VOLUME 60, NUMBER 12

PHYSICAL REVIEW LETTERS

21 MARCH 1988

Structurally Induced Supermodulus Effect in Superlattices
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It is suggested that the “supermodulus effect” observed for composition-modulated superlattices arises
from the presence of the structurally disordered solid interfaces and not necessarily from electronic

structure effects.
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The discovery of the “supermodulus effect” in the bi-
axial modulus of composition-modulated structures of
Au-Ni and Cu-Pd by Yang, Tsakalakos, and Hilliard
and its subsequent detection in a variety of metallic su-
perlattice materials (see, for example, Schuller?) has
drawn considerable attention to the possibility of design-
ing interface materials with mechanical properties not
otherwise achievable in bulk materials.

The elastic constants of an alloy usually show a behav-
ior intermediate between those of its constituents. In the
original work on Au-Ni and Cu-Pd the biaxial modulus
in the interface plane was observed to be 2-3 times
larger (for modulation wavelengths A = 16-20 A) than
for either of the constituents. Because of the severe
difficulties encountered in the measurement of the elastic
constants of thin-film materials, initially these experi-
mental findings were met with some reservation. Howev-
er, with the large number of different systems which
have now been investigated and the variety of techniques
utilized to study them, it is clear that “anomalous elastic
behavior in metallic superlattices is the rule more than
the exception.”® Anomalous elastic properties have also
been observed in nanocrystalline metals.* Considering
their significantly lower density [with a large fraction of
atoms situated in or near grain boundaries (GB’s)], the
recent observation® of elastic moduli which are nearly
the same as (or even stronger than) those for convention-
al polycrystals also comes as a surprise.

In superlattice materials in which detailed x-ray stud-
ies exist (for overviews, see Refs. 2 and 3), the elastic
anomalies are always accompanied by changes in intera-
tomic spacings. In general, an expansion in the z direc-
tion (parallel to the plane normal) is observed which, in
cases in which experiments were performed, is accom-
panied by a small contraction in the interface (x-y)
plane. Whereas the latter can obviously explain the ob-
served softening of the modulus for shear parallel to the
interface plane,® the heart of the puzzle arises from the
apparently parodoxial strengthening of the biaxial modu-
lus in spite of a lattice expansion in z.

Essentially two qualitative explanations for these
anomalies, both based on electronic structure arguments,
have been proposed.>® Remarkably, both models disre-
gard any role the interfaces (as structural defects) might

play, and hence predict the absence of such elastic-
constant anomalies in grain-boundary materials. The
anomalously high elastic constants of nanocrystalline Mg
and Pd (Ref. 4) are obviously in conflict with both mod-
els. Instead, they seem to be indicative of an important
role played by the structure, on an atomic scale, in the
vicinity of the interface. The change in elastic properties
would then be expected to be closely correlated with
structural relaxations of the atoms in the interface re-
gion, and the effect would not be limited to dissimilar-
material interfaces.

To study this question we have investigated, by means
of computer-simulation methods, the elastic constants in
what we call a “grain-boundary superlattice.” Such a
(somewhat hypothetical) material consists of a periodic
arrangement, ... |A|A'|A|A4'| ..., of thin slabs 4
and A' of equal thickness (see Fig. 1). In contrast to a
composition-modulated alloy, however, 4 and A’ consist
of the same material (in our case, Cu) and are merely
rotated with respect to each other about the z axis by a
certain angle 6 (between 4| A") or — 6, respectively (be-
tween A'| A). Since much is known about the properties
of grain boundaries on the (001) plane in the fcc struc-
ture we have chosen zII[001]. In the terminology com-
monly used in the GB literature, 4 and 4’ are hence
joined along a (001) twist boundary. For example, for
0=36.87° about [001], the so-called =5 (001) twist
boundary is obtained. The area of the square unit cell of
this coherent interface is £ =35 times that of the corre-
sponding primitive planar unit cell (Z=1) on the (001)
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FIG. 1. Periodic arrangement of thin slabs 4 and A4’ to
form a ‘“grain-boundary superlattice.” 4 and A’ are slabs of
the same material which were rotated about the plane normal
(liz) to form a periodic array of twist boundaries (x-y plane).
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plane of an fcc crystal. The combination of this 2D
periodic arrangement of atoms in the x-y plane with the
periodic arrangement of interface planes in z (with
modulation wavelength A) thus leads to a strictly 3D
periodic atomic structure. We realize that by choosing
such a GB superlattice we cannot attempt to reproduce
any experimental observations on dissimilar-material su-
perlattices. We hope to illustrate, however, that similar
elastic-constant anomalies exist in both types of material.

