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Thermodynamic perturbation theory is applied to the model of globular proteins studied by ten
Wolde and Frenkel �P. R. ten Wolde and D. Frenkel Science 77, 1975 �1997�� using computer
simulation. It is found that the reported phase diagrams are accurately reproduced. The calculations
show how the phase diagram can be tuned as a function of the length scale of the potential. © 2005
American Institute of Physics. �DOI: 10.1063/1.1943987�

I. INTRODUCTION

One of the most important problems in biophysics is the
characterization of the structure of proteins. The experimen-
tal determination of protein structure by means of x-ray dif-
fraction requires that the proteins be prepared as good quality
crystals which turns out to be difficult to achieve. Given the
fact that recent years have seen an explosion in the number
of proteins which have been isolated, the need is therefore
greater than ever for efficient methods to produce such crys-
tals. Without finely tuned experimental conditions, often dis-
covered through laborious trial and error, crystallization may
not occur on laboratory time scales or amorphous, rather
than crystalline, structures may form. The recent observation
by ten Wolde and Frenkel1 of enhanced nucleation of a
model protein in the vicinity of a metastable critical point is
thus of great interest and could lead to more efficient means
of crystallization if such conditions can be easily identified
for a given protein.

George and Wilson noted that favorable conditions for
crystallization are correlated with the behavior of the os-
motic second virial coefficient2 and, hence, depend sensi-
tively on temperature. If the second virial coefficient is too
large, crystallization occurs slowly and if it is too small,
amorphous solids form. By comparing the experimentally
determined precipitation boundaries for several different
globular proteins as a function of interaction range, con-
trolled by means of the background ionic strength, Rosen-
baum and Zukoski3 and Rosenbaum et al.4 have shown that
the phase diagrams of a large class of globular proteins can
be mapped onto those of simple fluids interacting via central
force potentials consisting of hard cores and short-ranged
attractive tails. They also discuss the important fact that the
range of interaction can be tuned by varying the composition
of the solvents used. The attraction must, in general, be very
short ranged if this model is to apply since a fluid–fluid
phase transition is not typically observe experimentally4 and
it is known that this transition is only suppressed in simple
fluids when the attractions are very short ranged.5 These
studies therefore support the conclusion that the study of

simple fluids interacting via potentials with short-ranged at-
tractive tails can give insight into nucleation of the crystal-
line phase of a large class of globular proteins. ten Wolde and
Frenkel have studied nucleation of a particular model globu-
lar protein consisting of a hard core and a modified Lennard-
Jones tail by direct free-energy measurements obtained from
computer simulations.1 �See also the recent work by Pagan et
al.6 on the thermodynamic properties of this model near the
critical point.� They found that the nucleation rate of a stable
fcc solid phase could be significantly enhanced in the vicin-
ity of a metastable critical point. The enhancement is due to
the possibility that a density fluctuation in the vapor phase is
able to first nucleate a metastable droplet of denser fluid
which, in turn, forms a crystal nucleus. The fact that inter-
mediate metastable states can accelerate barrier crossing has
been confirmed using kinetic models7 and the physics of the
proposed nonclassical nucleation model has also been con-
firmed by the theoretical studies based on density-functional
models.8,9 This observation opens up the possibility of effi-
ciently producing good quality protein crystals provided that
it is understood how to tune the interactions governing a
given protein so that its phase diagram possesses such a
metastable state under experimentally accessible conditions.
A prerequisite for achieving this is to go beyond the heavily
parametrized studies conducted so far and to be able to ac-
curately predict phase diagrams given knowledge of the
range of the protein interactions. In this paper, we describe
the application of thermodynamic perturbation theory to cal-
culate the phase diagram based solely on the interaction
model. Insofar as the range of interaction is important, and
not the detailed functional forms, this approach, if success-
ful, gives a direct connection between the phase diagram and
the range of interaction without the need for further phenom-
enological parametrizations. It has the advantage over liquid-
state theory, which has also been applied to this problem,10 in
that the liquid and solid phases are treated in a unified man-
ner, making it possible to extend the approach to a direct
investigation of nucleation.11 We show that the theory can be
used to successfully reproduce the phase diagrams of tena�Electronic mail: jlutsko@ulb.ac.be
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Wolde and Frenkel based only on the interaction potential
and assess the effect of the range of the interatomic potential
on the structure of the phase diagram.

