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The stability of idealized computer shear flow at long wavelengths is studied in detail. A hydrodynamic
analysis at the level of the Navier-Stokes equation for small shear rates is given to identify the origin and
universality of an instability at any finite shear rate for sufficiently long wavelength perturbations. The analysis
is extended to larger shear rates using a low density model kinetic equation. Direct Monte Carlo simulation of
this equation is compared with a hydrodynamic description including non-Newtonian rheological effects. The
hydrodynamic description of the instability is in good agreement with the direct Monte Carlo simulation for
t,50t0 , where t0 is the mean free time. Longer time simulations up to 2000t0 are used to identify the
asymptotic state as a spatially nonuniform quasistationary state. Finally, preliminary results from molecular
dynamics simulation showing the instability are presented and discussed.@S1063-651X~98!06101-7#

PACS number~s!: 47.20.Ft, 47.15.Fe, 05.20.Dd, 05.60.1w
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I. INTRODUCTION

Uniform shear flow is a prototype nonequilibrium sta
admitting detailed study at both the macroscopic and mic
scopic levels via theory and computer simulation. This is
idealized version of shear flow between parallel plates
which the velocity profile is exactly linear in a coordina
orthogonal to the flow direction~as in Couette flow! and with
a spatially uniform temperature and pressure~in contrast to
Couette flow!. There is a single scalar control parameter,
shear ratea, which measures how far the system is driv
from equilibrium. This flow is generated by periodic boun
ary conditions in the local Lagrangian frame~Lees-Edwards
boundary conditions! that can be implemented at the leve
of hydrodynamics, kinetic theory, and Newtonian mechan
@1–3#. Although these boundary conditions are nonlocal a
therefore not reproducible in real experiments, they are
ally suited for computer simulation of this special noneq
librium state and for more penetrating theoretical analysis
this way, a quantitative study of rheological properties u
ally associated with complex molecular systems has b
performed for simple atomic fluids@4#. The most complete
studies have been via molecular dynamics simulation
Newtonian dynamics at high densities and, more recently
Monte Carlo simulation of the Boltzmann equation at lo
densities @5,6#. Molecular dynamics simulations have r
vealed a transition from fluid symmetry to an ordered stat
sufficiently high shear rates@7#, which has been attributed t
a short wavelength hydrodynamic instability@8#. The objec-
571063-651X/98/57~1!/546~11!/$15.00
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tive here is to show that uniform shear flow also is unsta
at sufficiently long wavelengths, for any finite value of th
shear rate@9,10#. This instability has not been seen in earli
computer simulations due to the small system sizes con
ered, with consequent restrictions to shorter waveleng
The instability is identified theoretically from a hydrody
namic analysis both near and far from equilibrium. Th
analysis is confirmed quantitatively at short times by Mon
Carlo simulations of an associated low density kinetic eq
tion. The asymptotic evolution of this instability is also e
plored via Monte Carlo simulation showing transition to
nonsteady, spatially inhomogeneous state superimpo
upon the uniform shear flow.

The boundary conditions generate viscous heating so
uniform shear flow is not stationary. This viscous heati
can be controlled by the introduction of a nonconservat
external force that acts as a uniform thermostat. The simp
choice is a Stokes law drag force on each particle prop
tional to its velocity relative to the local macroscopic flow
The proportionality ‘‘constant’’ is then adjusted to compe
sate for the heating. There are several possibilities in
detailed implementation of the thermostat, leading to
same properties for the stationary state but different hyd
dynamics for small perturbations from that state. The the
and Monte Carlo simulations are carried out for both glo
and local thermostats. A characterization of the class of th
mostats and qualitative differences in their effects is given
the Appendix. The thermostats compensate for all visc
heating in the reference state and differ only in the exten
546 © 1998 The American Physical Society
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57 547STABILITY OF UNIFORM SHEAR FLOW
which they suppress viscous heating due to perturbat
from that state. In all cases the associated linear hydro
namics is unstable. The role of the thermostat is studied
the Appendix, where it is shown that the qualitative featu
of the instability are not sensitive to the choice of thermos

In the next section, the usual Navier-Stokes hydro
namic equations are considered. These equations are
stricted to small gradients of the hydrodynamic fields relat
to equilibrium, and consequently the shear rate must be s
in this analysis. Otherwise, the density and interatomic fo
law can be considered arbitrary within the fluid phase. T
stationary solution for uniform shear flow is identified, a
the linear hydrodynamic equations for small perturbations
this solution are studied. The five hydrodynamic modes
determined in detail for the special case of spatial pertur
tions orthogonal to the flow. A critical wave vector,kc(a), is
determined such that for wave vectorsk,kc(a) the pertur-
bations grow as a function of time. The critical wave vec
vanishes as the shear ratea goes to zero, but for any finite
value of the shear rate there are sufficiently small wave v
tors ~long wavelengths! such that the perturbation is un
stable.

These hydrodynamic predictions are tested by compar
to Monte Carlo simulations at the more fundamental kine
theory level. A model kinetic equation has been analyzed
states near uniform shear flow, without restriction on
shear rate@10#. The hydrodynamic equations for small devi
tions from uniform shear flow determine the critical wa
vector,kc(a), for values of the shear ratea beyond the limi-
tations of the Navier-Stokes equations where efficient Mo
Carlo simulations are possible. The theoretical prediction
the growth of initial perturbations is compared with a dire
Monte Carlo simulation of a solution to the kinetic equatio
The results confirm both the hydrodynamic analysis and
prediction of an instability for times up to about 50t0 , where
t0 is the mean free time, after which the initial growth h
exceeded the limitations of the linear stability analysis. T
simulation results are continued up to 2000t0 to explore the
ultimate stabilization by nonlinear effects. The asympto
state for the hydrodynamic fields appears to be a system
dependent standing wave with a period of about 50t0 . Fur-
ther details and discussion are given in Sec. III.