Since virtually all elastic-property measurements men-
tioned above have been limited to rather low tempera-
tures, an atomistic simulation code appropriate for T =0
studies has been used in our computer calculations.
First, for a given value of A [i.e., for a given number of
(001) planes in 4 and A'] the structure is relaxed under
zero external stress. This so-called lattice-statics (itera-
tive energy minimization) approach yields the fully re-
laxed atomic structure in which the forces on all atoms
and all stresses on the unit cell vanish. The correspond-
ing 6%6 elastic-constant and -compliance tensors at
T =0 are then evaluated, from which all elastic moduli
of interest can be extracted. Both an embedded-atom-
method (EAM) potential’ and a Lennard-Jones (LJ)
potential for Cu used earlier® have been employed. The
zero-temperature bulk ideal-crystal lattice parameters,
ao, associated with these shifted-force potentials were
determined to be 3.6212 A (EAM) and 3.6160 A (LJ).
In the principal cubic coordinate system (with x, y,
zI{100)), the corresponding Young’s moduli, Yo, were
found to be 3.30x10'? (EAM) and 1.09%10'? dyn/cm?
(LJ) whereas the related shear moduli, Go, are
2.20%10'? and 1.03x10'2 dyn/cm?. In the A— oo limit,
the average Young’s modulus in the z direction, Y
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FIG. 2. Variation of Young’s modulus parallel to the
interface-plane normal and of the modulus for shear parallel to
the interface plane as functions of A. Shown are results for the
GB superlattice and for a thin ideal-crystal slab obtained by
means of the EAM potential for Cu. Also shown are the aver-
age lattice parameters, @; and ay,, for the superlattice (right-
hand scales). The solid lines are merely a guide to the eye.

=Y(A— o), and the average shear modulus, G
=G(A— o) fwhere G(A)=[G.,(A)+G,.(A)]/2}, for
shear parallel to the interface plane are identical to Yy
and Gy, respectively, since 4 and A' have been rotated
about zII[001]. Our results for Y(A) and G(A) obtained
in the manner described above for the £5 boundary are
summarized in Figs. 2 (EAM) and 3 (LJ). Shown also
are the average lattice parameters, ax, and a,, parallel
and perpendicular to the interface plane. Notice that the
moduli shown here are the ones which exhibit the largest
anomalies and not necessarily the ones measured on
dissimilar-materials superlattices.

According to Figs. 2 and 3, both potentials yield an in-
crease in Young’s modulus and corresponding decrease
in the shear modulus as A is decreased. Simultaneously,
a substantial decrease in a,, coupled with an even larger
increase in a, is observed. Results obtained for the 29
boundary on the (001) plane (for §=43.60°) are virtual-
ly identical to the ones in Figs. 2 and 3.

One might ask whether the Young’s-modulus enhance-
ment in the GB superlattice is truly an interface or mere-
ly a size effect; i.e., whether a thin slab of thickness A
(containing no GB) shows the same behavior. The re-
sults obtained for such a fully relaxed slab are included
in Figs. 2 and 3. Again, both EAM and LJ potentials
yield the same qualitative behavior, namely a softening
of both Young’s and the shear moduli compared to their
bulk values. This result is even more remarkable if we
consider that the outermost (100) planes of the slab re-
lax outwards for the LJ potential but inwards for the
EAM potentials. We have also investigated a thin slab,
| 4| A'|, containing a single grain boundary for which
moduli about halfway in between the ones for the thin
slab and GB superlattice are obtained. We believe that
this comparison demonstrates that the strengthening of
Young’s modulus arises from the presence of the inter-
face.
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FIG. 3. Same as Fig. 2 for the Lennard-Jones potential for
Cu (Ref 8). Notice that the scale on the left-hand side differs
by a factor of 2 from the one in Fig. 2.
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The contraction of ay, is readily understood if we con-
sider the substantial volume expansion in the z direction
which results from the destruction of the perfect stacking
of (001) planes at the interface. This not only leads to a
substantial increase in a, but, via the Poisson effect, to a
decrease in @y, and in the shear modulus. Another con-
tribution to a decrease in the shear modulus arises from
the very presence of the interface: Because of the de-
struction of the perfect stacking the two lattice planes
facing each other across the GB plane are less perfectly
locked into one another than in the perfect crystal, thus
greatly facilitating a shear displacement parallel to the
interface plane. The two contributions towards the
shear-modulus decrease were investigated for the GB su-
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FIG. 4. Radial distribution functions, G(r), for the three
lattice planes nearest to the interface, obtained for the £29 GB
superlattice for the largest A(=21.27a¢). Full arrows indicate
the corresponding perfect-crystal peak positions; open arrows
show the average value of r in a given shell. The widths of
these shells are indicated by the dashed lines. Whereas the
atoms in the plane nearest to the interface (a) are very strongly
affected by the presence of the interface, the atoms in the
third-nearest plane (c) are found in an almost perfect-crystal
environment.