In Sec. II, the formalism used in our calculations is out-
lined. This involves the standard Weeks–Chandler–Andersen
perturbation theory with modifications to improve its accu-
racy at high densities. Section III discusses the application of
the perturbation theory to the ten Wolde–Frenkel interaction
model. Whether or not perturbation theory is applicable to
this type of system is not immediately evident; the hard-core
square-well potential has long served as a test case for de-
velopments in perturbation theory.12 So we show how the
size of the various contributions to the total free energy var-
ies with temperature and that second-order contributions to
the free energy are of negligible importance. In Sec. IV, the
calculated phase diagram for the hard-core plus modified
Lennard-Jones tail is shown to be in good agreement with
the reported Monte Carlo �MC� results. Since the perturba-
tion theory is also well known13 to give a good description of
long-ranged potentials such as the standard Lennard-Jones,
we expect that it can be used with some confidence to ex-
plore the effect of the length scale of the potential on the
phase behavior of the systems. To illustrate, we present the
phase diagram as a function of the range of the modified
Lennard-Jones tail and show that the appearance of the meta-
stable state requires only a minor modification of the range
of the potential. Section V contains our conclusions where
we discuss the prospect for using the perturbation theory
free-energy function as the basis for density-functional stud-
ies of the nucleation process and for studies of the effect of
fluctuations on the nucleation rate.

II. THERMODYNAMIC PERTURBATION THEORY

Thermodynamic perturbation theory allows one to ex-
press the Helmholtz free energy F of a system in terms of a
perturbative expansion about some reference system. There
are a number of different approaches to constructing the per-
turbative expansions such as the well-known
Weeks–Chandler–Andersen14–17 �WCA� theory and the more
recent Mansoori–Canfield/Rasaiah–Stell theory.18 The latter
appears to be more accurate for systems with soft repulsions
at small separations while the former works better for sys-
tems with stronger repulsions. Here, we will be interested in
a hard-core potential with a modified Lennard-Jones tail, so
we use the WCA theory as modified by Ree and
co-workers13,19,20 as discussed below. The first step is to di-
vide the potential into a �mostly� repulsive short-ranged part
and a longer-ranged �mostly� attractive tail according to the
prescription

v�r� = v0�r� + w�r� ,

v0�r� = �v�r� − v�r0� − v��r0��r − r0�, r � r0

0, r � r0,
� �1�

w�r� = �v�r0� + v��r0��r − r0�, r � r0

v�r�, r � r0.
�

The short-ranged part is generally repulsive and can there-
fore be well approximated by a hard-sphere reference sys-
tem. The long-ranged tail describes the attractive forces and
must also be accounted for so that distinct liquid and gas
phases exist �i.e., so that the phase diagram exhibits a van
der Waals loop�. There are a number of versions of the
WCA-type perturbation theory depending on the choice of
the separation point r0. Barker and Henderson21 chose the
separation point r0 to be the point at which the potential goes
to zero, v�r0�=0 �they also did not include the linear term in
the expressions above�. Subsequently, WCA achieved a bet-
ter description of the Lennard-Jones phase diagram by taking
the separation point to be at the minimum of the potential,
v��r0�=0. Ree19 first suggested that the free energy be mini-
mized with respect to r0, and introduced the linear terms in
Eq. �1�, in which case the first-order perturbation theory is
equivalent to a variational theory based on the Gibbs–
Bugolyubov inequalities.17 Later, Kang et al. showed that
essentially the same results could be achieved with the pre-
scription