The results of the theory and simulations are summari
and discussed in Sec. IV. Some preliminary attempts to
the instability at high densities using molecular dynamics
the hard sphere fluid are discussed. The system dimensio
the direction of the spatial perturbation is increased by
order of magnitude relative to previous simulations. A lo
wavelength perturbation is found to grow on a very lo
simulation time, with no indication of approach to the stea
uniform shear flow. A quantitative comparison with theory
the required larger densities and shear rates is now pos
using a recently developed kinetic model for the hard sph
Enskog equation for application@11#, although the details
have not been worked out at this point.

II. NAVIER-STOKES ANALYSIS

On sufficiently large space and time scales the dynam
of a fluid is well described by hydrodynamic equations o
tained from the exact conservation laws for the aver
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mass, energy, and momentum densities, together with
proximate constitutive equations for the associated flux
For the analysis here we use the density,n(r ,t), temperature,
T(r ,t), and flow velocity,U(r ,t), as dependent variable
rather than the density, energy density, and momentum.
general form of these conservation laws is@12#

Dtn1n“•U50, ~2.1!

DtT1~g21!a21
“•U1~mnCv!21~“•q1Pi j ] jUi2w!

50, ~2.2!

DtUi1r21] i p1r21] j Pi j 50, ~2.3!

whereDt[] t1U•“ is the material derivative. The param
eters occurring in these equations are the mass densitr
5mn, the specific heat at constant volume,Cv , the pressure
p, the ratio of specific heats at constant pressure and volu
g5Cp /Cv , and the coefficient of expansion
a52n21(]n/]T)p . These parameters are the same fu
tions of the local density and temperature as in equilibriu
Finally, the irreversible heat and momentum fluxes are
noted byq andPi j , respectively, andw5w(n,T) is the rate
at which work is done by the external force representing
thermostat. Its detailed form will not be required in this se
tion.

The above equations are incomplete until constitut
equations for the fluxes are specified in terms of the hyd
dynamic fields. However, the special solution of unifor
shear flow exists independent of this choice. It is defined
a spatially constant temperature, density, heat flux, and
mentum flux, and a flow velocity whose only nonvanishi
component isUs,x5ay. The shear ratea provides the single
control parameter measuring the deviation from equilibriu
The boundary conditions are simple periodic conditions
the local Lagrangian coordinate frame,r 85r2Us(r )t. Sub-
stitution of these assumptions forn5ns , T5Ts , andU5Us
into the above conservation laws shows that~2.1! and ~2.3!
are satisfied, while Eq.~2.2! reduces to

] tTs52~mnsCv,s!
21@aPs,xy2w~ns ,Ts!#. ~2.4!

This expresses the temperature evolution as a compet
between the viscous heating effect,}aPs,xy , and the cooling
by the thermostat,}w(ns ,Ts). A steady state is obtained b
choosing the thermostat to cancel the viscous heating,

aPs,xy5w~ns ,Ts!. ~2.5!

The various thermostats described in the Appendix all sat
Eq. ~2.5! but differ for states away from the steady state.

Next consider the equations for small deviations of t
hydrodynamic variables from the uniform shear flow sta
retaining only terms linear in these deviations. To procee
is necessary to specify the constitutive equations for the h
and momentum fluxes. In this section, attention is limited
small spatial gradients, including the shear rate, so that F
rier’s law and Newton’s viscosity law apply,

q52k“T, ~2.6!

Pi j 52h~] iU j1] jUi2
2
3 d i j “•U!2h8d i j “•U. ~2.7!
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548 57MONTANERO, SANTOS, LEE, DUFTY, AND LUTSKO
Herek(n,T) is the thermal conductivity,h(n,T) is the shear
viscosity, andh8(n,T) is the bulk viscosity. It follows im-
mediately that

qs50, Ps,i j 52hsa~d ixd jy1d iyd jx!, ~2.8!

dq52ks“dT, ~2.9!

dPi j 52hs~] idU j1] jdUi2
2
3 d i j “•dU!2hs8d i j “•dU

2a~d ixd jy1d iyd jx!~hs,ndn1hs,TdT!. ~2.10!

An abbreviated notation has been introduced where the
scripts on a quantity indicates it is evaluated atns ,Ts . Also,
ps,n[]p(ns ,Ts)/]ns , ps,T[]p(ns ,Ts)/]Ts , hs,n
[]h(ns ,Ts)/]ns , hs,T[]h(ns ,Ts)/]Ts , etc. With these
results, the closed set of linear hydrodynamic equations
perturbations of uniform shear flow at small shear rates
given by

~] t1Us•“ !dn1ns“•dU50, ~2.11!

~] t1Us•“ !dT1~gs21!as
21

“•dU1~mnsCv,s!
21

3@2ks¹
2dT22hsa~]xdUy1]ydUx!#

5~mnsCv,s!
21@a2~hs,ndn1hs,TdT!1dw#, ~2.12!

~] t1Us•“ !dUi1d ixadUy1rs
21~ps,n] idn1ps,T] idT!

1rs
21] jdPi j 50. ~2.13!

In this section we choose a local thermostat for whichdw in
the temperature equation compensates for the excess vis
heating due to perturbations of the temperature and den
b-

or
re

ous
ty,

dw52a2~hs,ndn1hs,TdT!. ~2.14!

