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Recent observations of the growth of protein crystals have identified two different growth regimes.
At low supersaturation, the surface of the crystal is smooth and increasing in size due to the
nucleation of steps at defects and the subsequent growth of the steps. At high supersaturation,
nucleation occurs at many places simultaneously, the crystal surface becomes rough, and the growth
velocity increases more rapidly with increasing supersaturation than in the smooth regime. Kinetic
roughening transitions are typically assumed to be due to the vanishing of the barrier for
two-dimension nucleation on the surface of the crystal. We show here, by means of both analytic
mean-field models and kinetic Monte Carlo simulations, that a transition between different growth
modes reminiscent of kinetic roughening can also arise as a kinetic effect occurring at finite
nucleation barriers. © 2010 American Institute of Physics. �doi:10.1063/1.3294561�

I. INTRODUCTION

Crystal growth takes place at the interface of the solid
and liquid phases and is determined by the structure of the
crystal surface, the temperature, and the supersaturation.
Each growth unit is incorporated into the crystal when the
energy barrier for absorption is overcome by the unit’s ki-
netic energy. For rough surfaces, such as K and S faces, the
density of privileged sites, i.e., kinks, is high and growth is
fast. In this work, however, we consider initially flat faces
such as the F faces. For these surfaces, at low supersaturation
values, kink sites are scarce and the growth process is slow.
Growth units encounter the kinks directly from solution, or
via a random walk due to two-dimensional �2D� diffusion on
the surface. New steps are either generated through spiral
dislocations or 2D nucleation.1–6 The temperature is a deter-
mining factor. It is well known that there exists a critical
value TR where the step edge free energy vanishes and the
crystal surface becomes rough at the growth unit scale. This
is a thermodynamic phase transition, known as thermal
roughening.7–12

At constant temperature, the driving force is the chemi-
cal potential difference or supersaturation and an increase in
the driving force will translate into a decrease in critical
nucleus size. Since for temperatures less than TR the step
edge’s free energy is greater than zero, according to the
Gibbs–Thomson relation,13,14 an activation barrier for the
formation of the critical two-dimensional nucleus exists and
with it, a critical nucleus size larger than the crystal’s indi-
vidual building blocks. The size of this 2D-critical nucleus is

inversely proportional to the temperature and the
supersaturation.1

Recently, it has been reported for protein crystallization
systems15,16 that for temperatures lower than TR there exists a
critical supersaturation for which the size of the critical 2D
nucleus is reduced to the order of one growth unit and the
activation barrier for two-dimensional nucleation essentially
vanishes. Due to a large step density and a very small 2D
critical nucleus at elevated supersaturations, the surface be-
comes rough and offers many favorable sites almost uni-
formly distributed across the surface. Consequently, arriving
molecules can be incorporated quasi at any site. This transi-
tion from a slow, layer-by-layer growth regime to a fast con-
tinuous growth regime at high driving forces is referred to as
kinetic roughening transition.17–22

Kinetic roughening for the case of crystallization from
solution has been observed for many small molecules, i.e.,
SiO2, Al2O3, ZnO, and ZnS,23,24 n-paraffins25,26 and many
others. For the case of macromolecules such as in protein
crystallization, kinetic data of continuous growth have only
been presented for lysozyme.15,27,28 Very recently, quantita-
tive data for both the classical layer-by-layer growth mecha-
nism and the kinetic roughening regime for the crystalliza-
tion of glucose isomerase from Streptomyces rubiginosus
have been presented.16

In this paper we show that kinetic rougheninglike tran-
sitions in the presence of a finite nucleation barrier can occur
owing to kinetic mechanisms still rendering possible the
transition from slow layer-by-layer growth regime �low su-
persaturations� to a fast continuous growth regime �high su-
persaturations�. The general scheme used views the process
of crystal growth at constant temperature driven by the
difference in chemical potential of the solution around thea�Electronic mail: jlutsko@ulb.ac.be. URL: http://www.lutsko.com.
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crystal surface and the reservoir of the surrounding liquid
phase. The local environment around the surface incorpo-
rates the barriers, kinks, and dislocations while relevant ki-
netic processes such as absorption, surface diffusion, and

nucleation contribute to the growth. A mean-field model and
a Monte Carlo simulation are proposed and serve as an illus-
trative generic explanation of the observed data from protein
crystallization.16

Large reservoir � Local environment
around surface

�
desorption

Surface: absorption, surface diffusion,
nucleation, growth

In Sec. II a minimal mean-field model is developed in-
corporating cluster formation and possessing the two main
asymptotic regimes, exhibiting the transition from low to
high supersaturation growth. In Sec. III we investigate an
extension of a “solid-on-solid” �SOS� Monte Carlo simula-
tion linked to, but more general than, the mean-field model,
and accounting for kinetic roughening in the presence of
finite nucleation barrier and dislocations. The main conclu-
sions are summarized in Sec. IV.

