 2
! f l 1l 2

~x1 ,x2 ;t !

.d~q122s l 1l 2
!g~qW 1 ,qW 2 ;t ! f l 1

~x1 ;t ! f l 2
~x2 ;t !

2~vW 12•q̂12!
21T̄2~12!g~qW 1 ,qW 2 ;t ! f l 1

~x1 ;t ! f l 2
~x2 ;t !,

~76!

which expresses the two-body distribution function at con-
tact in terms of a completely uncorrelated piece, the first
term on the right, and a correction that takes into account
velocity correlations generated by the collision, the second
term on the right. This can be used to evaluate two-body
correlations at the Enskog level of approximation.17–19

IV. CHAPMAN–ENSKOG SOLUTION

In the previous section, the exact balance equations were
developed and the Enskog approximation introduced. Next,
this framework is used to derive the explicit equations gov-
erning the evolution of the hydrodynamic fields by means of
the Chapman–Enskog approximation. As noted in the Intro-
duction, previous studies of the kinetic theory for reacting
systems have often made the assumption that the chemical
reactions are slow relative to the hydrodynamic time scales.
The primary goal here is draw out, and make more precise,
the meaning of this condition by outlining the Chapman–
Enskog procedure under different assumptions about the
speed of the chemical reactions.

Before beginning, note that the phrase ‘‘hydrodynamic
fields’’ usually refers to those local fields which are con-
served in the long-wavelength limit~which is to say that
their sum over the entire system is conserved!. For a nonre-
acting fluid of hard spheres, this means the local partial num-
ber densities and the momentum and energy densities. For a
reacting fluid, the partial number densities are not conserved
and for models of endothermic and exothermic reactions,
even the energy is not be conserved. Following the practice
developed in the study of granular fluids~which are nonre-
active, but do not conserve energy! it seems natural to ex-
pand the definition of ‘‘hydrodynamic’’ fields to include
those fields which would be conserved in the limit of van-
ishing reaction probabilities. A partial justification for this is
that all of these fields are necessary to develop a meaningful
description of the nonreacting fluid, so one expects that they
must also be included in any description of the reacting fluid
~i.e., a minimal-coupling argument based on continuity of the
description with respect to the control parameters!.

The Chapman–Enskog procedure attempts to construct a
so-called normal solution of the Enskog equation, which is to
say a solution which is a local functional of the~exact! hy-
drodynamic fields and for which all of the space and time
dependence occurs implicitly through those fields.7 This im-
plies that the space and time derivatives of the distribution

function can be written in terms of the corresponding deriva-
tives of the fields and the functional derivative of the distri-
bution with respect to the fields. In other words, one has

f a~qW 1 ,vW 1 ,t !

5 f a@vW 1uxi~qW 1 ,t !,n~qW 1 ,t !,uW ~qW 1 ,t !,T~qW 1 ,t !#, ~77!

so all of the dependence onqW 1 and t occur through the hy-
drodynamic fields so that the time derivative can be ex-
pressed as

]

]t
f a~qW 1 ,vW 1 ,t !5(

i

]xi

]t

] f a

]xi
1

]n

]t

] f a

]n

1
]uW

]t
•

] f a

]uW
1

]T

]t

] f a

]T
. ~78!

Then the kinetic equation determines the functional depen-
dence of the distribution on the fields and their derivatives,
while the fields are in turn fixed self-consistently by the bal-
ance equations~in the Enskog approximation!.

A further approximation which is made in practical cal-
culations is to assume that spatial gradients are small so that
the equations can be solved perturbatively via a gradient ex-
pansion. To order the terms, one introduces a uniformity pa-
rametere and replace¹W with e¹W and order terms ine. Since
the space and time derivatives are related by the balance
equations, one also introduces an expansion of the time de-
rivative ]/]t[] t5] t

(0)1e] t
(1)1¯ as well as of the distribu-

tion itself:

f a~qW 1 ,vW 1 ,t !5 f a
0@vW 1uxi ,n,uW ,T#1e f a

1@vW 1uxi ,n,uW ,T#1¯ ,
~79!

where the notation indicates that the distribution is a func-
tional of the hydrodynamic fields. These expansions are sub-
stituted into both the Enskog equation and the balance equa-
tions and an order-by-order solution is sought. Writing the
Enskog equation as

S ]

]t
1vW 1•

]

]qW 1
D f a~x1 ;t !5(

bcd
Jab,cd@ f c , f d#, ~80!

so that

Jab,cd@ f c , f d#

5E dqW 2dvW 2FU]~ b̂ab
cdx1 ,b̂ab

cdx2!

]~x1 ,x2!
U21

3~ b̂ab
cd!21Kab

cd~x12!2dacdbdGQ~2vW 12•qW 12!

3d~q122scd!vW 12•q̂12f c~qW 1 ,vW 1 ;t ! f d~qW 2 ,vW 2 ;t !, ~81!

it is also necessary to expand the nonlocality of the collision
operator which comes from the termd(q122scd)5d(q12)
1escdd8(q12)1¯ , where the derivatives of thed function,
which will give rise to spatial gradients of the distribution,
are scaled with an appropriate factor ofe. In order to control
the speed of the chemistry relative to the hydrodynamics, the
nondiagonal part of the reaction probabilities is separated out
as
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Kab
cd→dacdbd1ea~Kab

cd2dacdbd!, ~82!

giving

Jab,cd@ f c , f d#5dacdbdJa,b
~ invariant!@ f a , f b#

1eaJab,cd
~reactive!@ f c , f d#, ~83!

where the nonreactive, or invariant, part is the usual collision
operator for nonreactive~but possible energy nonconserving!
multiple-component fluids,

Ja,b
~ invariant!@ f a , f b#

5E dqW 2dvW 2FU]~ b̂ab
abx1 ,b̂ab

abx2!

]~x1 ,x2!
U21

~ b̂ab
ab!2121G

3Q~2vW 12•qW 12!d~q122sab!

3vW 12•q̂12f a~qW 1 ,vW 1 ;t ! f b~qW 2 ,vW 2 ;t !, ~84!

and, as indicated, the reactive part of the collision operator
will be arbitrarily treated as being of ordera in the gradient
expansion. Thus the full expansion of the collision operator
will take the form

Jab,cd@ f c , f d#5dacdbd~Ja,b
~ invariant!0@ f a , f b#

1eJa,b
~ invariant!1@ f a , f b#1¯ !

1ea~Jab,cd
~reactive!0@ f c , f d#

1eJab,cd
~reactive!1@ f c , f d#1¯ !. ~85!

A. Zeroth order

The zeroth-order equation for the distribution is then

] t
0f a

~0!5(
b

Ja,b
~elastic!0@ f a

0, f b
0#1da0(

bcd
Jab,cd

~reactive!0@ f c
0, f d

0#,

~86!

which must be supplemented by the corresponding equations
for the fields expanded to zeroth order:

] t
0xl5da0n21Sl

~n!~reactive!0,

] t
0n50,

~87!
] t

0uW 50,

] t
0T5j~ invariant!01da0j~reactive!0.