This does not imply a constant local temperature, howe
except for spatially homogeneous deviations from unifo
shear flow, although it does lead to a constant average t
perature or kinetic energy for the whole system.

These differential equations have constant coefficie
which suggests an equivalent algebraic form using Fou
and Laplace transformation. Consider first the Fourier tra
form. The boundary conditions are periodic in the local L
grangian frame given byr i8[r i2Us,i(r )t5L i j (t)r j , where
L i j (t)[d i j 2ad ixd jyt, so it is appropriate to define th
transform with respect to the variabler 8,

d ỹa~k,t !5E dr 8eik–r8dya~r ,t !5E dreik~ t !–rdya~r ,t !,

~2.15!

wheredya(r ,t) denotes the set of perturbations, conside
as a functionr 8 in the first equality. The periodic boundar
conditions requireki52nip/Li , whereni are integers andLi
are the linear dimensions of the system. However, since
time derivative in the hydrodynamic equations is taken
constantr , the representation following the second equal
is useful withki(t)[kjL j i (t). The Fourier transformed hy
drodynamic equations are

] td ỹa1„A~a!2 ik~ t !B~a!1k2~ t !D…abd ỹb50.
~2.16!

The three matricesA(a), B(a), andD are

Aab5ada3db4 , ~2.17!
radient
Bab~a!5S 0 0 nsk̂x nsk̂y nsk̂z

0 0 c1k̂x22ahsc2k̂y c1k̂y22ahsc2k̂x c1k̂z

rs
21~ k̂xps,n2 k̂yahs,n! rs

21~ k̂xps,T2 k̂yahs,T! 0 0 0

rs
21~ k̂yps,n2 k̂xahs,n! rs

21~ k̂yps,T2 k̂xahs,T! 0 0 0

rs
21k̂zps,n rs

21k̂zps,T 0 0 0

D ,

~2.18!

Dab5rs
21S 0 0 0 0 0

0 rsc2ks 0 0 0

0 0 ssk̂x
21hs ssk̂xk̂y ssk̂xk̂z

0 0 ssk̂yk̂x ssk̂y
21hs ssk̂yk̂z

0 0 ssk̂zk̂x ssk̂zk̂y ssk̂z
21hs

D , ~2.19!

wherek̂5 k̂(t) is the unit vector alongk(t), c1[(gs21)as
21 , c2[(mnsCv,s)

21, andss5
1
3 hs1hs8 .

To simplify the analysis attention is restricted here and below to spatial perturbations only along the velocity g
direction, i.e.,k5kŷ. In this case the linear hydrodynamic equations have time-independent coefficients@i.e., k(t)5k#,

] td ỹa1Fab~k,a!d ỹb50, Fab~k,a!5„A~a!2 ikB~a!1k2D…ab ~2.20!

and the matricesB(a) andD simplify to
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Bab~a!5S 0 0 0 ns 0

0 0 22ahsc2 c1 0

2rs
21ahs,n 2rs

21ahs,T 0 0 0

rs
21ps,n rs

21ps,T 0 0 0

0 0 0 0 0

D , ~2.21!

Dab5S 0 0 0 0 0

0 c2ks 0 0 0

0 0 rs
21hs 0 0

0 0 0 rs
21~ 4

3 hs1hs8! 0

0 0 0 0 rs
21hs

D . ~2.22!

Equation~2.20! can be solved by Laplace transformation,

d ŷa~k,z!5E
0

`

dte2tzd ỹa~k,t !, ~2.23!

with the result

d ŷa~k,z!5@zI1F~k,a!#ab
21d ỹb~k,t50!. ~2.24!

The eigenvaluesv ( i )(k,a) of the matrixF(k,a) define the five simple hydrodynamic poles atz52v ( i )(k,a). The resulting
five exponentials in time represent the hydrodynamic modes for relaxation of the perturbations around uniform shear
a50 ~perturbations of equilibrium! they are the two sound modes, a heat mode, and a twofold degenerate shear mo
finite shear rate, the modes are more complicated and have qualitative differences. To illustrate, consider first the cask→0
at fixed, finitea,

v~ i !~k,a!→S b1k2

2 1
2 ~11 i) !b2~a!k2/31 1

2 ~12 i) !b3~a!k4/31b4k2

2 1
2 ~12 i) !b2~a!k2/31 1

2 ~11 i) !b3~a!k4/31b4k2

b2~a!k2/31b3~a!k4/31b4k2

~hs /rs!k
2

D . ~2.25!
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The coefficients in these expressions are real,

b15~hs,Tps,n2hs,nps,T!/mps,T ,

b2~a!5~2a2hsps,T /rs
2Cv,s!

1/3,

b3~a!5@2a2hshs,T~rsCv,s!
211nsps,n

1~gs21!as
21ps,T#/3rsb2~a!,

b45 1
3 @2b11ks~rsCv,s!

211rs
21~2hs1ss!#.

~2.26!

