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The effect of molecule size (excluded volume) and the range of interaction on the surface tension, phase diagram, and
nucleation properties of a model globular protein is investigated using a combination of Monte Carlo simulations and
finite temperature classical density functional theory calculations. We use a parametrized potential that can vary
smoothly from the standard Lennard-Jones interaction characteristic of simple fluids to the tenWolde-Frenkel model
for the effective interaction of globular proteins in solution. We find that the large excluded volume characteristic of
large macromolecules such as proteins is the dominant effect in determining the liquid-vapor surface tension and
nucleation properties. The variation of the range of the potential is important only in the case of small excluded volumes
such as for simple fluids. The DFT calculations are then used to study the homogeneous nucleation of the high-density
phase from the low-density phase including the nucleation barriers, nucleation pathways, and rate. It is found that the
nucleation barriers are typically only a few kBT and that the nucleation rates are substantially higher than would be
predicted by classical nucleation theory.

Introduction

One of the most important problems in biophysics is the
characterization of the structure of proteins. It is well known
that the main impediment to the determination of protein
structure is the difficulty with which good-quality protein crystals
can be produced. This has led to a large body of work focused on
understanding the details of protein nucleation. In recent years, it
has become apparent as a result of simulation, theoretical, and
experimental studies that nucleation in general and protein
nucleation in particular are strongly affected by the presence of
intermediate metastable states.1-5 This raises the possibility that
by understanding the mechanism by which intermediate states
affect nucleation the quality of the final result can be better
controlled.

The practical importance of investigating the role of inter-
mediate metastable states lies in the fact that the effective
interactions of proteins in solution depend on their environment.
Protein molecules interact via Coulombic forces mediated by the
ionic solution in which they are dissolved. The effective interac-
tion between two protein molecules therefore depends on the
properties of the solution, particularly the salt used to create the
solution and its pH. This is the reason for thewell-known fact that
some salts aremore effective thanothers in bringing about protein
crystallization (theHofmeister effect).6 The detailed confirmation
of the connection between the properties of the solution and the
effective intraprotein interactions has come from both computer
simulation7,8 and from theoretical studies of the phase diagramof

proteins in solution.9One goal of the presentwork is to investigate
what aspect of the effective interactions is most relevant in
controlling the nucleation of the metastable phase.

Assuming that the effects of the solvent can, to first approxi-
mation, be entirely accounted for by an effective interaction
potential between protein molecules, the problem of protein
nucleation can be viewed as analogous to the nucleation of a
solid from a dilute gas. In this way, Wilson observed that
favorable conditions for protein nucleation are correlated with
the behavior of the osmotic virial coefficient.10 Rosenbaum et al.
showed that the phase diagram of a large class of globular
proteins can be mapped onto that of simple liquids with an
interaction potential that depends on the ionic strength of the
solvent.11,12 One particular characteristic of proteins is that these
models involve a hard-core repulsion and an attractive tail with
the range of the attraction being quite small compared to the size
of the hard core. It is known that as the range of the attraction
becomes smaller, the critical point of the liquid-vapor transition
is suppressed relative to the triple point until for sufficiently short-
ranged potentials the liquid-vapor transition becomes meta-
stable with respect to the vapor-solid transition.5 It is under this
circumstance that the metastable liquid phase is thought to play
an important role in protein nucleation.