These balance equations, together with the assumption of
normality, Eq.~78!, serve to define the meaning of the term
] t

0f a
(0) in Eq. ~86!. Note that the fluxes do not enter, being of

first order in the gradients, and that the sources are separated
into a nonreactive and reactive part using Eq.~82!. For the
concentration, mass, and velocity fields, there are in general
no nonreactive contributions to the sources, whereas for the
temperature there is the possibility of such a contribution, in
which case one recovers the inelastic hard-sphere system
used to model granular fluids. Furthermore, use has been
made of the fact thatf a

(0) must be a function ofvW 12uW , which

implies thatSW̄ (p)(reactive)050 ~since there are no other zeroth-
order vectors! so that no source can appear in the velocity
equation at this order. These zeroth-order equations illustrate

a complication that occurs for fast reacting systems~e.g.,a
50) compared to nonreacting multiple-component system s:
namely, that the sources in the balance equations at ordern
require knowledge of thenth-order distribution. For nonre-
acting elastic systems, thenth-order balance equations gen-
erally require only the (n21), order distribution so that
there is no coupling between the two. Nonreacting inelastic
systems—i.e., granular fluids—share this complication as
can be seen from the appearance of the source termj (non)0 in
Eqs.~87!.

For a.0, only the temperature can have a zeroth-order
time dependence and so can contribute to the left side of Eq.
~86!. If this temperature source is zero, then the left-hand
side of Eq.~86! is zero and thef a

(0) will simply be propor-
tional to a Maxwellian. The solution of Eqs.~86! and~87! for
the casea.0 and the nonreactive source in the temperature
equation being nonzero corresponds to the so-called homo-
geneous cooling state in granular fluids and has been dis-
cussed in detail in the literature for single-component20 and
multiple-component systems.21

B. First order

At first order, one has

] t
0f a

~1!1~] t
11vW 1•¹W ! f a

0

5(
b

~Ja,b
~ invariant!0@ f a

0, f b
1#1Ja,b

~ invariant!0@ f a
1, f b

0#

1Ja,b
~ invariant!1@ f a

0, f b
0# !1da0(

bcd
~Jab,cd

~reactive!0@ f c
0, f d

1#

1Jab,cd
~reactive!0@ f c

1, f d
0#1Jab,cd

~reactive!1@ f c
0, f d

0# !

1da1(
bcd

Jab,cd
~reactive!0@ f c

0, f d
0# ~88!

and for the fields

] t
1xl1uW •¹W xl5da0n21Sl

~n!~reactive!11da1n21Sl
~n!~reactive!0,

] t
1n1¹W •~uW n!50,

] t
1uW 1uW •¹W uW 1r21¹W p~0!5da0r21SW̄ ~p!~0!,

] t
1T1uW •¹W T1

2

DnkB
@p~0!¹W •uW 1¹W •~uW w~0!!#

5j~ invariant!11da0j~reactive!11da1j~reactive!0, ~89!

where we have used the fact that at zeroth order there are no
velocity-independent vectors and only the unit tensor avail-
able so that we must havePJ (0)5p(0)1J, WJ (0)5w(0)1J, and all
vector fluxes must vanish.

In general, the first-order distribution must take the form
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f l
~1!~rW,VW ;t !5nxlf l~VW !

3F hl~VW !1Al~VW !VW •¹W n1BlVW •¹W T

1CJl : S ¹W VW 2
1

D
1J¹W •VW D1

Dl¹W •VW 1(
k

ElkVW •¹W xk

G , ~90!

where I have written the zeroth-order distribution in the form
f l

(0)5nxlf l(V). Here the coefficientsAl , Bl ,... arescalar
functions of the velocity~and in general depend also on
space and time through a dependence on the local hydrody-
namic variables as does the zeroth-order distribution, al-
though for the sake of conciseness this dependence has been
suppressed!. The functionh(V) represents the first-order cor-
rection tof(V) due to the energy-dependent chemical reac-
tions: for example, if the only allowed interaction wereA
1A→A1B and this only took place if the c.m. kinetic en-
ergy were greater than some threshold,EAB , then starting
with a system of allA-type atoms, one would expect to build
up a preponderance of fastB atoms and a corresponding
deficit of fastA atoms. It vanishes in the case thata.2 and
energy is conserved by the nonreactive dynamics. The con-
sequences of different orderings of the reaction terms will be
considered separately.

1. Ultraslow reactions: aÌ2

In this case, there are no reactive terms in the first-order
equations. The solution is therefore the same as for the equi-
librium ~or HCS! multiple-component system. The second-
order balance equations will also have no reactive terms.
Summing up to second order, the Navier–Stokes order bal-
ance equations are then

]

]t
xl1uW •¹W xl1n21F¹W • jW l2xl¹W •(

l
jW l
KG50, ~91!

]

]t
n1¹W •uW n1¹W •(

l
jW l
K50,

]

]t
uW 1uW •¹W uW 1r21~¹W •PJ2uW ¹W •QW !50,

]

]t
T1uW •¹W T2

T

n
¹W •(

l
jW l
K1

2

DnkB

3FPJ :¹W uW 1¹W •qW 1¹W •~uW •WJ !1
1

2
QW •¹W u2G5j~ invariant!,

~92!

where the fluxes are the sum of zeroth- and first-order con-
tributions,PJ5PJ (0)1PJ (1), and the sourcej consists of~non-
reactive! contributions summed through second order. This
means that for the granular casej (invariant)Þ0, the Navier–
Stokes order balance equations require knowledge of the
second-order~or Burnett order! distribution function. There
is, at this order, no coupling between the hydrodynamic
equations and the reaction equations. Inserted into Eq.~91!,
the result would be the Navier–Stokes equations for elastic

hard spheres or their generalization for inelastic hard
spheres. If this expansion is continued, theath-order balance
equation for the concentrations would be

]~a!xl1n21F¹W • jW l
~a21!2xl¹W •(

l
jW l
K~a21!G

5n21Ṡl
~n!~reactive!0. ~93!

Clearly, the reaction equation remains unknown in this case
since one would need to consistently include the higher-order
hydrodynamic contributions that would come from the num-
ber current, which, in turn, would bring in couplings to
higher-order gradients of the hydrodynamic fields. Without
knowledge of these higher-order terms~and they are not
known for even the one-component fluid! the reaction equa-
tion can only be consistently studied in the absence of hy-
drodynamic gradients when the reactive terms are treated as
of ordera.2.

2. Slow reactions: aÄ2

In this case, the first-order solution is again the same as
in the nonreacting case. However, the sources will have
second-order contributions so that the Navier–Stokes equa-
tions take the form

]

]t
xl1uW •¹W xl1n21F¹W • jW l2xl¹W •(

l
jW l
KG

5n21Sl
~n!~reactive!0, ~94!