There are two diffusive modes,;k2, but the other modes ar
nonanalytic aboutk50 and represent more complex spat
dependence. This behavior can be traced to the fact tha
matrix A(a)2 ikB(a) is not normal and cannot be diagona
ized. Thus, at fixedaÞ0 there is a crossover in the transfo
mation ofFab(k,a) from a normal diagonal form to a Jorda
form at smallk. This is reflected in the eigenvalues if the
are expanded ink at fixeda, as above. For similar reason
l
he

care must be used in representingd ỹa(k,t) as an expansion
in the hydrodynamic modes with constant coefficients, sin
at small wave vectors there is a crossover to a mode ex
sion whose coefficients have algebraic time dependence

The two propagating modes in Eq.~2.25! are unstable,
since b2(a).0. The above Navier-Stokes analysis appl
for small but finite shear rate, and smallk ~long wavelength!.
The expansion ink verifies that the asymptotic long wave
length modes are always unstable. At larger values ofk the
modes are again stable, as follows from an exact evalua
of the eigenvalues. There is a critical wave vector,kc(a),
such that fork.kc(a) the modes are stable whereas they
unstable otherwise. These qualitative results apply with
restriction to the atomic force law, density, or temperatu
Figure 1 showskc(a) as a function ofa for the special case
of hard spheres at three densities,n* 5ns350.0, 0.2, and
0.4 ~k anda measured in units of the inverse mean free p
and mean free time for the hard sphere Boltzmann equati!.
The thermodynamic properties are calculated using
Percus-Yevick approximation, while the transport coe
cients are calculated from the Enskog kinetic theory.
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The instability is due to three matrix elements,B42, B23,
and A34, and is therefore present at orderk. The density
perturbation is constant to this order and we choosedn50 to
simplify the discussion. The relevant variables are then
temperature perturbationdT, the longitudinal velocity per-
turbation dUy , and the transverse velocity perturbatio
dUx , which to this order obey the equations

] tdT1~gs21!as
21]ydUy22ahs~rsCv,s!

21]ydUx50,
~2.27!

] tdUx1adUy2rs
21ahs,T]ydT50,

] tdUy1rs
21ps,T]ydT50. ~2.28!

The first equation has a coupling to the transverse velo
field due to the reference shear flow; the second equa
provides a feedback to the temperature equation through
same shear flow. These couplings alone would lead simp
a renormalization of the sound velocity. However, the sh
flow also couples the transverse field to the longitudinal fi
for an additional feedback mechanism to the tempera
equation through the pressure gradient. This second me
nism is responsible for the instability. For very long wav
lengths the above equations can be simplified to give

] t
3dT;~2a2hsps,T /rs

2Cv,s!]y
2dT, ~2.29!

which exhibits the unstable modes of Eq.~2.25!.
It is natural to inquire to what extent the instability is du

to the presence of a thermostat and the choice~2.14!. The
thermostat is essential for the existence of a stationary re
ence state about which the linearization occurs. The form
the linear hydrodynamic equations depends on both the t
mostat evaluated at the reference state and possible pert
tions of the thermostat for deviations from that state. T

FIG. 1. Critical lines for stability for hard spheres atn* 50.0
~solid curve!, n* 50.2 ~dashed curve!, andn* 50.4 ~dashed-dotted
curve! with the local thermostat~2.14! or, equivalently,~A3!. The
wave numberk and the shear ratea are measured in units of th
inverse mean free path and mean free time, respectively, for
hard sphere Boltzmann equation. The regions above~below! the
lines are stable~unstable!.
e

ty
n
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e

former is the same for all thermostats and is fixed by
reference state. The latter can be chosen within some ph
cal constraints and the effects of different choices are
cussed in the Appendix. One extreme is Eq.~2.14!, where
changes in the thermostat due to perturbations are adjust
cancel all viscous heating due to local density and temp
ture perturbations. An opposite extreme is one for wh
there is no change in the thermostat, allowing maximum
fects of the perturbations on viscous heating. The linear
drodynamic equations for this case are described briefly
the Appendix and again are found to be unstable. Figur
for the critical line of stability is qualitatively the same a
Fig. 1, although with some quantitative differences. As d
scribed in the Appendix, there are some qualitative chan
in the nature of the modes as well.

III. MONTE CARLO SIMULATION

The hydrodynamic description can be derived from
more fundamental level of kinetic theory. In principle, th
also allows derivation of hydrodynamic equations witho
the restriction of the Navier-Stokes approximation to sm
shear rates. A model kinetic theory for the practical calcu
tion of such generalized hydrodynamic equations is given
Ref. @10#. The resulting equations are limited to long wav
lengths, as in the Navier-Stokes case, but the reference
of uniform shear flow can have a large shear rate. An an
sis of the hydrodynamic modes shows that there is a crit
wave vector similar to that of Fig. 1. It is possible to test th
hydrodynamic description by a direct simulation of the mo
fundamental solution to the kinetic equation. For practi
reasons the simulation is more efficient at larger wave v
tors and shear rates than can be justified by Navier-Sto
hydrodynamics, and this is the primary reason for consid
ing the more complex generalized hydrodynamics.

The kinetic equation is a single relaxation tim
Bhatnagar-Gross-Krook~BGK! equation@13# given by

S ]

]t
1v•“ r1“vm21

•FextD f ~r ,v,t !

52n@ f ~r ,v,t !2 f l ~r ,v,t !#. ~3.1!

HereFext is the external force representing the thermostat,f l

is the local equilibrium distribution, andn is an average col-
lision rate. The exact stationary solution for uniform she
flow in the presence of a thermostat has been studied
detail@14#. A variant of the Chapman-Enskog method can
used to study normal solutions for states near uniform sh
flow, and to obtain the corresponding hydrodynamic eq
tions for small perturbations relative to this state. The co
plete details of this solution and the hydrodynamic modes
a function of the shear rate can be found in@10#. To solve the
kinetic equation~3.1! beyond the small-perturbation regim
we have used an adaptation of the Bird direct simulat
method@15#, originally devised to solve the Boltzmann equ
tion. Our Monte Carlo technique, first applied in Ref.@9#, is
composed of two parts at each discrete time step:
streaming and collision. The volume of the system is divid
into cells of dimension smaller than the mean free path,
N particles are introduced att50 with positions and veloci-
ties sampled statistically from a specified initial distributio