Despite the abundance of evidence for the role of the intermedi-
ate state fromboth simulation and experiment, there is still no really
convincing theoretical description based on first principles. Lutsko
and Nicolis showed that transitions from the vapor to the meta-
stable liquid to the solid were advantageous relative to the direct
vapor-solid transition based on the bulk free-energy surface,13 but
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that work neglected the effects of interfaces and, in particular,
surface tension.Thegoal of thepresentwork is to take a step toward
filling in this gap by characterizing the liquid-vapor interfacial
surface tension and the liquid-vapor transition in amodel globular
protein consisting of molecules interacting with the ten Wolde-
Frenkel potential.2 However, because of the metastable nature of
the transition, such a characterization based on simulation is
difficult. We found it impossible to stabilize the liquid-vapor
interface for the model protein because of the strong tendency
toward crystallization. We have therefore had to use an indirect
approach consisting of a combination of theory and simulation.
First, the tenWolde-Frenkelmodel potential for globular proteins
is generalized so that it depends on three independent parameters
that allow it to be deformed continuously from a Lennard-Jones
potential (i.e., a simple fluid) to the hard-core þ tail ten Wolde-
Frenkel (tWF) potential. We have performed simulations covering
part of the range from simple fluid to protein and compare these
to density functional theory calculations to show that the DFT
remains quantitatively accurate as the hard-core radius is increased
fromzero, in theLJpotential, to a typical value in the tWFpotential
and as the range of attraction decreases. Whereas simulation
becomes infeasible when the range becomes too small, the calcula-
tions are easily performed and the preceding agreement gives some
confidence in the result. The DFT is then used to calculate the
nucleation barrier using recently developed energy-surface techni-
ques.We find, somewhat surprisingly, that the increase in the hard-
core radius is much more important than the decrease in the range
of the potential and is mostly responsible for a dramatic drop in
surface tension. This observation is particularly relevant in the case
of proteins because the properties of the effective interaction can be
varied by changing controllable parameters, such as the pH of the
solution, so that a primary goal is to determine those conditions
most favorable to homogeneous nucleation. Our results indicate
that, as far as the low-density/high-density part of the transition is
concerned, varying the range of the potential has little effect.

In the next section, our model potential is defined, the Monte
Carlo simulations are described, and the DFT calculations are
also sketched. In section III, we describe the comparison between
theory and simulation as the potential is varied from Lennard-
Jones toward themodel protein interaction and showquantitative
agreement between theory and simulation. We then present the
DFT results for the surface tension and nucleation barrier and
nucleation rate as calculated fromDFT and compared to classical
nucleation theory. The article concludes with a discussion of our
results.

Theoretical Methods

Simulation. Because of the complexity of the constituent
particles and the solvent-induced interaction, globular proteins
are often modeled, to a first approximation, by an effective
interaction potential. In their study of the phase behavior of
globular proteins in solution, ten Wolde and Frenkel proposed
the following effective potential2

VðrÞ ¼ 4ε
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This is a Lennard-Jones potential modified to capture the
essential features that characterize the interaction of proteins in
solution. The potential includes a hard-sphere repulsion at r= σ

that accounts for the excluded volume (i.e., the size) of the protein
molecule. Parameter R controls the range of solvent-induced
effective attraction in that the minimum of the potential well
occurs at r = σ[1 þ (2/R)

1/3]1/2 whereas the minimum of the
potential is -ε, independent of the value of the range. The range
of the potential decreases when R increases, and for R= 50, this
model potential reproduces the phase behavior of globular
protein solutions and, in particular, the well-known fact that
for sufficiently short-range attractions the liquid phase becomes
thermodynamically unstable,2,5 as illustrated in Figure 1. For
potential 1, this behavior is expected to be found when R = 10 in
accordance with the generally accepted criteria according to
which the range of the attraction should be ∼25% of the range
of the repulsive part to have ametastable liquid-gas coexistence.5

Metastable systems are notoriously difficult to study numeri-
cally because the liquid state spontaneously decays to the more
stable crystal phase. In the present situation, the value R = 50
puts the liquid-gas coexistence curve deep inside the unstable
region, which makes the liquid phase difficult to maintain. A
possible solution to this problem is to use constraints that restrict
the configurational space of the system, thereby preventing the
transition to the solid phase. There are different ways to constrain
the system.14 In the restrictedMonte Carlo method,15 the density
is constrained to be below a limited value that thus suppresses the
dense phase. Whereas this approach is well suited to the study of
the supersaturated vapor phase, it is not appropriate for studying
supercooled liquids because the densities of the liquid and solid
phases are too similar. Another possibility would be to limit the
number of neighbors per particle. This approach has been applied
with success to a Lennard-Jones potential. However, there is a
body of evidence that indicates that, besides its effect on the
stability of liquids, the range of the attractive potential also
impacts the structure of the liquid.16 This fact could be of special
importance in the present case because the structure of the liquid
is atypical as a result of the large excluded volume that limits the
number of interactions per particle. More generally, the short-
coming of restricted ensemblemethods is the elimination ofmany
configurations.