]

]t
n1¹W •uW n1¹W •(

l
jW l
K50,

]

]t
uW 1uW •¹W uW 1r21~¹W •PJ2uW ¹W •QW !5r21SW̄ ~p!~reactive!0,

]

]t
T1uW •¹W T2

T

n
¹W •(

l
jW l
K1

2

DnkB

3FPJ :¹W uW 1¹W •qW 1¹W •~uW •WJ !1
1

2
QW •¹W u2G

5j~ invariant!1j~reactive!0. ~95!

For the simplest case that the reactions conserve energy and
momentum, the reactions are governed by exactly the
convective–reaction–diffusion equation that one might ex-
pect. The reaction rates are calculated using the local equi-
librium distribution as in elementary treatments.22 Except for
the usual modification of the transport properties arising
from the use of the Enskog equation, as opposed to the Bolt-
zmann equation, there are no new dense-fluid effects.

3. Moderate reactions: aÄ1

For moderately fast reactions, the situation becomes
more interesting. Considering here only the case that mass
and energy are conserved by all collisions, the first-order
balance equations—the generalization of the Euler
equations—are found to be
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S ]

]t
1uW •¹W D xl5n21Sl

~n!~reactive!0,

]

]t
n1¹W •uW n50,

S ]

]t
1uW •¹W DuW 1r21¹W p~0!50,

S ]

]t
1uW •¹W DT1

2

DnkB
p¹W •uW 50, ~96!

so that the reactions, with reaction rates calculated from the
local-equilibrium distribution function, enter into the Euler
equations. The Navier–Stokes equations will involve the re-
action rates calculated up to first order in the distribution. In
general, the only nonzero coupling in the reaction source will
take the formSl

(n)(reactive)15Sl
(n)¹W •uW , whereSl

(n) is a scalar
function of the concentrations, density, and temperature. The
Navier–Stokes equations will therefore take the form

S ]

]t
1uW •¹W D xl1n21S ¹W • jW l2xl¹W •(

l
jW l
KD

5n21Sl
~n!~reactive!01n21Sl

~n!~reactive!11Sl
~n!¹W •uW ,

]

]t
n1¹W •uW n1¹W •(

l
jW l
K50,

~97!

S ]

]t
1uW •¹W DuW 1r21¹W •PJ50,

S ]

]t
1uW •¹W DT2

T

n
¹W •(

l
jW l
K1

2

DnkB
~PJ :¹W uW 1¹W •qW !50.

The source term for the reactions has three contributions:
the zeroth-order reaction rate~calculated using the local-
equilibrium distribution function!, the first-order correction
~due to deviations of the distribution from local equilibrium!,
and a new, dense-fluid effect which couples the reactions to
the divergence of the velocity field with some field-
dependent coefficientSl

(n) . This coupling is a dense-fluid
effect which does not exist in the Boltzmann approximation
and, not surprisingly, its origin is closely related to that of the
bulk viscosity, which is also zero in the Boltzmann theory,
but not the Enskog theory.~The calculation of these terms
will be discussed in detail in a future publication, but the fact
that these are the only possible couplings is due to the fact
that no other Galilean-invariant scalars, linear in the gradi-
ents of the fields, can be constructed.!

4. Fast reactions: aÄ0

In the case of fast reactions, noa priori assumption is
made about the speed of the reactions compared to the hy-
drodynamic time scales. The balance equations to first
order—i.e., the Euler equations—are

S ]

]t
1uW •¹W D xl5n21Sl

~n!~reactive!01Sl
~n!¹W •uW ,

S ]

]t
1uW •¹W Dn1n¹W •uW 50,

~98!S ]

]t
1uW •¹W DuW 1r21¹W p50,

S ]

]t
1uW •¹W DT1

2

DnkB
@p¹W •uW 1¹W •~wuW !#

5j~ invariant!01j~reactive!01j~ invariant!11j~reactive!1,

so that even the Euler equations show the dense-fluid correc-
tion to the reaction rates. The second-order, or Navier–
Stokes, equations require evaluation of the source terms to
second order, which in turn requires knowledge of the distri-
bution function to second order~also called Burnett order!.
One then expects that even for mass and energy conserving
interactions, the reaction equation will contain couplings to
gradients of all of the hydrodynamic fields. However, since
the complete Burnett-order Chapman–Enskog solution of the
Enskog equation is not even known for the case of a single-
component fluid, there is no practical value in continuing the
analysis for this case.

V. CONCLUSION

In this paper, the kinetic theory of reactive hard-core
systems has been extended to include the possibility of mass
transfer and/or loss and energy gain and loss. When mass is
not conserved, the collision rule becomes dependent on the
model used to describe the lost mass. Nevertheless, quite
general expressions for the dynamics of phase functions and
the distribution function of the system can be given and used
to derive equally general expressions for the exact balance
laws for mass, momentum, energy, and concentration. For
example, when mass is conserved but a fixed fraction of the
rest-frame kinetic energy is lost during collisions, the usual
inelastic hard-sphere kinetic theory, used as a model of
granular fluids,16 is recovered. The kinetic theory was used,
within the Enskog approximation, to discuss the various phe-
nomenological laws, extensions of the Navier–Stokes equa-
tions, that arise from different orderings of the reaction terms
within the Chapman–Enskog procedure. It was noted that the
intuitive model of the Navier–Stokes equations coupled to a
reaction–diffusion equation through a convective term only
arises when the ‘‘speed’’ of the chemical reactions is compa-
rable to some hydrodynamic time scale and, even in this
case, an additional coupling to the divergence of the velocity
field can occur in dense fluids.

How fast do we expect the chemistry to be relative to the
hydrodynamics? In the model considered here, chemical re-
actions cannot be faster than the collision time. In fact, a
typical reaction rate would be something like
p(dx)e2E/kBTncol , wherep is the probability of a reaction
occurring if the colliding atoms have energy greater than the
reaction energy barrier,E, dx is the difference between the
concentration of the species and its equilibrium concentra-
tion, andncol is the collision frequency. On the other hand,
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the Chapman–Enskog procedure is based on a gradient ex-
pansion: the small parametere will generally be a measure of
the ratio of the typical microscopic length scale, the mean
free pathl mfp , to a typical length scale for hydrodynamic
gradientsL. ~In Fourier space, where gradients¹W correspond
to wave vectorskW , this becomese;klmfp .) So setting
pe2E/kBTncol;(klmfp)

ancol;( l mfp /L)ancol gives

a;

ln p~dx!2
E

kBT

ln~ l mfp /L !
. ~99!