r0 = min�rmin,rnn� , �2�

where rmin is the minimum of the potential, v��rmin�=0, and
rnn=21/6�−1/3 is the fcc nearest-neighbor distance where � is
the density.13 For low densities, this amounts to the original
WCA prescription whereas for higher densities, the separa-
tion point decreases with increasing density. In this case, the
linear term in the definition of v0�r� ensures the continuity of
the first derivative of the potential. Calculations for the
Lennard-Jones potential, as well as inverse power potentials,
show that this modification of the original WCA theory gives
improved results at high density. Finally, Eq. �2� was modi-
fied to switch smoothly from rmin to rnn as the density in-
creases so as to avoid discontinuities in the free energy as a
function of density and thus singularities in the pressure.20

Below, we will refer to this final form of the Weeks–
Chandler–Andersen–Ree theory as the WCAR theory.

A. Contribution of the long-ranged part or the
potential

The contribution of the long-ranged part of the potential
to the free energy is handled perturbatively in the so-called
high-temperature expansion,17

1

N
�F −

1

N
�F0 =

1

N
��W�0 +

1

2N
�2��W2�0 − �W�0

2� + ¯ ,

�3�

where F0 is the free energy of a system of N particles subject
only to the short-ranged potential v0�r� at inverse tempera-
ture �=1/kBT and where the total attractive energy is

W = 	
1�i�j�N

w�rij� . �4�

The brackets �¯�0 indicate an equilibrium average over a
system interacting with the potential v0. The first term on the
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right is easily calculated since it only involves the pair dis-
tribution function of the reference system,

1

N
��W�0 =

1

2
��
 dr g0�r�w�r� , �5�

where g0�r� is the pair distribution function of the reference
system. The second term requires knowledge of three- and
four-body correlations for which good approximations are
not available. Its value is typically estimated using Barker
and Henderson’s ”macroscopic compressibility”
approximation,12,22

1

2N
�2��W2�0 − �W�0

2� � −
1

4
�2�� ��

��P0
 
 dr g0�r�w2�r� ,

�6�

where P0 is the pressure of the reference system at tempera-
ture kBT=1/� and density �.

B. Contribution of the short-ranged part of the
potential

The description of the reference system is again accom-
plished by perturbation theory. Since the potential v0�r� is
not very different from a hard-core potential, this perturba-
tion theory does not involve the high-temperature expansion
but, rather, involves a functional expansion in the quantity
exp�−�v0�r��−exp�−�vhs�r ;d�� where vhs�r ;d� is the hard-
sphere potential for a hard-sphere diameter d. The result is

1

N
�F0 −

1

N
�Fhs��d3� =
 dr yhs�r��exp�− �v0�r��

− exp�− �vhs�r;d��� + ¯ , �7�

where yhs�r ,�d3� is the hard-sphere cavity function, related
to the pair distribution function through ghs�r�
=exp�−�vhs�r ;d��yhs�r�. Several methods of choosing the
hard-sphere diameter of the reference system are common.
The WCA prescription is to force the first-order term to van-
ish,

0 =
 dr yhs�r��exp�− �v0�r�� − exp�− �vhs�r;d��� . �8�

A simple expansion about r=d gives the cruder Barker and
Henderson approximation17 which gives


 dr�exp�− �v0�r�� − 1� +
 dr�1 − exp�− �vhs�r;d��� � 0.