II. MEAN-FIELD MODEL

Our mean-field model of crystal growth is based on a
generalization of the Burton–Cabrera–Frank model for epi-
taxial growth7,29,30 and is also motivated by theoretical work
hinting at a competition between surface aggregation and the
formation of clusters by direct incorporation of material from
solution.31 Let X0 and X denote, respectively, molecules in
the bulk solution far from the growing crystal and in solution
near the crystal surface; and Y, CN the concentration of mol-
ecules adsorbed onto the surface but not incorporated into
the solid and of clusters constituting islands of solid material
of size N. There are four basic physical processes that we
consider. First is the diffusion of molecules between the bulk
solution and the solution near the growing crystal, X0�X.
Distinguishing between the bulk solution and that near the
surface allows us to model the formation of a depletion layer
as molecules are adsorbed onto the surface and incorporated
into the solid. The second process is that of adsorption from
the solution onto the surface, X�Y. We consider two path-
ways for the formation of an island of size N: adsorption and
aggregation, X+ �N−1�Y �CN, and aggregation alone,
NY �CN. Denoting the concentrations of X and X0 by x and
x0, respectively, the surface concentration of adsorbates and
N islands by y and cn, and assigning rate constants to each
process gives the rate equations

dx

dt
= ax0 + k0�y − �a� + k0�x + k1�cN − k1xyN−1,

dy

dt
= k0x − k0�y − �N − 1�k1xyN−1 − Nk2yN

+ ��N − 1�k1� + Nk2��cN, �1�

dcN

dt
= k1xyN−1 + k2yN − k1�cN − k2�cN.

The rate constants a and a� control the rate of exchange
between the bulk and the solution near the crystal surface �in
effect, this represents a zero-dimensional model for spatial
diffusion�. The constants k0 and k0� control the rates of ad-
sorption and desorption. The remaining rate constants pertain
to the rates of nucleation and dissolution of clusters. Note
that the probability to bring together N molecules is taken to
be proportional to the Nth power of the concentration: this is
equivalent to assuming the rate goes like e−�N�W where �W
is the work of formation per molecule of a cluster of size N
and using the low-density approximation that the free energy
of a molecule in solution is proportional to the log of the
concentration.

Notice that in the perspective of Eqs. �1� growth arises
from the fact that the number of clusters cN �N given� in-
creases until the whole surface is covered. Thus, the total
solid mass is M =NcN and the growth velocity is dM /dt
=dNcN /dt. �In this zero-dimensional model, there is no dis-
tinction between growth within a layer and growth perpen-
dicular to the surface.� In actual fact, in addition to this
mechanism one expects that the formation of bigger clusters
from smaller ones through, e.g., the process CN+Y →CN+1

should also contribute to growth. In this section, we will
limit ourselves to the model of Eqs. �1�, which will be used
as a reference for sorting out the different growth regimes in
a transparent manner and as a basis for comparison with the
Monte Carlo simulations. This approximation is expected to
be valid for high supersaturations where step growth is less
important. Finally, we only consider the process in which
one molecule is directly incorporated from the solution since,
for the conditions considered here, we expect this to be
dominant over processes involving two or more molecules
coming from solution.

A. A simplified model

To illustrate the basic mechanism leading to a change in
growth regimes, we first ignore depletion of the protein in
solution near the interface so that a=a�=0 and x=x0 and
neglect all dissolution processes so that k0�=k1�=k2�=0. This
limit should describe to a good approximation crystals grow-
ing in the kinetically limited regime. What remains is then
the simplified dynamics,

035102-2 Lutsko et al. J. Chem. Phys. 132, 035102 �2010�

Downloaded 26 Apr 2010 to 164.15.129.45. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



dy

dt
= k0x − �N − 1�k1xyN−1 − Nk2yN,

�2�
dcN

dt
= k1xyN−1 + k2yN.