For systems in which hydrodynamics is applicable, one has
l mfp /L!1 so that a ranges from a minimum of
ln p(dx)/ln(lmfp /L)>0, for kBT@E, to very large values for
low temperatures. Far from chemical equilibrium,dx;1, the
lower limit could be arbitrarily close to zero depending on
the reaction probability so that ‘‘moderate’’ and ‘‘fast’’ reac-
tions are possible at high temperatures. Indeed, if all of these
parameters are fixed, then fast reactions will always occur in
the hydodrynamic regime limitl mfp /L→0. The conclusion is
that, unless the concentrations are close to their equilibrium
values, the reaction probabilities are very small or the tem-
perature is extremely low, the concept of slow chemical re-
actions may be of limited applicability and so the correct
phenomenological description, from the standpoint of kinetic
theory, may be more complex than the reaction–diffusion–
advection model.

In summary, if chemical reactions are slow compared to
the rate of dissipation in the fluid, then hydrodynamics and
chemistry are not meaningfully coupled. If the reaction rate
is comparable to the rate of dissipation in the fluid—i.e.,lk2

for some transport coefficientl and wave vectork—then the
usual reaction–diffusion–advection equation results. For
faster reactions, additional couplings occur and the chemistry
and hydrodynamics become more interdependent. The de-
tailed solution of the Enskog and the resulting phenomeno-
logical equations for particular reaction models will be the
subject of a future publication where the importance for
sonochemistry of additional terms, such as those occurring in
Eq. ~97!, will be investigated.
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APPENDIX A: THE HARD-CORE LIOUVILLE
OPERATOR

The goal in this Appendix is to provide motivation for
the statement in the text that the form of the pseudo-
Liouville operator is independent of the collision rule. To
start with, restrict attention to a system of two atoms. Let
X(G;t) be the characteristic function for collisions after at
time t beginning with the phaseG at time 0 so that if the two
atoms do not collide between during the interval@0,t#, then

X(G;t)50, whereas if they do collide,X(G;t)51. Then the
time evolution of the phase functionAG(t)5A„G(t),t… is
given by

AG~ t !5@12X~G;t !#A„G0~ t !,t…1X~G;t !A„G8~ t !,t…, ~A1!

whereG0(t) is just the phase of the system propagated a time
t into the future in the absence of interactions and is explic-
itly G0(t)5(qW 11vW 1t,vW 1 , l̂ 1 ,qW 21vW 2t,vW 2 , l̂ 2). ~Note that at-
tention is restricted to the case that velocities are constant
during free streaming: generalization to include one-body
forces is straightforward.! The phase pointG8(t) is the po-
sition the system would reach in phase space if a collision
occurred at some timet(G)P@0,t#. Explicit expressions can
also be given for its components such asqW 18(t)5qW 11vW 1t
1vW 18(t2t), etc. Direct differentiation then gives

dAG~ t !

dt
5

]A

]t
1@12X~G;t !#

]q~ t !

]t
•

]

]q~ t !
A~G0~ t !,t !

1X~G;t !
]q~ t !

]t
•

]

]q~ t !
A~G8~ t !,t !

1
dX~G;t !

dt
@A„G8~ t !,t…2A„G0~ t !,t…#. ~A2!

Now, from the definitions above

@12X~G;t !#
]q~ t !

]t
•

]

]q~ t !
A„G0~ t !,t…1X~G;t !

]q~ t !

]t

•

]

]q~ t !
A„G8~ t !,t…

5@12X~G;t !# (
i 51,2

vW i•
]

]qW i~ t !
A„G0~ t !,t…

1X~G;t ! (
i 51,2

vW i
IH
•

]

]qW i~ t !
A„G8~ t !,t…

5 (
i 51,2

vW i~ t !•
]

]qW i~ t !
A„G~ t !,t…, ~A3!

giving

dAG~ t !

dt
5

]A

]t
1 (

i 51,2
vW i~ t !•

]

]qW i~ t !
AG~ t !

1
dX~G;t !

dt
„A~G8~ t !,t…2A„G0~ t !,t !…. ~A4!

Now, sinceX(G;t) has the form of a step function@it is zero
if t,t(G) and one otherwise#, we must have

dX~G;t !

dt
5d„t2t~G!…, ~A5!

and this also gives the correct result~zero! if t~G! is imagi-
nary ~indicating that no collision ever occurs starting from
the given state!. Then, using
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d„t2t~G!…@A„G8~ t !,t…2A„G0~ t !,t !…]

5d„t2t~G!…,@A~G8„t~G!…,t~G!!

2A~G0„t~G!…,t~G!!#

5d„t2t~G!…S (
l 18 l 28

M̂
l 1l 2

l 18 l 28b̂
l 1l 2

l 18 l 2821D AG„t~G!…

5d„t2t~G!…S (
l 18 l 28

M̂
l 1l 2

l 18 l 28b̂
l 1l 2

l 18 l 2821D AG~ t ! ~A6!

gives

dAG~ t !

dt
5F ]

]t
1 (

i 51,2
vW i~ t !•

]

]qW i~ t !
1d„t2t~G!…

3S (
l 18

M̂
l 1l 2

l 18 l 28b̂
l 1l 2

l 18 l 2821D GAG~ t !. ~A7!

In order to express the right-hand side entirely in terms of
G(t) rather than the initial conditionG, the temporald func-
tion is rewritten using

d„q12~ t !2s l 1 ,l 2
…5(

i

d„t2t i~G!…

U ]

]t
q12~ t !U

t5t i ~G!

, ~A8!

wheret i(G) are the roots ofq12
2 (t i)2s l 1l 2

2 50. They corre-

spond to the time at which the two atoms are first in
contact—i.e., the physical collision time which is denoted as
t~G!—and the time at which they are last in contact if they
are allowed to pass through one another~which is not physi-
cal!. One picks out the correct root by noting that at the
physical collision timeqW 12(t)•vW 12(t),0, while the sign is
reversed at the unphysical collision time so that

d„q12~ t !2s l 1l 2
…Q„2qW 12~ t !•vW 12~ t !…

5
d„t2t~G!…

U ]

]t
q12~ t !U

t5t~G!

5
d„t2t~G!…

uq̂12~t!•vW 12~t!u
5

d„t2t~G!…

uq̂12~ t !•vW 12~ t !u
, ~A9!

or

d„t2t~G!…5d„q12~ t !2s l 1l 2
…Q„2qW 12~ t !•vW 12~ t !…

3uq̂12~ t !•vW 12~ t !u, ~A10!

giving finally

dAG~ t !

dt
5F ]

]t
1L̂~ t !GAG~ t !, ~A11!

with

L̂~ t !5 (
1< i<2

vW i~ t !•
]

]qW i~ t !
1 (

1< i , j <2
T̂1~12;t !, ~A12!

where, for arbitrary phase functionB(G,t),

T̂1~12;t !B„G~ t !,t…

5d„q12~ t !2s l 1l 2
…Q„2qW 12~ t !•vW 12~ t !…uq̂12~ t !•vW 12~ t !u

3S (
l 18 l 28

M̂
l 1l 2

l 18 l 28b̂
l 1l 2

l 18 l 2821D B„G~ t !,t…. ~A13!