he
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57 551STABILITY OF UNIFORM SHEAR FLOW
function. The distribution of particles is calculated att
5Dt, with Dt much smaller than the mean free time,
follows. First the positions and velocities of the particles a
displaced by$Drm5vmDt, Dvm5m21Fm

extDt%. Next the ve-
locity of each particle m is replaced with probability
n(nm ,Tm)Dt by a random velocity sampled from the loc
equilibrium distribution,f l ($nm ,Tm ,Um%;v). Herenm , Tm ,
andUm are the density, temperature, and flow velocity in t
cell containing particlem. In this collision stage, strict con
servation of momentum and energy may be violated due
statistical fluctuations. To compensate for this artificial
fect, the velocities of the particles in each cell are con
niently displaced and rescaled. The whole process is t
repeated for each subsequent time step. In this way, the
particle distribution functionf (r ,v,t) ~coarse grained ove
the cells! is determined, from which the hydrodynamic field
can be computed directly as averages.

In our simulations we have considered a system of s
L52p/k, with k50.1(v0t0)21, along they direction at a
shear ratea50.5t0

21. Heret051/n(ns) is the mean free time
with n}n ~Maxwell molecules! andv05(2kBTs /m)1/2 is the
thermal velocity. In the remainder of this section, we ta
t051, v051, Ts51, andns51. Since we are interested i
solutions to Eq.~3.1! with gradients along they direction
only, the system is split into parallel layers of widthDL, so
that only they coordinates of the particles need to be stor
Lees-Edwards boundary conditions are used to drive
shear flow@1#. These are simple periodic boundary con
tions on both the position and velocity variables in the lo
Lagrangian frame aty56L/2. Both local and global ther
mostats have been studied. The local thermostat is the s
as that of Sec. II except that the pressure tensor is no lo
limited to its Navier-Stokes form. In addition, two glob
thermostats are considered for more efficient implementa
of the simulation. These are described in the Appendix. T
analysis there and the results of the simulation show that
instability is not sensitive to the choice of thermostat. Co
sequently, only the results using the global thermostats
presented here. Starting from a distribution correspondin
uniform shear flow@6#, the initial condition has been pre
pared by displacing and rescaling velocities so that

dUx,y~y,0!52dŨx,y~0!sin ky,

dUz~y,0!5dn~y,0!5dT~y,0!50, ~3.2!

with dŨy(0)50.1 anddŨx(0)520.03. The technical pa
rameters of the simulations areN5628 000 particles, a time
step Dt50.02, and a cell widthDL50.05. The data have
been averaged over 10 different realizations in the sim
tions of Figs. 2, 4, 6, and 7, and over 2 realizations in th
of Figs. 3 and 5.

First we consider the short time dependence at a fi
position y52L/4. Figure 2 showsdŨx(t)5dUx(2L/4,t)
anddŨy(t)5dUy(2L/4,t). The dashed lines are the resu
from the hydrodynamic analysis of the BGK model near u
form shear flow@10#. The good agreement up tot'50 shows
that the instability is not just a consequence of the assu
tions behind the hydrodynamic description. This agreem
along with that of Fig. 2 of Ref.@9#, also provides an impor
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tant test of the validity of the Monte Carlo method. Th
subsequent differences between simulation and theory
due to the fact that the latter is limited to small deviatio
from uniform shear flow. For longer times we find both lar
amplitudes fordya and large deviations of the distributio
function from that of the unperturbed state.

To investigate the asymptotic state of the system, we h
performed the simulations for much longer times. Figure
shows dŨx(t) and T̃(t)5T(2L/4,t) for time up to t
52000. Both the velocity and the temperature oscillate
time and are modulated by a slowly varying amplitude re
tive to their asymptotic average values. The thermostat fo
used in the simulations of Fig. 3 is the same spatially c
stant force as for the reference state, so that it does not
trol the temperature, either local or globally, in the perturb
state. This allows heating even by homogeneous pertu
tions of the reference state. Thus as the spatial perturbat
approach uniformity they approach a time dependent ho
geneous state, and this is why the temperature in Fig. 3
the oscillatory modulations at long times~as can be predicted
from the hydrodynamics at homogeneity!. This latter effect
is easily eliminated by allowing spatially homogeneous p
turbations of the thermostat adjusted to maintain a cons
average temperature even in the nonequilibrium state
done below. The maximum valueT̃'9 corresponds tok
'0.3, which is close to the valuekc(a) at which the uniform
shear flow witha50.5 would become marginally stable@9#.
Thus the initial dynamics tends toward stabilization but do

FIG. 2. Plot of dŨx(t)[Ux(2L/4,t)2Us,x(2L/4) and

dŨy(t)[Uy(2L/4,t). The solid lines are Monte Carlo simulatio
results and the dashed lines correspond to the analysis of Ref.@10#,
both for the BGK kinetic model. The same spatially constant th
mostat as for the reference state has been used.
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not ever cross over into the stable domain. Consequently
asymptotic dynamics is not simply that of stationary unifo
shear flow at a different temperature, but rather a qu
stationary state with different spatial structure.