In this work, no constraints were imposed on the system.
Stable liquid-gas equilibriumwas obtained starting froma stable

Figure 1. Calculated phase diagrams as a function of R for δ= 1
showing that the liquid is metastable at Rg 10. From Lutsko and
Nicolis.5
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two-phase state and modifying the temperature and parameter
R step by step until the desired conditions were met. Unfortu-
nately, for the desired case ofR=50 thiswas not possible because
there is no stable configuration fromwhich to start. We therefore
generalized the potential as

VðrÞ ¼ 4ε
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with a hard core at r < δσ so that by varying dimensionless
parameters R and δ it was possible to transition smoothly from
a simple fluid, described by the Lennard-Jones interaction with
R=1andδ=0and themodel protein interactionwithδ=1and
R = 50. This allows a metastable liquid-gas coexistence to be
reached from a stable Lennard-Jones system by varying the
temperature and parameters R and δ in small steps.

We simulated an ensemble ofN=1885 particles interacting via
potential 2 with a standard Metropolis Monte Carlo algorithm
(MC-NVT).17 The potential is truncated at rc = 2.8 but not
shifted. The particles are contained in a volumeVwithdimensions
of Lx = Ly = 9σ and Lz = 108σ, and periodic boundary
conditions are imposed in all directions. To avoid the problem
of stability of the liquid phase, the system is equilibrated during
5 � 105 Monte Carlo cycles (one cycle = N updates) at given
(T, R, δ) starting from a stable initial configuration at (T þ ΔT,
RþΔR,δþ δþΔδ). The configuration of the systemconsists of a
liquid slab of thicknessΔz= 27σ surrounded along the z direction
by two gas slabs. In this way, the stability of the liquid phase was
maintained during the 106 cycles used to measure the density
profile and the surface tension.

Surface tension can be measured by different methods. In a
recent paper, we adopted the Bennett method, which appears to
be precise.18 However, we found it difficult to implement here for
the following reason. In theBennettmethod, the calculationof the
surface tension follows from the definition

γ ¼ DF
DA

� �
N,V,T

ð3Þ

where F is the free energy and A = Lx � Ly is the area of each
liquid-vapor interface. In its implementation, the method re-
quires one to compare the energies Ei (i = 0, 1) of two configu-
rationswith different liquid-vapor interface areasA0 andA1. The
configurationwith interface areaA1 is obtained from the previous
one by rescaling the positions of the particles:17,19

x0 ¼ xðA1=A0Þ1=2

y0 ¼ yðA1=A0Þ1=2

z0 ¼ zðA0=A1Þ ð4Þ
Because this perturbation is done at constant volume, the system
is expanded along one direction and compressed along the

transverse direction. Because of the isotropy of the fluid phase,
this transformation has only a negligible effect on the energy of
homogeneous systems because the energy change created by the
displacement along the compression direction is compensated for
by an energy change along the expansion direction. In the
presence of an interface, the symmetry is lost and there is a net
energy difference between the two configurations that is localized
at the liquid-vapor interface. Although perturbation 4 is usually
an efficient way to probe the interfacial free energy, we found it to
be unsuitable here because the surface tension of the protein
model is particularly small so that large perturbations are
necessary to have a measurable free-energy difference. Unfortu-
nately, large perturbations are inefficient when applied to systems
whose potential contains an excluded volume because the com-
pression step creates configurations with overlaps between parti-
cles. This not only gives infinite energy variation, but these
variations are often located inside the liquid phase and not at
the interface. To solve this problem, we implemented the interface
wandering approach that allows a precise evaluation free-energy
difference with small area perturbations.20 In this method, the
system is perturbed at each Monte Carlo cycle according to eq 4.
Contrary to the Bennett method where the new configuration is
only tested, in the interface wandering method the new area,
chosen at random over the interval [Amin, Amax], is effectively
accepted with probability