Since there is no detailed balance, there is no equilibrium
state. However, a steady state where dy /dt=0 exists, imply-
ing a constant growth velocity, N�dcN /dt�=v. The concentra-
tion of adsorbed molecules is then determined by

0 = k0x − �N − 1�k1xyN−1 − Nk2yN �3�

and the velocity is

v = Nk1xyN−1 + Nk2yN. �4�

When the concentration of protein in solution is small com-
pared to that adsorbed on the surface, x�y, one finds

y = � k0x

Nk2
�1/N

+ . . . ,

�5�
v = k0x + . . .

while the reverse circumstance, x�y, gives

y = � k0

�N − 1�k1
�1/�N−1�

+ . . . v =
N

N − 1
k0x + . . . . �6�

There is therefore a crossover from small x behavior, where
the aggregation process, NY �CN, dominates with velocity
v=k0x to the large x behavior where the x+ �N−1�Y �CN

process dominates with velocity v= �N / �N−1��k0x. Since
this transition occurs in the normal growth regime—below
the usual roughening transition—the growth rates are, in
these limits, linear functions of the concentration, as ex-
pected. Small and medium sized clusters are those contribut-
ing the most in the switching, since for large N the growth
velocities of the two regimes become practically indistin-
guishable. As we will discuss elsewhere, to get a more de-
tailed sense of the interplay between these mechanisms, a
simple model can be formulated for which numerically exact
results can be obtained using the theory of finite Markov
processes.32

B. Full model

In the simplified model, all dissolution processes were
neglected. Experimental investigations33,34 have shown,
however, that this is not valid for protein crystals growing at
low driving forces. Here, we therefore incorporate desorption
and dissolution processes in the full model. Including the
desorption of surface molecules, k0��0, does not change the
picture dramatically: the small x behavior is no longer linear
but there is still a crossover between one well-defined growth
mode at small x to another, faster mode at large x as in the
simple model. Including all of the evaporation processes,
k1,2� �0, however, does change the picture significantly. First,
detailed balance defines an equilibrium state at some finite
value of x0. For bulk concentrations above this value, growth
occurs but it will eventually end when a steady �equilibrium�
state is reached. In between, a quasisteady growth regime
occurs during which a growth velocity can be defined. De-
tailed numerical solutions of the model again show a cross-
over in the growth velocity as the bulk concentration in-
creases. The requirement of detailed balance at equilibrium,
i.e., that the forward rates and backward rates of all pro-
cesses are equal, gives

ax0 = a�x�,

k0x� = k0�y
�,

�7�
k1�cN

� = k1x�y�N−1,

k2y�N = k2�cN
� ,

where x� is the equilibrium value of x, etc. Given a value for
the concentration in the bulk solution, these relations deter-
mine the equilibrium values of all of the other quantities as
well as imposing the consistency relation

k0�k1k2� = k0k1�k2. �8�

Supersaturation at the surface is defined as log�x /x��. To il-
lustrate the general behavior of this model, we have solved
for the time-dependence of the various quantities for the case
that a=a�=0.04k0, k1=0.02k0, k1�=k2�=0.004k0, k0�=0.5k0,
k2=0.01k0, N=2 with initial conditions x0�0�=1, and
x�0�=y�0�=c�0�=0. Here the original time t is normalized to
k0t. The value of k0� reflects the idea that once adsorbed, a
molecule spends on average a long time on the surface be-
fore being desorbed back to the bulk. The choice k2�k1

amounts to assuming that the activation barrier for aggrega-
tion alone is larger than that for adsorption and aggregation.
Aside from these assumptions and the physical requirements
that the rates at which molecules join a cluster, k1 and k2, are
greater than the rates for the reverse processes and the de-
tailed balance condition, Eq. �8�, these values are somewhat
flexible. Given an initially flat surface, cN�0�=0, islands will
form causing the mass of the surface to increase until, at long
times, equilibrium is reached. At intermediate times, a more-
or-less steady growth regime is reached, see Fig. 1, corre-
sponding to a plateau in the growth velocity, dcN /dt, which
defines a quasisteady state growth velocity as shown in
Fig. 2. Taking the maximum growth velocity as a measure of

FIG. 1. Time-dependence of the quantities x�t�, y�t�, and cN�t� as results
from a numerical solution of the full model, Eqs. �1�, with the parameters
given in the text.
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the typical velocity at intermediate times, one again finds a
crossover between small x and large x regimes as illustrated
in Fig. 3.