�9�

In either case, one can then consistently approximate the pair
distribution function of the reference state as either

g0�r� � ghs�r� , �10�

or

g0�r� � exp�− �v0�r��yhs�r� , �11�

where the difference between using one expression or the
other is of the same size as neglected terms in the perturba-
tion theory. Here, we follow Kang et al.13 in using the WCA

prescription for the hard-sphere diameter, Eq. �8� and the first
approximation, Eq. �10�, for the pair distribution function.
Then, the complete expression for the free energy becomes

1

N
�F =

1

N
�Fhs��d3� −

1

2

 dr yhs�r��exp�− �v0�r��

− exp�− �vhs�r;d��� + 1
2��
 dr ghs�r�w�r�

− 1
4��� ��

�P0
 
 dr ghs�r�w2�r� . �12�

The pressure P and chemical potential � are calculated from
the free energy using the standard thermodynamic relations,

�P

�
= �

�

��

1

N
�F ,

�13�

�� =
1

N
�F +

�P

�
.

C. Description of the reference liquid

The calculation of liquid phase free energies require as
input in the properties of the hard-sphere liquid. These are
known to a high degree of accuracy and introduce no signifi-
cant uncertainty, nor any new parameters, into the calcula-
tions.

The properties of low-density hard-sphere liquids are
well described by the Percus–Yevick �PY� approximation but
this is not adequate for the dense liquids to be considered
here. So for the hard-sphere cavity function, we have used
the model of Henderson and Grundke23 which modifies the
PY description so as to more accurately describe dense liq-
uids. The corresponding pair distribution function is then that
of Verlet and Weis24 and the equation of state, as obtained
from it by both the compressibility equation and the pressure
equation, is the Carnahan–Starling equation of state.17 The
free energy as a function of density follows immediately and
is given by

1

N
�Fhs��d3� = ln���3� − 1 + �

4 − 3�

�1 − ��2 , �14�

where �=�d3. The second term of Eq. �12� is easily evalu-
ated numerically as its kernel is sharply peaked about r=d .
The most troublesome part of the calculation is the evalua-
tion of the contributions of the long-ranged part of the po-
tential w�r�. One method is to divide the necessary integrals
along the lines,


 dr ghs�r�w�r� =
 dr w�r� +
 dr�ghs�r� − 1�w�r� ,

�15�

where the first piece can be calculated analytically and the
second involves the structure function ghs�r�−1 which is
relatively short ranged allowing a numerical evaluation.
However, at high densities this can still be difficult to evalu-
ate as the hard-sphere structure extends for considerable dis-
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tances. In the Appendix , we discuss a more efficient method
of evaluation based on Laplace transform techniques. We
have used both methods and obtained consistent results. In
general, the second is much easier to implement and numeri-
cally more stable.

D. Description of the reference solid

To calculate the properties of the solid phase, the same
expressions are used except that the reference free energy is
now that of the hard-sphere solid and the pair distribution
function is the spherical average of the hard-sphere pair dis-
tribution function. Both of these quantities can be obtained
by means of classical density-functional theory, but here we
choose the simpler, and older, approach which makes use of
analytic fits to the results of computer simulations together
with the known high-density limit of the equation of state.
This limits the present calculations to the investigation of the
fcc solid phase as this is the only one for which extensive
simulations have been performed. We stress that these fits are
very good and that they introduce no new parameters into the
calculations of the phase diagrams.

In the calculations presented below, we have used the
equation of state proposed by Hall25

�P

�
= 3

�

�c − �
+ 2.557 696 + 0.125 307 7b

+ 0.176 239 3b2 − 1.053 308 b3 + 2.818 621 b4

− 2.921 934 b5 + 1.118 413 b6,

�16�

b = 4�1 −
�

�c
 ,

where �c= �	 /6��2 is the value of the packing fraction at
close packing. Notice that the first term is the high-density
limit of the Lennard–Jones–Devonshire cell theory which is
expected to be exact near close packing �see, e.g., the dis-
cussion in Ref. 26�. The free energy is then calculated by
integrating from the desired density to the close-packing
density giving

�F = �F0 − 

�

�c ��P

�
− ��P

�


LJD
�d�

�
. �17�

For the spherically averaged pair distribution function
for the fcc solid, we use the analytic fits of Kincaid and
Weiss,27

gKW�r� = �A/x�exp�− w1
2�x − x1� − w2

4�x − x1�4�

+
w

24��	
	
i=2



ni

xix
exp�− w2�x − x1�2� . �18�

Here x=r /d, the parameter A is fixed by requiring that the
pressure equation reproduce the Hall equation of state