As said above, the thermostat used in the above sim
tions allows a global change in the average temperat
which is responsible for the amplitude modulations at lo
times. In order to have a more controlled asymptotic st
we have considered a variation of this thermostat that m
tains the average temperature constant~see the Appendix!.
The quantitiesdŨy(t) and ñ(t)5n(2L/4,t) are plotted in
Fig. 4. After a transient period of lengtht'100, a stable
oscillatory behavior of the velocity appears with a periodt

.54. The shape ofd ỹa over one cycle is shown in Fig. 5
Here t85t2t tr , where t tr5463.4, and the curves are ave
ages over 20 successive cycles. The value oft tr has been
chosen to assure that the transient time is over and also
the criterion thatdŨx50 at t850. Inspection of the results
shows several regularities. First, the following symmetry
lation appears:

d ỹa~ t81t/2!56d ỹa~ t8!, ~3.3!

where the minus sign applies to the velocity and the plus s
applies to the density and the temperature. Next, at timet8
.0.36t,0.86t, wheredŨx have extrema,dŨy , d T̃, andd ñ
seem to have nodes. Note also that the vectordŨ rotates
anticlockwise and that most of the timed T̃.0 is correlated
to d ñ.0 andd T̃,0 is correlated tod ñ,0.

FIG. 3. Plot ofdŨx(t) and T̃(t)[T(2L/4,t), as obtained from
Monte Carlo simulations. The thermostat is the same as in Fig
he
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The above results indicate the wave character of
asymptotic state. To confirm this point, we have analyzed
profiles of the hydrodynamic quantities at relevant tim
The results are consistent with two independent invaria
relations:

dya~y,t8!5dya~y1L/2,t81t/2!, ~3.4!

dya~y,t8!56dya~2y,t8!. ~3.5!

Their combination yieldsdya(y,t8)56dya(2y2L/2,t8
1t/2), which implies Eq.~3.3!. Figure 6 shows the spatia
variation of dn(y,t8) and dT(y,t8) at t850, 0.14t, 0.25t,
0.36t, and 0.5t. Not shown are times 0.5t,t8,t because
they can be reproduced by use of the relation~3.4!. As ob-
served in Fig. 5 for the special pointy52L/4 it is seen that
a high ~low! temperature is generally correlated to a hi
~low! density. The spatial distribution of the temperature
highly nonuniform even though the thermostat maintain
constant average temperature. Figure 7 shows a vector
resentation of the components ofdU throughout the system
at the values oft8. As anticipated from Fig. 5,dU rotates
anticlockwise throughout the system. The layersy50,
6L/2 are always nodes ofdU and extrema ofdT and dn.
The pattern indicated by Figs. 6 and 7 can be described
periodic standing wave represented by the superpositio
two symmetrical waves traveling in opposite direction
While a shock-wave-like behavior of the density and te
perature in Fig. 6 is quite apparent this is less evident in

.
FIG. 4. Plot ofdŨy(t) and ñ(t)[n(2L/4,t), as obtained from

Monte Carlo simulations. A global thermostat that maintains
average temperature constant has been used.
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57 553STABILITY OF UNIFORM SHEAR FLOW
case of the velocity components. A more detailed analys
needed before giving a more solid interpretation of
asymptotic state.

In summary, for initial values ofk anda in the predicted
unstable domain small perturbations of the hydrodyna
fields grow according to the linear hydrodynamic equatio
for t,50. Subsequently, nonlinear effects invalidate this t
oretical analysis. The simulations show a transient period
to about t'100, after which a quasistationary state is o
served for 100,t<2000. In this asymptotic state the vect
quantities oscillate at a period approximately twice that
the scalar fields. The oscillations are spatially nonuniform
all fields considered.

FIG. 5. Plot ofdŨx(t8), dŨy(t8), T̃(t8), and ñ(t8) over one
cycle t.54, as obtained from Monte Carlo simulations. Heret8
5t2 j t tr , where t tr5463.4, and the results are averages ovej
51,...,20. Thethermostat is the same as in Fig. 4.
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IV. DISCUSSION

Uniform shear flow has been a prototype state for
study of fluids far from equilibrium, using both theoretic
and computer simulation methods. Until recently, it has be
assumed that this state is stable except at high densities
short wavelengths. The results reported here and in@9,10#
show that this simple macroscopic state is unstable at s
ciently large wavelengths. Previous studies via simulat
have not seen this instability due to finite system sizes. Ho
ever, theoretical analysis at the hydrodynamic level clea
shows the mechanism and parameter space for this inst
ity. In the present work this theoretical analysis is tested b
qualitatively and quantitatively. At the qualitative level, bo
Monte Carlo simulations of a kinetic theory description a
molecular dynamics simulation of the Newtonian dynam
show clearly that this flow is unstable at long wavelengt
The Monte Carlo simulation also confirms quantitatively t

FIG. 6. T(y,t8) andn(y,t8) as a function ofy for ~from top to
bottom! t850, 0.14t, 0.25t, 0.36t, and 0.5t, as obtained from
Monte Carlo simulations. The thermostat is the same as in Fig

FIG. 7. Vector plot representingdUx(y,t8) and dUy(y,t8) at
t850, 0.14t, 0.25t, 0.3t, and 0.5t, as obtained from Monte Carlo
simulations. The thermostat is the same as in Fig. 4.
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554 57MONTANERO, SANTOS, LEE, DUFTY, AND LUTSKO
predictions of the theory on the time scale for which t
linear analysis is valid. At longer times the Monte Car
simulation shows clearly that the asymptotic state is spati
nonuniform with a periodic variation in time. A precise th
oretical description of this final state has not been develo
at this time.

The analysis here has been limited to spatial perturbat
along the gradient of the velocity in the stationary sta
More general perturbations will lead to more complex flo
due to the coupling to the convective flow. A theoretic
analysis of this more general case is in progress but is
nificantly more complex. Due to the fact that thek50 matrix
of the hydrodynamic equations is nondiagonalizable~non-
normal!, the corresponding eigenvalues do not fix a uniq
eigenspace. The resulting dynamics is not simply a supe
sition of decaying or growing modes, but rather includes
well algebraic growth. The resulting analysis of conditio
for instability is more complex and will be reported els
where.