1172

perlattice with the smallest value of A in Fig. 2. With
suppression of any expansion in a, the shear modulus is
found to soften by about 10%, with an additional soften-
ing by about 15% if the expansion in z is allowed for.

The key question to be answered is this: How can the
increase in a; be accompanied by a parallel increase in
Y? The answer is closely related to a general feature in
the atomic structure of solid interfaces. Because of the
destruction of the perfect-crystal planar stacking at the
interface, atoms which were originally separated by
perfect-crystal distances have been pushed together more
closely. Essentially as a consequence of Pauli’s principle,
the bicrystal expands locally for all but very special
geometries. As illustrated by the radial distribution
functions in Figs. 4(a)-4(c) for the £29 boundary, how-
ever, in spite of the subsequent increase in the average
interatomic distances (indicated by open arrows), espe-
cially in the lattice plane next to the interface (see Fig.
4(a)l, a significant fraction of atoms is found at separa-
tions much shorter (up to about 10%) than in the perfect
crystal. (For the case of grain boundaries it was demon-
strated that these atoms are the ones governing the inter-
face energy.>!®) As illustrated in Figs. 4(b) and 4(c),
the fraction of atoms in non-ideal-crystal surroundings
decreases very rapidly with increasing distance from the
interface plane.

Within a given shell, distances shorter than the related
ideal-crystal value (indicated by full arrows) are expect-
ed to strengthen the elastic constants whereas longer dis-
tances result in their softening. This effect is investigat-
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FIG. 5. Lattice-parameter dependence of the perfect-crystal
Young’s and shear moduli for both the EAM and LJ poten-
tials. Yo, Go, and ao refer to the equilibrium values (at 7 =0)
of Young’s modulus, the shear modulus, and the lattice param-
eter, respectively. The solid lines are merely a guide to the eye.
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ed more quantitatively in Fig. 5 in which the variations
of Young’s and the shear moduli as functions of the bulk
ideal-crystal lattice parameter are illustrated. Two
features in Fig. S are particularly remarkable. First, the
pronounced positive curvature of the curves obtained for
both potentials indicates that, say, a 5% compression of a
bulk ideal crystal leads to a much larger modulus
strengthing than the softening obtained for a correspond-
ing 5% expansion. Distances on the left of the related
full arrows in Fig. 4(a) (and the corresponding modulus
strengthening) are therefore weighted more heavily than
the larger distances on the right (giving rise to a soften-
ing). Second, the effect is much less pronounced for the
EAM than for the LJ potential. This explains the quan-
titative differences in the elastic-modulus anomalies ex-
hibited by the two potentials (see Figs. 2 and 3).

The rapid convergence of the radial distribution func-
tion towards its ideal-crystal form with increasing dis-
tance from the interface [see Figs. 4(a)-4(c)] is expect-
ed to give rise to a similarly rapid approach of the local
elastic constants and the average interplanar lattice spac-
ing towards their corresponding ideal-crystal values.
The latter, for example, decreases from d =0.59a,
directly at the interface to d =0.505a¢ and d =0.502ay,
respectively, for the two subsequent planes. At a dis-
tance of about five planes the average interplanar spac-
ing is practically indistinguishable from its ideal-crystal
value, d =0.5a0 for (110) planes in fcc.

We believe that the above reasoning demonstrates that
in nanocrystalline materials the connection between the
average lattice parameter (or density) and the elastic

properties is considerably more complex than our intui-
tion gained from homogeneous systems would suggest.*
We also point out that the above explanation presented
for elastic-constant anomalies of a GB superlattice does
not rule out additional anomalies which might arise
when materials with different electronic properties are
brought into contact.
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