For more than two atoms, one simply extends the sums in
Eq. ~A12! since, in a finite system, only binary collisions can
occur.

Starting with an initial conditionAG(t)5A(G), iteration
of Eq. ~A11! immediately gives

dnAG~ t !

dtn U
t50

5L̂nA~G!, ~A14!

with L̂5L̂(0), which implies that

AG~ t !5exp~ L̂t !A~G! ~A15!

and

d

dt
AG~ t !5L̂ exp~ L̂t !A~G!5L̂AG~ t !, ~A16!

as claimed in the text.

APPENDIX B: THE ADJOINT LIOUVILLE OPERATOR

To derive the adjoint operator, begin with its definition

E dG B~G!L1A~G!5E dG@L1
A B~G!#A~G! ~B1!

or, more explicitly,

(
l 1 ,l 2 ,...

E dx1dx2¯B~G!L1A~G!

5 (
l 1 ,l 2

E dx1dx2@L1
A B~G!#A~G!. ~B2!

Now,

L15L1
~0!1(

i , j
T1~ i j ! ~B3!

and it is obvious that, neglecting surface terms,

E dG B~G!L1
~0!A~G!5E dG@2L1

~0!B~G!#A~G!, ~B4!

so

L1
~0!A52L1

~0! . ~B5!

Next, consider one of the collision operators and restrict
attention to a system of two atoms. Then,

6339J. Chem. Phys., Vol. 120, No. 14, 8 April 2004 Kinetic theory and hydrodynamics of dense, reacting fluids

Downloaded 14 Dec 2005 to 164.15.59.205. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



(
l 1 ,l 2

E dx1dx2B~x1 ,l 1 ;x2 ,l 2!@T1~12!A~x1 ,l 1 ;x2 ,l 2!#

52 (
l 1 ,l 2 ,a,b

E dx1dx2B~x1 ,l 1 ;x2 ,l 2!Q~2vW 12•q̂12!

3d~q122s12!vW 12•q̂12@Kl 1l 2
ab ~x1 ,l 1 ;x2 ,l 2!

3A~ b̂l 1l 2
ab x1 ,a;b̂l 1l 2

ab x2 ,b!2dal1
dbl2

A~x1 ,l 1 ;x2 ,l 2!#.

~B6!

Consider the first term. Relabeling the species in the sum
gives

2 (
l 1 ,l 2 ,a,b

E dx1dx2B~x1 ,l 1 ;x2 ,l 2!Q~2vW 12•q̂12!

3d~q122s l 1l 2
!vW 12•q̂12Kl 1l 2

ab ~x1 ,l 1 ;x2 ,l 2!

3A~ b̂l 1l 2
ab x1 ,a;b̂l 1l 2

ab x2 ,b!

52 (
l 1 ,l 2 ,a,b

E dx1dx2B~x1 ,a;x2 ,b!

3Q~2vW 12•q̂12!d~q122sab!vW 12

•q̂12Kab
l 1l 2~x1 ,a;x2 ,b!A~ b̂ab

l 1l 2x1 ,l 1 ;b̂ab
l 1l 2x2 ,l 2!. ~B7!

Assuming that the collision operator is invertible, then intro-
ducing new integration variablesyi5b̂ab

l 1l 2xi and the corre-
sponding Jacobian

Jab
l 1l 2~y1 ,y2!5U]„~ b̂ab

l 1l 2!21y1 ,~ b̂ab
l 1l 2!21y2…

]~y1 ,y2!
U ~B8!

gives

2 (
l 1 ,l 2 ,a,b

E dx1dx2B~x1 ,l 1 ;x2 ,l 2!Q~2vW 12•q̂12!d~q122s l 1l 2
!vW 12•q̂12Kl 1l 2

ab ~x1 ,l 1 ;x2 ,l 2!A~ b̂l 1l 2
ab x1 ,a;b̂l 1l 2

ab ,b!

52 (
l 1 ,l 2 ,a,b

E dy1dy2Jab
l 1l 2~y1 ,y2!B„~ b̂ab

l 1l 2!21y1 ,a;~ b̂ab
l 1l 2!21y2 ;b…Q„2~ b̂ab

l 1l 2!21vW 12•qW 12…d~q122sab!@~ b̂ab
l 1l 2!21vW 12#

•qW 12Kab
l 1l 2

„~ b̂ab
l 1l 2!21y1 ,a;~ b̂ab

l 1l 2!21y2 ,b…A~y1 ,l 1 ;y2 ,l 2!

52 (
l 1 ,l 2 ,a,b

E dy1dy2A~y1 ,l 1 ;y2 ,l 2!@Jab
l 1l 2~y1 ,y2!~ b̂ab

l 1l 2!21Q~2vW 12•q̂12!d~q122s l 1l 2
!vW 12

•q̂12Kab
l 1l 2~y1 ,l 1 ;y2 ,l 1!#B~x1 ,l 1 ;x2 ,l 2!, ~B9!

where the operator (b̂ab
l 1l 2)21 has the effect of changing the species froml 1 , l 2 to a, b. One can then write

T1
A ~12!B~x1 ,l 1 ;x2 ,l 2!

52(
ab

@Jab
l 1l 2~x1 ,x2!~ b̂ab

l 1l 2!21Kab
l 1l 2~x1 ,l 1 ;x2 ,l 2!21#Q~2vW 12•q̂12!d~q122s l 1l 2

!vW 12•q̂12B~x1 ,l 1 ;x2 ,l 2!. ~B10!

In some cases of interest, the collision dynamics may not be
invertible. For example, suppose that collisions with total
rest frame energy less than some threshold,E, are elastic
while those with energy greater than this are inelastic. Then a
pair of atoms with rest frame energy after collision of
1
2m12v128

2,E might have resulted from either~a! a collision
between two atoms with rest-frame energy below the thresh-
old or ~b! a collision between two atoms that had energy
above the threshold, but that lost part of this due to the in-
elastic process. In this case, it is necessary in the definition of
the adjoint operator to include an additional sum over the
various branches of the inverse collision dynamics. Even
when it occurs, such a complication may not be of practical
importance since it is often the case that expressions involv-
ing the adjoint operatorT1

A can be rewritten in terms of the
original operatorT1 .

APPENDIX C: DERIVATION OF THE BALANCE
EQUATIONS

In this section, the general form of the local balance
equations is derive and then specialized to the partial density,
momentum and energy fields.