III. ONE-DIMENSIONAL KINETIC MONTE CARLO
MODEL

In order to study both the possibility of multiple growth
regimes without vanishing nucleation barrier and the rough-
ening transition, we have performed kinetic Monte Carlo
simulations of the growth of a simple, one-dimensional sur-
face in the spirit of the SOS model.35 The system consists of
a set of growth sites arranged as an one-dimensional lattice.
There are N sites, each characterized by a height hi where
i=0, . . . ,N−1. Periodic boundaries are used so that formally,
one has hN=h0. The idea is that molecules randomly land on
the surface at some specified rate �hit representing the diffu-
sion of molecules onto the surface. Once on the surface, a
molecule attempts to leave the surface at a rate �evap. Physi-
cally, �hit will be determined by the concentration of the
molecules in solution and the rate at which they move while
�evap is a measure of how fast a molecule makes an attempt
to leave the surface.

Nucleation is anomalous in one dimension due to the
fact that the “surface area” of a cluster does not depend on its
size. We therefore introduce a rule designed to capture the
most important feature of surface nucleation which is the
existence of a critical cluster size. Specifically, molecules are
not allowed to leave the surface if they are part of a cluster
that is of a specified critical size or larger. The critical size nc

is a parameter. Molecule j is ”part of a cluster” of size n if

there are n contiguous sites, including site j, with heights the
same as or greater than hj. Thus, small clusters can form
spontaneously and dissociate but a cluster at or above the
critical size is stable.

A time step dt=1 / ��hit+�evap� is defined and the dynam-
ics of the kinetic Monte Carlo algorithm are as follows:

�1� At time t the system has some configuration of
heights and total mass M�t�=	i=0

N hi and roughness
R�t�= �1 /N�	i=0

N−1
hi−hi−1
. Roughness could alterna-
tively be characterized by the variance of the heights,
the correlation length, …

�2� The following is performed N times:

�a� Choose a random site, j.
�b� Choose a random number u� �0,1� and set hj→hj

+1 if u��hitdt.
�c� If the height is not increased �this happens with

probability 1−�hitdt=�evapdt�, then remove a mol-
ecule, hj→hj −1 if site j is not part of a supercritical
cluster.

�3� Set t→ t+dt.
�4� Return to step 1 until the desired number of cycles is

completed.

As it stands, there are only two meaningful parameters:
the ratio of the two rates, �hit /�evap and the size of the critical
cluster, nc. Since supercritical clusters are absolutely stable
there is no equilibrium state: clusters form no matter what
value the parameters are given, as in the simplified form of
the mean-field model discussed above. The growth rate is
calculated as �M�t+dt�−M�t�� /dt and is normalized to the
number of sites to give the corresponding growth velocity.
In the simulations, we also allow for the presence of “de-
fects,” localized regions in which the critical cluster size is
smaller than elsewhere, to serve as sites for heterogeneous
nucleation.

Simulations have been performed under three circum-
stances: no defects, a ”wall” defect and a ”spiral” defect. The
wall refers to a set of sites, say sites 0 , . . . ,nc for which the
evaporation rate is zero. These therefore grow very fast and
serve as a source for heterogeneous nucleation. For the spiral
defect, the critical nucleus for site 0 is set to 1, for site 1 it is
set to 2, and so forth up to site nc. This is not meant to
realistically model a spiral defect, but rather to test whether
the results are sensitive to the shape and nature of the defect.
The name indicates the similarity in shape of the resulting
defect to a projection of a spiral defect onto two dimensions.
In fact, we observe no qualitative difference in the results
using the two different defects. The main effect is that at low
supersaturation, �hit /�evap�1, the rate of growth in the sys-
tem with no defects is dominated by the time taken for nucle-
ation to occur—by comparison, step growth happens rela-
tively quickly. Thus, the measured rate of increase in the
solid is basically a measure of the nucleation rate and is not
directly relevant to the rate of step growth. However, the
same qualitative effects are seen with and without defects.
Intuitively, one expects that if �hit��evap then nucleation will
be rare and growth will be dominated by attachment to ex-

FIG. 2. The dimensionless growth velocity, dNcN /dk0t, as a function of time
for the same parameters as used in Fig. 1. The supersaturation in this case is
log�x /x���−0.84.

FIG. 3. Maximal growth velocity as a function of supersaturation, log�x /x��,
for the parameters given in the text. The broken lines extrapolate the values
into asymptotic regions.
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isting supercritical clusters, i.e., smooth step growth. When
the hit rate increases, nucleation becomes more probable un-
til at some point nucleation can occur easily and growth will
be a combination of growth of existing clusters and nucle-
ation of new clusters. Simulations were performed for a sys-
tem consisting of 1500 sites and the velocity, defined as the
rate of change in the total mass, was averaged over 1000
cycles.