The most extensive prior studies of uniform shear fl
have been for dense systems via molecular dynamics~MD!
simulations. No signature of the instability discussed h
has been noted in these previous results and this raise
question as to whether the effects discussed here are art
of the assumptions made in deriving them. There are
significant differences between the theory and simulat
discussed above and the detailed implementation of ea
MD simulations. The first, and perhaps most important,
been the consideration of small system sizes relative to
wavelengths necessary to see the instability. Typically, s
tem size is determined by the simulation time such tha
sound wave will not traverse the system and generate co
lations. At high densities this has led to consideration
system sizes small compared to the critical wave vector
instability. A second difference from the discussion above
the method for imposing a thermostat. In hard-sphere M
simulations it is efficient to impose the temperature con
by a global rescaling of the velocities only after as many
100 collisions. However, at the shear rates considered
implies significant heating between applications of the th
mostat and the temperature is more like a sawtooth in t
rather than constant. Thus, given that the choice of ther
stat can alter the critical wave vector by a factor of two~see
the Appendix!, it is difficult to give a direct theoretical cor
respondence to the MD simulation results. Even recent la
scale simulations@16# may not be in the unstable regime fo
the choice of potential and shear rates used.

To demonstrate the existence of the instability using M
simulations we have performed exploratory simulations o
system of hard spheres under conditions correspondin
one of the analyses presented in the Appendix below
order to be well within the predicted unstable region,
have used a rectangular unit cell with one side expanded
times larger than the other two~1620 hard spheres of diam
eter s at a density ofns350.5 in a cell of size 6s390s
36s!. The Lees-Edwards boundary conditions are app
on thex,z surfaces so that the velocity gradient is along
larger dimension of the system, allowing study of mu
longer wavelengths in the direction of the gradient than h
usually been considered~the equivalent cubic system woul
contain 364 500 particles!. A second difference from previ
ly
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ous hard-sphere simulations is a more frequent application
the velocity scaling to control the temperature and bet
represent continuous cooling. In our simulations the velo
ties are rescaled whenever the temperature differs by
from its set value. The simulation cell is divided into a fixe
number of subcells, the local velocity field in each subcell
calculated and the excess kinetic energy computed relativ
the local velocity field. The velocities of the particles in eac
subcell are then rescaled so that the total excess kinetic
ergy of each subcell is equal to the set value. The amoun
rescaling is determined locally, and thus corresponds to
local thermostat,l(r ,t)5l„n(r ,t),T(r ,t)…, as discussed in
the Appendix. Our implementation follows Hess@4# in that
we assume uniformity of all quantities in the directions pe
pendicular to the velocity gradient so that the subcells a
thin slabs and the only spatial variations are in the directi
of the velocity gradient, as in the Monte Carlo simulation
Due to the large number of particles in the simulations, t
length of the simulations is relatively modest,t'53105 col-
lisions. The shear rate was fixed ata51.77AkBT/ms2 and
an initial perturbation withky52p/Ly was monitored. Our
theoretical estimates indicate this should correspond to c
ditions of instability. Figure 8 shows thex component of the
velocity field growing steadily throughout the simulation
clearly indicating the instability. Conversely, perturbation
with a wavelength one-quarter of this value appear to
stable as expected. Similar results are observed for the d
sity field as well. Our primary conclusion from these prelim
nary results is that the instability can be observed and stud
by MD simulations if larger system sizes are considered a
more care is taken with application of the thermostat.
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FIG. 8. The long-wavelength component of the velocity in th
flow direction as a function of time from molecular dynamics sim
lation. Units arem5s5kBT51.
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57 555STABILITY OF UNIFORM SHEAR FLOW
APPENDIX: ROLE OF THE THERMOSTAT

The analysis of Sec. II made use of a specific choice
the thermostat. Other choices are possible and more co
nient for computer simulation. In this work we use two d
ferent types of thermostats, both obtained from an exte
force at the microscopic level of the form

Fext~r ,t !52ml„n~r ,t !,T~r ,t !…@v2U~r ,t !#. ~A1!

The corresponding source termw in the temperature equa
tion ~2.2! is

w„n~r ,t !,T~r ,t !…522K„n~r ,t !,T~r ,t !…l„n~r ,t !,T~r ,t !…,
~A2!

where K„n(r ,t),T(r ,t)… is the kinetic energy density. Th
thermostat parameter,l„n(r ,t),T(r ,t)…, is always chosen to
ensure constant temperature in the reference statels
5l(ns ,Ts)52aPs,xy/2Ks , as follows from Eq.~2.5!. To
linear order in the deviations from the reference state
thermostat parameter therefore has the fo
l„n(r ,t),T(r ,t)…→ls1ls,ndn(r ,t)1ls,TdT(r ,t), and the
source term in temperature equation becomes

w„n~r ,t !,T~r ,t !…→22Ksls22~Kl!s,ndn~r ,t !

22~Kl!s,TdT~r ,t !, ~A3!

where the subscriptsn andT on (Kl) denote differentiation
with respect ton andT, respectively. The contributionsKs,n
andKs,T are fixed by the thermodynamics of the system,
the coefficientsls,n andls,T are free parameters defining
class of different thermostats.

In Sec. II these parameters are chosen such thatall vis-
cous heating proportional todn(r ,t) anddT(r ,t) is compen-
sated by the source term, Eq.~2.14!. This does not imply a
constant local temperature since there is still viscous hea
due to local shear and coupling to the other hydrodyna
fields. However, it is easily verified that this thermostat ho
the average temperature for the system constant even in
perturbed state. The hydrodynamics of Sec. II was restric
to Navier-Stokes order and the simple form of Eq.~2.14! is
due to the use of Newton’s viscosity law. However, the sa
thermostat can be used outside this range with the more
eral conditionw5Pi j ] iU j . Since this thermostat has loc
changes to adjust to the perturbations of local density
temperature, we have called it a local thermostat.