��P

�


Hall
= 1 + 4�gKW�1� , �19�

and the parameters w1, w2, and w are given as functions of
density by analytic fits to the MC data.27 No such fit is given

for the parameter x1 so its value must be determined by in-
terpolating from the values extracted from the MC data as
given in Ref. 27. The quantities ni and xi are the number of
neighbors and the position of the ith lattice shell, respec-
tively. Note that Kang et al. suggest using the earlier param-
etrization of Weis28 at lower densities, where it is slightly
more accurate, and the Kincaid–Weis version at higher den-
sities. We have not done this because it leads to discontinui-
ties in the free energy as a function of density at the point the
switch is made. Since these are just empirical fits, we do not
believe there is a significant loss of accuracy.

III. APPLICATION TO A MODEL PROTEIN
INTERMOLECULAR POTENTIAL

A. The potential

The only input needed for the perturbative calculation
outlined in Sec. II is the intermolecular potential: there are
no phenomenological parameters to specify. The goal of this
work is to show how to construct a realistic free-energy func-
tional with which to study nucleation of protein crystalliza-
tion using the model potential of ten Wolde and Frenkel.1

This interaction model consists of a hard-sphere pair poten-
tial with an attractive tail

v�r� = �
, r � �

4�

2� 1

�� r
��2 − 1�6 − 

1

�� r
��2 − 1�3�, r � � � .

�20�

The tail is actually a modified Lennard-Jones potential and
the two are related by

��r − ��v�r� = ��r − ��vLJ�1/6��� r

�
2

− 1 . �21�

As such, the potential decays as a power law and is not short
ranged in the usual sense. Nevertheless, as  becomes larger,
the range of the potential decreases, for example, the mini-
mum of the potential is

rmin

�
=�1 + � 2


1/3

,

�22�
v�rmin� = − � ,

which approaches the hard core for large . Furthermore, for
a fixed position r�rmin, the value of the potential decreases
with increasing  relative to its minimum. For example,

v�2��/v�rmin� =
108 − 4

7292 �23�

so that as  increases, the interactions of particles separated
by much more than rmin contribute less and less to the total
energy compared to the contribution of particles that are
close together. Figure 1 shows the evolution of the shape of
the potential as  increases. The range of the potential varies
from about 2.5 hard-sphere diameters for =1 to less than
1.25 diameters for =50. Also shown in the figure is the
separation of the potential into long- and short-ranged pieces
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for the case =50 where it is clear that even for this very
short-ranged potential, the long-ranged function W�r� varies
relatively slowly compared to the short-ranged repulsive po-
tential V0�r�.

B. Comparison of various approximations

Figure 2 shows the contributions of the various terms
contributing to the free energy at two temperatures. In both
cases, the second-order term is seen to be negligible. This is
because at low density, the free energy is dominated by the
ideal-gas contribution, all other contributions going to zero
with the density, whereas at moderate to high density, the
compressibility controlling the size of the contribution of the
second-order term, see Eq. �12�, diminishes quickly from its
zero density limit of 1.0 to something on the order of 0.1 at
moderate densities and is of order 0.01 at high densities. We
conclude that the second-order contributions, at least calcu-
lated within the macroscopic compressibility approximation,
Eq. �6�, can be neglected.

In the case of the lower temperature, kBT /�=0.35, the
first-order contributions quickly grow with density until at
high densities, they are larger than the zeroth-order contribu-
tions thus suggesting that the perturbation theory will not
prove very accurate. At the higher temperature, kBT /�=1.5,

the first-order contributions are much better controlled and
we expect the perturbation theory to be relatively accurate.