Figure 4 shows the rate of growth of the surface as a
function of the hit rate for various choices of the size of the
critical cluster when a spiral defect is present. For a small
critical cluster, nc=2, nucleation is almost instantaneous for
all but the lowest values of �hit /�evap: growth is dominated by
nucleation and the growth velocity increases more or less
linearly with the hit rate. For larger critical sizes, two differ-
ent growth regimes can be distinguished in the figure. At
small hit rates, growth is dominated by heterogeneous nucle-
ation at the defect with the subsequent growth of steps away
from the defect. This growth by aggregation is analogous to
the NY →CN scenario in the mean-field model. However, at
high hit rates, nucleation becomes important and the growth
rate increases due to the combination of processes with
nucleation dominating at high hit rates. This is analogous to
the �N−1�Y +X→CN process in the mean-field model. The
point of crossover between the regimes increases with in-
creasing critical size and corresponds to a roughening tran-
sition as is illustrated in Fig. 4�b�. Note that for the smallest
critical cluster size, the transition region is too small to see in
this figure. For critical clusters larger than 2 and for small
supersaturations, the roughness is virtually independent of
the critical cluster size and increases slowly with the super-
saturation while at higher supersaturation, the transition to
the rapid growth regime is also signaled by a dramatic in-
crease in roughness.

Finally, Fig. 5 shows the growth rate when no defect is
present. The main difference from the previous results is that
at low supersaturations, the growth rate is very small since
growth only occurs after the nucleation of a supercritical
cluster. Once such a cluster forms, the growth of a new layer
of crystal is quite rapid so that the overall growth rate is
dominated by the nucleation rate. Nevertheless, a clear cross-

over from this slow growth regime, where most mass is
added by step growth, to a fast regime, where nucleation
plays an important role in adding mass, is evident.

IV. CONCLUSIONS

Within the context of classical nucleation theory, kinetic
roughening is understood as occurring when the supersatura-
tion is so high that the size of the critical cluster becomes
smaller than one molecule.1 At low supersaturations, growth
is dominated by the heterogeneous nucleation of steps that
then grow smoothly to cover the crystal surface while at high
supersaturation, above the transition, homogeneous nucle-
ation also occurs leading to rapid growth of a rough surface.
In this paper, the possibility of a similar transition for finite-
sized critical clusters has been investigated. Two models for
the growth of crystal surfaces which show a transition from a
slow to a fast growth regime were presented. In the mean-
field model, adsorption onto the surface with subsequent sur-
face diffusion and aggregation competes with direct forma-
tion of clusters to give two different growth regimes for the
formation of islands of new crystal. At low bulk concentra-
tions, the adsorption and aggregation mechanism are domi-
nant whereas at high bulk concentrations, the formation of
critical clusters by the formation of subcritical aggregates
with direct incorporation of material from solution domi-
nates. The difference in growth rates is greatest when the
critical cluster is small �being a factor of 2 for a critical size
of 2�. These results elaborate on previous theoretical work
that indicated the importance of direct incorporation of ma-
terial from the bulk.31

An one-dimensional kinetic Monte Carlo model based
on the well-known SOS model showed both different growth
regimes and roughening. The main difference from the usual
SOS model is the definition of a critical cluster size to simu-
late nucleation as it actually occurs on a 2D surface. This
model showed a clear crossover between a smooth, step-
growth dominated regime at low supersaturation and a
rough, nucleation-dominated regime at high supersaturation
thus exhibiting the observed features of the kinetic roughen-
ing transition. The growth velocities both below and above

FIG. 5. Growth velocity as a function of hit rate for various choices of the
critical size, nc with no defect. The initial growth rate is very small and is
dominated by the nucleation rate.

FIG. 4. Growth velocity dM /d�evapt �panel a� and roughness �panel b� as
functions of the hit rate for various choices of the critical size nc in the
presence of a spiral defect.
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the transition are roughly linear functions of the hit rate
�Fig. 4�, or in physical terms, the concentration, just as in the
mean-field model �see, e.g., Eqs. �5� and �6��.

The main conclusion from this work is that the kinetic
rougheninglike transitions do not necessarily require the van-
ishing of the critical cluster size. Instead, “kinetic” effects
suffice to give qualitatively different growth regimes and
roughening of the surface. In future work, it is intended to
further elaborate the simple mean-field model presented here
to give a semiquantitative description of the results of simu-
lation as well as of experiment. Finally, it is noteworthy that
the experiments revealing the kinetic roughening mecha-
nisms that motivated the present study16 were done using gel
to quench convection which brings one close to microgravity
conditions. It might be expected that a comparison under
real microgravity conditions would reveal further important
features.
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