Paccepted ¼ minð1, e-βðE1 -E0ÞÞ ð5Þ
As a result of this acceptance ratio, the area of the interface
evolves and is distributed between Amin and Amax according to a
distribution f, which is related to the free energy

F ¼ -kBT ln f ð6Þ
Because in this methodmany areas are sampled, instead of one in
the Bennett method, curve fitting can be performed on the
interface area distribution function, which allows a precise
determination of the surface tension.
DFTCalculations.The properties of inhomogeneous systems

were calculated using density functional theory. According to
DFT, the free energy in the grand canonical ensemble, the grand
potential Ω, is a functional of the local density, F(r), and the
applied external field, φ(r), of the form

Ω½F� ¼ F ½F� þ
Z

ðφðrÞ-μÞFðrÞ dr ð7Þ

where μ is the chemical potential, F and Ω both depend on
temperature, and functionalF[F] does not dependon the field.21,22

The equilibrium density distribution is determined byminimizing
Ω[F]. In a uniform system, the local density is a constant, where
F(r) = F and F[F] f F(F) is the Helmholtz free energy.

In our calculations, F[F] is approximated using the modified-
core van der Waals DFT model.23 This is a generalization of
the simplest hard-sphere plus mean-field tail model that gives
quantitatively accurate descriptions of fluid structure,23 surface
tension,18,23 and nucleation properties.24 Here, we require quan-
titative accuracy in theDFTcalculations becausewewish tomake

(17) Frenkel, D.; Smit, B. Understanding Molecular Simulation; Academic Press:
Orlando, FL, 2001.
(18) Grosfils, P.; Lutsko, J. F. J. Chem. Phys. 2009, 130, 054703.
(19) Salomons, E.;Mareschal,M. J. Phys.: Condens.Matter 1991, 3, 3645–3661.

(20) MacDowell, L. G.; Bryk, P. Phys. Rev. E 2007, 75, 061609.
(21) Evans, R. Adv. Phys. 1979, 28, 143.
(22) Hansen, J.-P.; McDonald, I. Theory of Simple Liquids; Academic Press: San

Diego, CA, 1986.
(23) Lutsko, J. F. J. Chem. Phys. 2008, 128, 184711.
(24) Lutsko, J. F. J. Chem. Phys. 2008, 129, 244501.
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a direct comparison to simulation. In thismodel, the free energy is
expressed as a sum of three contributions:

F ½F� ¼ FHSð½F�; dHSÞþFcoreð½F�; dHSÞþFtailð½F�; dHSÞ ð8Þ
The first term on the right is the hard-sphere contribution, which
is treated using the fundamental measure theory functional. The
second term is the core correction, which is similar in form to the
hard-sphere term but modifies the hard-sphere contribution so
that the free energy in the bulk phase reproduces a given equation
of state.23 The last term is the tail contribution and has the simple
mean-field form

Ftailð½F�; dHSÞ ¼ 1

2

Z
Θðr12 -dHSÞ Fðr1Þ Fðr2Þ vðr12Þ dr1 dr2 ð9Þ

The reference hard-sphere diameter, dHS, is calculated using the
Barker-Henderson22,25 expression

dHS ¼
Z r0

0

ð1-e-βVðrÞÞ dr ð10Þ

where r0 is the distance at which the potential vanishes,V(r0)= 0.
The model requires as input the bulk equation of state. For

this, we use the Barker-Henderson first-order perturbation
theory22,25

FðFÞ ¼ FHSðF; dHSÞ

þ 1

2V
F2

Z
Θðr12 -r0Þ vðr12Þ gHSðr12; dHSÞ dr1 dr2 ð11Þ

where gHS(r12; dHS) is the hard-sphere pair distribution function in
the fluid phase.