We have also tested the various approaches to the selec-
tion of the separation point of the potential—the WCA pre-
scription, Eq. �2�, the WCAR prescription and minimization
of the free energy with respect to r0. As expected, the only
significant differences occur at high density, where variations
of the free energy of 10% occur, but we find virtually no
effect on the phase diagram.

IV. PHASE DIAGRAMS

Figure 3 shows the phase diagram as calculated from the
WCAR theory for the potential and parameters used by ten
Wolde and Frenkel1 and its comparison to the results of
Monte Carlo simulations by these authors for =50. The
lines, from our calculations, and the symbols, from the simu-
lations, divide the density-temperature phase diagram into
three parts: the liquid region �low density and high tempera-
ture�, the fluid-solid coexistence region, and the solid region
�at high density�. In the calculations, the lines are determined
by finding, for a given temperature, the liquid and solid den-
sities that give equal pressures and chemical potentials for
the two phases as determined using Eq. �13� based on the
liquid and solid free energy calculations �which differ only in
the equation of state and pair distribution function of the
reference states�. The fluid–fluid coexistence is determined
similarly except that the free energy for both phases is cal-
culated using the same reference state �the hard-sphere fluid�
with the resulting free energy exhibiting a van der Waals
loop.

The calculations and simulations are in good qualitative
agreement with a fluid–fluid critical point that is suppressed
by the fluid-solid phase boundaries. The values of the coex-
isting densities are in good agreement at low temperatures,
where the liquid density is very low and at high tempera-
tures. That these limits agree is expected from our discussion
of the relative sizes of the various contributions to the free
energy. It is perhaps surprising that the agreement is so good
even for temperatures as low as kBT /��1. The intermediate
temperature values, where the attractive tail and finite den-
sity effects are important, are the most poorly described. The

FIG. 1. The ten Wolde–Frenkel potential as a function of . The inset shows
the division of the potential into long-ranged and short-ranged parts for 
=50.

FIG. 2. The various terms contributing to the total free energy as a function
of density for two different temperatures. At the lower temperature, the
first-order contribution dominates the hard-sphere contribution whereas at
higher temperatures, the zeroth order terms dominate.

FIG. 3. Comparison of the predicted phase diagram, lines, to the Monte
Carlo results, symbols, of Ref. 1 for =50. Some error bars are superposed
on the symbols.
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same is true of the fluid–fluid coexistence curve. The critical
point is estimated to occur at about kBT /��0.48 and ��3

�0.4 whereas the simulation results are kBT /��0.4 and
��3�0.3. We have tested these results by using different
choices for the pair distribution function of the reference
state �see Eqs. �10� and �11�� and different choices for the
division of the potential �such as minimizing the free energy
with respect to the break point� but none of these alternatives
produces any significant change.

An interesting feature of short-ranged interactions is that
under some circumstances, they give rise to solid–solid tran-
sitions where the lattice structure remains the same but solids
of different densities can coexist �i.e., a van der Waals loop
occurs in the solid free energy�.29 We have searched for, but
find no evidence of, such a transition with the present poten-
tial.

To give some idea of the typical energy barrier between
the coexisting phases, we show in Fig. 4 the calculated iso-
thermal free energies as a function of density between the
coexisting fluid and solid phases at kBT /�=0.4 for the short-
ranged �=50� potential. The fluid has a density of 0.008
and a Helmholtz free energy of −5.82 in reduced units. The
maximum free energy is −2.57 and the solid free energy is
−5.02 at a density of 0.88.

Figure 5 shows the phase diagrams calculated from the
WCAR theory as a function of the range of the potential �i.e.,

different values of �. For =1, for which the minimum of
the potential well is rmin=1.5 and corresponding to a tail that
closely resembles a standard Lennard-Jones interaction, the
phase diagram has the classical form exhibiting three stable
phases, a critical point, a triple point and a separation point.
As  increases, and the range of the potential decreases, the
critical point moves towards the triple point. Even for =5
and rmin=1.31, the critical point lies very near the triple point
and the two become nearly identical for =10 and rmin

=1.26. Our conclusion is that for this model, the suppression
of the triple point occurs when the range of the potential, as
characterized by its minimum, falls to about a quarter of the
hard-core diameter.