1. General form of the balance equations

Consider any one-body phase function of the form

Ĉ l~rW !5(
i

c l i
~vW i !d~rW2qW i !d l i l

~C1!

and its average
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C l~rW,t !5^Ĉ l~rW !;t&

5
N

V (
l 1

E dx1f l i
~x1 ,t !c l i

~vW 1!d~r 2qW 1!d l 1l

5nE dvW 1f l~rW,vW 1 ,t !c l~vW 1!. ~C2!

The balance equation for this follows from the first BBGKY
equation

S d

dt
1vW 1•

]

]qW 1
D f l 1

~x1!5(
l 2

E dx2T̄2~12! f l 1l 2
~x1x2!

~C3!

and is

d

dt
C l~rW,t !1¹W •E dvW 1f l~rW,vW 1 ,t !vW 1c l~vW 1!

5(
l 1l 2

E dx1d l l 1
c l 1

~vW 1!d~r 2qW 1!

3E dx2T̄2~12! f l l 2
~x1x2!. ~C4!

Introducing the specific velocityVW 1(rW,t)5vW 12uW (rW,t), the
second term on the left becomes

E dvW 1f l~rW,vW 1 ,t !vW 1c l~vW 1!

5uW ~rW,t !C l~rW,t !1E dvW 1f l~rW,vW 1 ,t !VW 1~rW,t !c l~vW 1!,

~C5!

while it proves more convenient to rewrite the right-hand
side in terms of theT̂1 collision operator

(
l 1l 2

E dx1d l l 1
c l 1

~vW 1!d~r 2qW 1!E dx2T̄2~12! f l l 2
~x1x2!

5(
l 1l 2

E dx1dx2f l l 2
~x1x2!T1~12!d l l 1

c l 1
~vW 1!d~r 2qW 1!,

~C6!

so that the balance equation becomes

d

dt
C l~rW,t !1¹W •uW ~rW,t !C l~rW,t !1¹W

•E dvW 1f l~rW,vW 1 ,t !VW 1c l~vW 1!

5(
l 1l 2

E dx1dx2f l 1l 2
~x1x2!d~r 2qW 1!T1~12!d l l 1

c l 1
~vW 1!,

~C7!

with

T1~12!d l l 1
c l 1

~vW 1!

52q̂12•vW 12d~q122s l 1l 2
!Q~2q̂12•vW 12!

3S (
l 18 l 28

K
l 1l 2

l 18 l 28~x12!bl 1l 2

l 18 l 2821D d l l 1
c l 1

~vW 1!

52q̂12•vW 12d~q122s l 1l 2
!Q~2q̂12•vW 12!

3(
l 18 l 28

@K
l 1l 2

l 18 l 28~x12!bl 1l 2

l 18 l 282d l 1l
18
d l 2l

28
#d l l 1

c l 1
~vW 1!. ~C8!

In general, the right-hand side can be separated into a sum of
a flux and a source term. Let

Bl 1l 2 ,l
18 l

28 ; l~x1 ,x2!5@K
l 1l 2

l 18 l 28~x12!bl 1l 2

l 18 l 282d l 1l
18
d l 2l

28
#d l l 1

c l 1
~vW 1!

~C9!

and define its even and odd components as

Fl 1l 2 ,l
18 l

28 ; l~x1 ,x2!

5 1
2 @Bl 1l 2 ,l

18 l
28 ; l~x1 ,x2!2Bl 1l 2 ,l

18 l
28 ; l~x2 ,x1!#

5 1
2 @K

l 1l 2

l 18 l 28~x12!bl 1l 2

l 18 l 282d l 1l
18
d l 2l

28
#

3@d l l 1
c l 1

~vW 1!2d l l 2
c l 2

~vW 2!#,

Sl 1l 2 ,l
18 l

28 ; l~x1 ,x2!

5 1
2 @Bl 1 ,l 2 ,l

18 l
28 ; l~x1 ,x2!1Bl 1l 2 ,l

18 l
28 ; l~x2 ,x1!#

5 1
2 @K

l 1l 2

l 18 l 28~x12!bl 1l 2

l 18 l 282d l 1l
18
d l 2l

28
#

3@d l l 1
c l 1

~vW 1!1d l l 2
c l 2

~vW 2!#, ~C10!

so that

d

dt
C l~rW,t !1¹W •uW ~rW,t !C l~rW,t !

1¹W •(
l
E dvW 1f l~rW,vW 1 ,t !VW 1c l~vW 1!

52 (
l 1l 2l 18 l 28

E dx1dx2f l 1l 2
~x1x2!d~rW2qW 1!q̂12•vW 12d

3~q122s l 1l 2
!Q~2q̂12•vW 12!@Fl 1l 2 ,l

18 l
28 ; l~x1 ,x2!

1Sl 1l 2 ,l
18 l

28 ; l~x1 ,x2!#. ~C11!

Then relabel the dummy variables to give
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(
l 1l 2l 18 l 28

E dx1dx2f l 1l 2
~x1x2!d~rW2qW 1!qW 12•vW 12d~q122s l 1l 2

!

3Q~2q̂12•vW 12!Fl 1l 2 ,l
18 l

28 ; l~x1 ,x2!

5
1

2 (
l 1l 2l 18 l 28

E dx1dx2qW 12•vW 12d~q122s l 1l 2
!

3Q~2q̂12•vW 12!Fl 1l 2 ,l
18 l

28 ; l~x1 ,x2! f l 1l 2
~x1x2!

3@d~rW2qW 1!2d~rW2qW 2!#, ~C12!

where use has been made of the asymmetry of
Fl 1l 2 ,l

18 l
28 ; l(x1 ,x2) and of the symmetry of the distribution

under an interchange of atoms. Finally, write

d~rW2qW 1!2d~rW2qW 2!

5E
0

1

dx
d

dx
d„rW2xqW 12~12x!qW 2…

52¹W •qW 12E
0

1

dx d„rW2xqW 12~12x!qW 2…, ~C13!

so that the balance equation becomes

d

dt
C l~rW,t !1¹W •uW ~rW,t !C l~rW,t !1¹W •FW l~rW,t !5Sl~rW,t !,

~C14!

with the flux written asFW l(rW,t)5FW l
K(rW,t)1FW l

V(rW,t), where
the kinetic contribution is

FW K~rW,t !5E dvW 1f l~rW,vW 1 ,t !VW 1c l~vW 1! ~C15!

and the collisional contribution is

FW V~rW,t !52 (
l 1l 2l 18 l 28

E dx1dx2qW 12~qW 12•vW 12!

3d~q122s l 1l 2
!Q~2q̂12•vW 12!

3 f l 1l 2
~x1x2!Fl 1l 2 ,l

18 l
28 ; l~x1 ,x2!

3E
0

1

dx d„rW2xqW 12~12x!qW 2… ~C16!

and the source is

Sl~rW,t !52 (
l 1l 2l 18 l 28

E dx1dx2~qW 12•vW 12!d~q122s l 1l 2
!

3Q~2q̂12•vW 12! f l 1l 2
~x1x2!Sl 1l 2 ,l

18 l
28 ; l~x1 ,x2!