Clearly, there is a range of choices forls,n andls,T lead-
ing to only partial compensation of the viscous heating.
the opposite extreme to the local thermostat is that for wh
ls,n5ls,T50. In this case the external force is the same
both the reference state and the perturbed state. This lea
a source on the right side of Eq.~2.12! representing a com
petition between the viscous heating and the thermos
Since l is a constant in this case the thermostat is ca
global. Note that althoughl is constant the source term st
has local variations due to the dependence ofK on the local
temperature and density,

w„n~r ,t !,T~r ,t !…→22Ksls22lsKs,ndn~r ,t !

22lsKs,TdT~r ,t !. ~A4!
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A peculiarity of this global thermostat is that it allows th
temperature to change even for homogeneous perturbat
Thus while the temperature in the reference state is cons
the average temperature in perturbed states changes. Thi
be seen from the homogeneous form of Eq.~2.12!. To elimi-
nate this effect a second global thermostat can be define
allowing a dependence ofl on homogeneous perturbation
i.e., l→ls1ls,nd n̄1ls,Td T̄, where d n̄ and d T̄ are the
volume averaged density and temperature. The source
in this case is

w„n~r ,t !,T~r ,t !…→22Ksls22lsKs,ndn~r ,t !

22lsKs,TdT~r ,t !22Ks@ls,nd n̄

1ls,Td T̄#. ~A5!

In Fourier representation the two global thermostats give
same hydrodynamics except for thek50 dynamics. In this
work we use three different thermostats, one local given
Eq. ~2.14.!, and the two global thermostats just described

Both theory and the Monte Carlo simulations of Sec.
indicate that the details of the perturbed dynamics depend
the thermostat used, but that the mechanism for the insta
ity is insensitive to the choice of thermostat. To illustrate th
we repeat the analysis of Sec. II using the global thermo
~A4! ~again in the Navier-Stokes limit!. There are two new
terms in the temperature equation. One is due to tempera
perturbations and leads to viscous heating even for unifo
perturbations. The second is due to density perturbations
provides a directk-independent coupling of the temperatu
and density equations~at zero shear rate the density and te
perature are only coupled indirectly via the gradients of
longitudinal velocity component and the pressure!. The ma-
tricesB(a) andD are unchanged from Sec. II, but these ne
couplings replaceA21 and A22 in Eq. ~2.17! with nonzero
values proportional toa2,

S A21~a!

A22~a! D→S 2c2~a2hs,n1wn!

2c2~a2hs,T1wT! D , ~A6!

FIG. 9. Critical lines for stability for hard spheres for the sam
densities as in Fig. 1 with the global thermostat~A4!.
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wherewn[]w(ns ,Ts)/]ns , wT[]w(ns ,Ts)/]Ts . The matrixA(a)2 ikB(a) is now diagonalizable and an expansion of t
hydrodynamic modes in powers ofk rather thank2/3 is obtained,

v~ i !~k,a!→S A22~a!1d1~a!k2

d2~a!k2

ic~a!k2@d3~a!/a22d4~a!#k2

2 ic~a!k2@d3~a!/a22d4~a!#k2

~hs /rs!k
2

D , ~A7!

with the coefficients

d1~a!5ksc21
2a2c2hshs,T1c1ps,T

rsc2~hs,Ta21wT!
1

ps,T~nshs,na21nswn12hsa
2!

rsc2~hs,Ta21wT!2 ,

d2~a!52
hs@ps,n~a2hs,T2wT!1ps,T~2a2hs,n1wn!#

m@nsps,n~a2hs,T1wT!2ps,T~a2nshs,n1nswn12hsa
2!#

,

c2~a!5
@nsps,n~a2hs,T1wT!2ps,T~a2nshs,n1nswn12hsa

2!#

rs~a2hs,T1wT!
,

d3~a!5
ps,Ta2

2rsc2~a2hs,T1wT! Fc11
~a2nshs,n1nswn12hsa

2!

a2hs,T1wT
G ,

d4~a!52
1

2
d2~a!2

a2hshs,T

rs~a2hs,T1wT!
1

2hs1ss

2rs
. ~A8!
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There are two diffusive modes, two propagating sou
modes, and a time-modulated diffusive mode. The so
modes are unstable at long wavelengths for shear rates
isfying d3(a)2a2d4(a).0. This possibility has been ex
plored in Ref.@9# for the special case of hard spheres. In th
case bothd3(a) and d4(a) are positive and the modes a
unstable for sufficiently small shear rates. The correspond
critical wave vector,kc(a), for this thermostat is determine
from the exact eigenvalues and shown in Fig. 9 for the sa
densities as in Fig. 1. The domain of instability at long wav
lengths is similar to that of Fig. 1 using the thermostatw1 .
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The thermostat of this Appendix allows greater visco
heating than that of Sec. II for states perturbed from unifo
shear flow. The hydrodynamic modes are quite different,
flecting a sensitivity to the choice of thermostat. These qu
tative differences can be traced to the mathematical dif
ences between diagonalizable and nondiagonaliza
matrices,Aab . Nevertheless, the mechanism for the instab
ity described at the end of Sec. II remains effective in bo
cases. These conclusions are not limited to the Navier-Sto
approximation, but are confirmed as well for the kine
model results described in Sec. III for larger shear rates.
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