V. CONCLUSIONS

Our aim here has been to provide a fundamental model
of protein crystallization without the need for parametriza-
tions other than the interaction potential. Since the potential
for globular proteins can be tuned, by varying, e.g., the back-
ground ionic strength of the solutions, this provides a rather
direct connection between the theoretical indications of fa-
vorable conditions for nucleation and the experimentally ac-
cessible control parameters.

We have shown that thermodynamic perturbation theory
gives a good, semiquantitative estimate of the phase diagram
of a model interaction for globular proteins. The accuracy of
the perturbation theory is expected to improve as the range
of the potential increases so, e.g., the prediction of the value
of  at which the critical point becomes suppressed is ex-
pected to be reasonably accurate. Unlike the results of a re-
cent study of colloids interacting via short-ranged
potentials,30 we do not find that the second-order terms in the
high-temperature expansion play an important role in the
structure of the phase diagram.

This free-energy calculation, which only uses the inter-
action model as input, should be contrasted with other more
phenomenological approaches. In phase field models, the
free energy is taken to be a function of one or more order
parameters. The actual form of the free energy is typically of
the Landau form which is to say a square-gradient term plus
an algebraic function of more than second order in the order

FIG. 4. Calculated phase diagrams as a function of  showing that the
critical point is suppressed for �10.

FIG. 5. Calculated free energies as a function of density
for the liquid and solid phases at kBT /�=0.4 and for
=50.The points mark the location of the coexisting
phases.
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parameter. The coefficients of these terms must be fitted to
the experimental data and the adequacy of the assumed func-
tion is difficult to assess. Similarly, the recent density-
functional models of Talanquer and Oxtoby8 and Shiryayev
and Gunton9 depend on an ad hoc free-energy functional,
based on the van der Waals free-energy model for the fluid,
with several phenomenological parameters.

We believe that our work can serve as the basis for fur-
ther theoretical study of the nucleation of globular proteins
using density-functional theory. While the present descrip-
tion of the two phases requires as input separate equations of
state and pair distribution functions for the reference hard-
sphere fluid and solid phases, standard methods exist for in-
terpolating between these so as to provide a single, unified
free-energy functional suitable to the study of free-energy
barriers �see, e.g., Ref. 11�. Such a unified model can be used
to study static properties, such as the structure of the critical
nucleas, using density-functional theory as well as the effect
of fluctuations on the transition rates by the addition of noise
obeying the fluctuation-dissipation theorem.

Finally, it would be desirable to confront the approach
developed here to experiments aiming to determine the inter-
action potential and the phase diagram of concrete globular
proteins of interest such as lysozyme and catalase. In recent
years, considerable effort was devoted to protein crystalliza-
tion under microgravity conditions on the grounds that some
undesirable effects such as density gradients and advection
present in earth-bound experiments can be virtually
suppressed.31 In parallel, earth-bound experiments are being
carried out to determine conditions and parameters to be
used in a microgravity experiment. In either case, the role of
the metastable critical point has so far not been addressed in
a detailed manner. We believe that the availability of a theory
as parameter free as possible like the one developed in the
present work could provide the frame for undertaking such a
study on a rational basis.
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APPENDIX: EVALUATION OF LONG-RANGED
CONTRIBUTION TO THE FREE ENERGY