3d~rW2qW 1!. ~C17!

2. Local number density

Settingc l(vW 1)51, one has that

Fl 1l 2 ,l
18 l

28 ; l~x1 ,x2!

5 1
2 @K

l 1l 2

l 18 l 28~x12!~d l l
18
2d l l

28
!2d l 1l

18
d l 2l

28
~d l l 1

2d l l 2
!#,

Sl 1l 2 ,l
18 l

28 ; l~x1 ,x2!

5 1
2 @K

l 1l 2

l 18 l 28~x12!~d l l
18
1d l l

28
!2d l 1l

18
d l 2l

28
~d l l 1

1d l l 2
!#.

~C18!

From the normalization condition

15(
lb

Kl 1l 2
lb , ~C19!

one has that

(
l 18 l 28

Fl 1l 2 ,l
18 l

28 ; l~x1 ,x2!

5 1
2 (

l 18 l 28
K

l 1l 2

l 18 l 28~x12!~d l l
18
2d l l

28
2d l l 1

1d l l 2
!,

(
l 18 l 28

Sl 1l 2 ,l
18 l

28 ; l~x1 ,x2!

5 1
2 (

l 18 l 28
K

l 1l 2

l 18 l 28~x12!~d l l
18
2d l l

28
1d l l 1

2d l l 2
!, ~C20!

so that the balance equation becomes

d

dt
nl1¹W •~uW nl !1¹W • jW l5Sl

~n! , ~C21!

with the source

Sl
~n!52 1

2 (
abl1l 2

E dx1dx2~ q̂12•vW 12!d~q122s l 1l 2
!

3Q~2q̂12•vW 12! f l 1l 2
~x1x2!d~rW2qW 1!Kl 1l 2

ab ~x12!

3~dal1dbl2d l l 1
2d l l 2

! ~C22!

and the number currentjW l5 jW l
K1 jW l

V with

jW l
K5E dvW 1f l~rW,vW 1 ,t !VW 1 ~C23!

and

jW l
V52 1

2 (
abl1l 2

E dx1dx2qW 12~ q̂12•vW 12!d~q122s l 1l 2
!

3Q~2q̂12•vW 12! f l 1l 2
~x1x2!Kl 1l 2

ab ~x12!

3~dal2dbl2d l l 1
1d l l 2

!

3E
0

1

dx d„rW2xqW 12~12x!qW 2…. ~C24!

The balance equations for total number and mass density
follow immediately. Summing overl gives

d

dt
n~rW,t !1¹W •uW ~rW,t !n~rW,t !1¹W •(

l
jW l
K50, ~C25!

since the sum of the collisional contributions to the number
current vanishes. Similarly, multiplying byml and then sum-
ming gives the balance equation for local mass density:
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d

dt
r~rW,t !1¹W •uW ~rW,t !r~rW,t !1¹W •QW 5S~r!. ~C26!

Here the anomalous mass flux is

QW 52 1
2 (

abl1l 2
E dx1dx2qW 12~ q̂12•vW 12!d~q122s l 1l 2

!

3Q~2q̂12•vW 12! f l 1l 2
~x1x2!Kl 1l 2

ab ~x12!

3~ma2mb2ml 1
1ml 2

!

3E
0

1

dx d„rW2xqW 12~12x!qW 2… ~C27!

and the mass source term is

Sl
~r!5 1

2 (
abl1l 2

E dx1dx2~ q̂12•vW 12!d~q122s l 1l 2
!

3Q~2q̂12•vW 12! f l 1l 2
~x1x2!d~rW2qW 1!Kl 1l 2

ab ~x12!dml 1l 2
ab ,

~C28!

which is only nonzero if the collisions do not conserve mass.

3. Momentum density

Taking c l(vW 1)5mlvW 15pW 1 in Eq. ~C14! and summing
over l gives

]

]t
ruW 1¹W •~ruW uW !1¹W •~PJ1QW uW !5SW ~p!, ~C29!

with PJ5PJK1PJV1PJM, where the kinetic contribution is

PJK5(
l

mlE dvW 1f l~rW,vW 1 ,t !VW 1VW 1 . ~C30!

To explicitly write the remaining flux and source terms, we
need

~b
l 1l 2

l 18 l 28pW 12pW 1!5 1
2 ~gW

l 1l 2

l 18 l 282dm
l 1l 2

l 18 l 28VW 12!, ~C31!

giving

S
l 1l 2

l 18 l 2852 1
2 dm

l 1l 2

l 18 l 28~VW 122uW !2 1
2 dm

l 1l 2

l 18 l 28uW ,

F
l 1l 2

l 18 l 285 1
2 gW

l 1l 2

l 18 l 28. ~C32!

At this point, it is useful to separategW
l 1l 2

l 18 l 28 into two parts: its

value in the local rest frame of the colliding atoms,gW̃
l 1l 2

l 18 l 28, and

the part coming from the Galilean transformation to the labo-
ratory frame,

gW
l 1l 2

l 18 l 285gW̃
l 1l 2

l 18 l 281~ml
18
2ml 1

2ml
28
2ml 2

!VW 12,

so that we have that the collisional part of the flux is

PJV52 1
2 (

l 1l 2l 18 l 28
E dx1dx2qW 12~ q̂12•vW 12!d~q122s l 1l 2

!

3Q~2q̂12•vW 12! f l 1l 2
~x1x2!Kl 1l 2

l 18 l 28~x12!gW̃ l 1l 2

l 18 l 28

3E
0

1

dx d„rW2xqW 12~12x!qW 2… ~C33!

and the contribution from the instantaneous exchange of
mass is

PJM52 1
2 (

l 1l 2l 18 l 28
E dx1dx2qW 12~ q̂12•vW 12!d~q122s l 1l 2

!

3Q~2q̂12•vW 12! f l 1l 2
~x1x2!Kl 1l 2

l 18 l 28~x12!~V̂122uW !

3~ml
18
2ml 1

2ml
28
2ml 2

!E
0

1

dx d„rW2xqW 12~12x!qW 2…

~C34!

and the source can be written as

SW ~p!5uW S~r!1SW̄ ~p!,

SW̄ ~p!5 1
2 (

l 1l 2l 18 l 28
E dx1dx2~ q̂12•vW 12!d~q122s l 1l 2

!

3Q~2q̂12•vW 12!~VW 2uW ! f l 1l 2
~x1x2!Kl 1l 2

l 18 l 28~x12!

3dm
l 1l 2

l 18 l 28d~rW2qW 1!. ~C35!

By using the balance equation for the total mass density,

d

dt
ruW 1¹W •~uW ruW !5r

d

dt
uW 1ruW •¹W uW 2uW ¹W •QW 1uW S~r!,

~C36!

we can write

]

]t
uW 1uW •¹W uW 1r21~¹W •PJ1QW •¹W uW !5r21SW̄ ~p!. ~C37!

4. Energy

Takingc l(vW 1)5 1
2mlv1

2 in Eq. ~C14! and summing overl
gives

d

dt
E1¹W •~uW E!1¹W •FW 5S~E!, ~C38!

where the kinetic part of the flux is

FW K5(
l

1
2 mlE dvW 1f l~rW,vW 1 ,t !VW 1v1

2 ~C39!

5(
l

1
2 mlE dvW 1f l~rW,vW 1 ,t !VW 1~VW 11uW !2

5qW K1uW •PJK, ~C40!

with the kinetic contribution to the heat flux being defined as
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qW K[(
l

1
2 mlE dvW 1f l~rW,vW 1 ,t !VW 1V1

2. ~C41!

The source term comes from the even part of the colli-
sion kernel,

S
l 1l 2

l 18 l 285
1

2
~b

l 1l 2

l 18 l 2821!S 1

2ml 1

p1
21

1

2ml 2

p2
2D

5
1

2 F 1

2ml
18

p18
21

1

2ml
28

p28
22

1

2ml 1

p1
22

1

2ml 2

p2
2G

52
1

2 FdE
l 1l 2

l 18 l 281
1

2
dm

l 1l 2

l 18 l 28V2G
52

1

2 FdE
l 1l 2

l 18 l 281
1

2
dm

l 1l 2

l 18 l 28~VW 2uW !2G
2

1

2
dm

l 1l 2

l 18 l 28~VW 2uW !•uW 2
1

4
dm

l 1l 2

l 18 l 28u2, ~C42!

so that

S~E!5j1uW •SW̄ ~p!1 1
2 u2S̄~r!, ~C43!

with the ~rest-frame! source term

j5 1
2 (

l 1l 2l 18 l 28
E dx1dx2~ q̂12•vW 12!d~q122s l 1l 2

!

3Q~2q̂12•vW 12!@dE
l 1l 2

l 18 l 281 1
2 dm

l 1l 2

l 18 l 28~VW 2uW !2#

3 f l 1l 2
~x1x2!Kl 1l 2

l 18 l 28~x12!d~rW2qW 1!. ~C44!

The flux comes from the odd part of the collision kernel,

F
l 1l 2

l 18 l 285
1

2
~b

l 1l 2

l 18 l 2821!S 1

2ml 1

p1
22

1

2ml 2

p2
2D

5
1

2
~b

l 1l 2

l 18 l 2821!F 1

ml 1
1ml 2

~p1
22p2

2!

2
ml 1

2ml 2

ml 1
1ml 2

S 1

2ml 1

p1
21

1

2ml 2

p2
2D G . ~C45!

The first term gives

~b
l 1l 2

l 18 l 2821!
1

ml 1
1ml 2

~p1
22p2

2!

5
1

ml
18
1ml

28
F S pW 11

1

2
gW

l 1l 2

l 18 l 282
1

2
dm

l 1l 2

l 18 l 28VW D 2

2S pW 22
1

2
gW

l 1l 2

l 18 l 282
1

2
dm

l 1l 2

l 18 l 28VW D 2G2
1

ml 1
1ml 2

~p1
22p2

2!

5VW •gW
l 1l 2

l 18 l 281
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28
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1S 1
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28
2

1

ml 1
1ml 2

D ~p1
22p2

2!, ~C46!

while the second is

~bl1l2

l18l2821!
ml1

2ml2

ml1
1ml2

S 1

2ml1

p1
21

1

2ml2

p2
2D

52
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18
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28

ml
18
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28
SdE

l1l2

l18l281
1

2
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l18l28V2D
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28
2
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ml1
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52
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l18l281
1

2
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l18l28V2D
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DSml

18
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22
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2D2S 1
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1ml2
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22p2
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~C47!

so

2F
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l 18 l 285VW 12•gW
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l 18 l 28

ml
18
1ml

28
pW 12•VW 12

1
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2ml

28

ml
18
1ml

28
S dE

l 1l 2

l 18 l 281
1

2
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2 D

1S ml 1
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18
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D 1

ml 2
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2, ~C48!

which gives, after some algebra,

2F
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l 18 l 285VW 12•gW̃
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l 18 l 281
1

ml 1
1ml 2

S ml 1
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28
2ml 2

ml
18

ml
18
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28
D
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28
dE
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l 18 l 28

2
1

2
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2ml 2

1ml 1
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This can also be written as
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28
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2ml
18
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2ml 1

2ml
28
1ml 2

!@~VW 122uW !•uW #

1
1

2
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2ml
28
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!u2, ~C50!

1uW •gW̃
l 1l 2

l 18 l 28, ~C51!
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so that

FW ~V!5qW V1qW m1qW dE1uW •~PJV1PJM !1 1
2 u2QW , ~C52!

where the different pieces of the heat flux vector are the
usual collisional contribution

qW V52 1
2 (

l 1l 2l 18 l 28
E dx1dx2qW 12~ q̂12•vW 12!d~q122s l 1l 2

!

3Q~2q̂12•vW 12! f l 1l 2
~x1x2!Kl 1l 2

l 18 l 28~x12!~VW 122uW !

•gW̃
l 1l 2

l 18 l 28E
0

1

dx d„rW2xqW 12~12x!qW 2…, ~C53!

a part arising from the instantaneous transfer of mass,

qW m52
1

2 (
l 1l 2l 18 l 28

ml
28
ml 1

2ml
18
ml 2

~ml
28
1ml

18
!~ml 2

1ml 1
!

3E dx1dx2qW 12~ q̂12•vW 12!d~q122s l 1l 2
!
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~x1x2!Kl 1l 2

l 18 l 28~x12!m l 1l 2
v2

3E
0

1

dx d„rW2xqW 12~12x!qW 2…, ~C54!

and a part arising from the loss of energy,

qW dE52
1

2 (
l 1l 2l 18 l 28

ml
18
2ml

28

ml
18
1ml

28
E dx1dx2qW 12~qW 12•vW 12!
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l 18 l 28~x12!

3dE
l 1l 2

l 18 l 28E
0

1

dx d„rW2xqW 12~12x!qW 2…. ~C55!

A little rearrangement allows us to write the energy balance
equation as

]

]t
E1¹W •~uW E!1¹W •qW 1¹W •~uW •PJ !1¹W •S 1

2
u2QW D

5j1uW •SW̄ ~p!1
1

2
u2S̄~r!. ~C56!

Alternatively, noting the relation between the total energy
and the kinetic temperature,

E5
D

2
nkBT1

1

2
ru2, ~C57!

gives an equation for the evolution of the kinetic tempera-
ture:

S ]

]t
1uW •¹W DT2

T

n
¹W •(

l
jW l
K1

2

DnkB
@PJ :¹W uW 1¹W •qW #5j.

~C58!
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