We begin by writing the first order contribution of the
long-ranged potential as


 dr ghs�r�w�r� =
 dr ghs�r�v�r� −
 dr ghs�r�v0�r� ,

�A1�

so that the second term involves the very short-ranged func-
tion v0�r� and is easily performed numerically. Our focus is
therefore on the evaluation of the first term on the right. If
we write the potential as the sum of a hard core and a con-
tinuous tail

v�r� = vhs�r� + ��r − ��vtail�r� , �A2�

and the effective hard-sphere diameter d��, as it clearly
will always be, then


 dr ghs�r�v�r� =
 dr ��r − d�yhs�r�v�r�,

=
 dr ��r − d�yhs�r�vtail�r�,

=
 dr ghs�r�vtail�r� , �A3�

so that we can ignore the discontinuity of the hard-core po-
tential and simply deal with the continuous tail potential. The
first term can be evaluated by introducing the inverse
Laplace transform of rvtail�r�,

rvtail�r� = 

0




ds exp�− sr�Vtail�s� , �A4�

and likewise for rghs�r� so that


 dr ghs�r�vtail�r� = 4	

0




dr r2ghs�r�vtail�r�,

= 4	

0




ds Vtail�s�

0




dr rghs�r�exp�− sr�,

= 4	

0




ds Vtail�s�G�s� , �A5�

where G�s� is the Laplace transform of rghs�r�, which is
known analytic function in the PY approximation,

G�s;d� = d2GPY�sd� ,

GPY�x� =
x exp�− x�F�x�

1 + 12� exp�− x�F�x�
,

�A6�

F�x� = −
1

12�

1 + Ax

1 + �A − 1�x + � 1
2 − A�x2 + � 1

2A − 1+2�
12� �x3

,

A =
1 + �/2

1 + 2�
.

The integral in Eq. �A5� is controlled by the exponential
decay of G�s ;d� and is easily performed numerically. Note
that for the ten Wolde–Frenkel potential, we have that

Vtail�s�

=
�

9602���s��5 + 45�s��3 + �105 + 480�s��sinh s�

− �10�s��4 + �105 + 480��s��2�cosh s�
 .

�A7�

The Percus–Yevick pair distribution function becomes
exact at low densities but is only semiquantitatively accurate
at moderate to high densities. Compared to the pair distribu-
tion function �PDF� determined from computer simulations,
its oscillations are slightly out of phase and the pressure cal-
culated from it is in error. The Verlet–Weiss pair distribution
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function is a semiempirical modification of the basic Percus–
Yevick result designed to correct these flaws. It is written as

gVW�r;�,d� = ��r − d��gPY�r;�,d0� +
C

r
exp�− m�r − d��

�cos�m�r − d�� , �A8�

where the step function ��r−d� ensures the fundamental
property that the PDF vanishes inside the core, d0 is an ef-
fective hard-sphere diameter which has the effect of shifting
the phase of the oscillations, and C and m are chosen to give
the accurate Carnahan–Starling equation of state via both the
pressure equation and the compressibility equation. To apply
the Laplace technique in this case requires some care since
what we know is the Laplace transform of gPY�r ;� ,d0� and
not that of ��r−d�gPY�r ;� ,d0�. So we rewrite Eq. �A8� as,

gVW�r;�,d� = gPY�r;�,d0� + ���r − d�

− ��r − d0��gPY�r;�,d0�

+ ��r − d�
C

r
exp�− m�r − d��cos�m�r − d��

�A9�

thus separating out the known PY contribution. This gives


 drghs�r�vtail�r� =
 drgPY�r;�,d0�vtail�r�

+ 4	

d0

d

r2dr gPY�r;�,d0�vtail�r�

+ 4	

d




r2dr
C

r
exp�− m�r − d��

�cos�m�r − d��vtail�r� , �A10�

where the first integral can be evaluated via the Laplace
transform technique, provided that d0��, the second inte-
gral is over a finite interval �for which one could analytically
approximate the pair distribution function as in Ref. 23�
while the third integral is easily evaluated numerically. All

parts of the calculation are therefore well controlled.
Finally, we note that the same techniques can be adapted

to the evaluation of the second-order contribution to the free
energy.
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