Results

SurfaceTension.Figure 2 shows the phase diagramsobtained
from the simulations as described above and as predicted using
the thermodynamic perturbation theory for the cases of R = 1
and5.Away from the critical point, the agreement between theory
and simulation is satisfactory over awide range of hard-core radii.
As is usual for a mean-field theory, the agreement near the critical
point is not expected to be very good; therefore, this region has
not been studied. The critical density and temperature for each

system was estimated following the procedure in ref 18 and are
given in Tables 1 and 2. The coexistence curves are shown in
Figure 3 with the density and temperature scaled to the critical
density and critical temperature, respectively. Although the gene-
ralized potential involves two length scales, σ controlling the
position of the minimum and the hard-sphere radius δσ, the
coexistence curves show typical corresponding states, as has been
seen for other multilength scale potentials.18

A comparison between the surface tension as determined by
simulation and from DFT calculations is shown in Figure 4.
Increasing the size of the molecule (i.e., excluded volume para-
meter δ) at fixed R leads to lower surface tension: because the
surface tension scales roughly with the critical temperature
(Table 1), this trend is attributable to the decrease in critical
temperature with increasing δ, which in turn is due to the increase
of δ in the range of repulsion (which extends from r= 0 to δσþ
[δ2 þ (2/R)

1/3]1/2) compared to the range of the attractive part of
the potential (and taking into account that the depth of the
potential is fixed). However, for fixed δ, increasing R has little
effect on δ = 1 but leads to a significant increase in the surface
tension for δ=0. In the latter case, the potential can bewritten as
a function of single parameter σ/R1/6 so that one expects the

Figure 2. Phase diagrams for (a) R = 1 and (b) R = 5 as
determined by simulation and theory for different values of the
hard-core radius,R= δσ. The curves, from top to bottom, are for
δ= 0, 0.2, 0.4, 0.6, 0.8, and 1.0.

Table 1. Fits to Surface Tension [γ(T) = γ0Tc(1 - (T/Tc))
1.26] for

r = 1a

d T γ0 Tc (coex) Fc (coex)

0.0 1.21 2.15 1.24 0.31
0.2 1.15 2.30 1.19 0.29
0.2 1.18 1.95 1.19 0.29
0.4 1.09 1.55 1.08 0.25
0.4 1.06 1.95 1.08 0.25
0.6 0.92 1.87 0.93 0.21
0.8 0.80 1.68 0.80 0.17
1.0 0.61 2.52 0.66 0.15

aThe last two columns give the critical properties estimated from the
coexistence data.

Table 2. Fits to Surface Tension [γ(T) = γ0Tc(1 - (T/Tc))
1.26] for

r = 5a

d Tc γ0 Tc (coex) Fc (coex)

0.0 1.33 2.83 1.28 0.68
0.2 1.18 3.53 1.20 0.62
0.4 0.99 2.96 1.01 0.49
0.6 0.85 2.09 0.83 0.37
0.8 0.66 2.63 0.66 0.27
1.0 0.54 3.06 0.57 0.19

aThe last two columns give the critical properties estimated from the
coexistence data.

Figure 3. The same as Figure 2 with the density and temperature
scaled to the critical density and temperature for each potential.

(25) Barker, J. A.; Henderson, D. J. Chem. Phys. 1967, 47, 4714.
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surface tension in this case to vary as γ ≈ R1/3. (Note that this
scaling is somewhat spoiled by the fact that the cutoff used in the
simulations was not scaled in the same way, so this should be
taken only as an explanation of general trends.) In the former case
of δ = 1, the effect of changing R is mitigated by the relatively
large (and fixed) effect of the excluded volume and, of course, the
fixed depth of the potential minimum.

Because the surface tension goes to zero at the critical point
and, as discussed above, the perturbative equation of state is least
accurate near the critical point, it is not surprising that the relative
accuracy of the theoretical calculations decreases as one ap-
proaches the critical point. Away from this region, however, the
theoretical calculations are in good, nearly quantitative agree-
ment with the simulations. On the basis of this comparison, the
extension of the calculations to higher values of R seems justified.

Tables 1 and 2 also show the result of a fit to the expected form
γ= γ0(1 - (T/Tc))

1.26. Fitting both γ0 and Tc and comparing to
the critical temperature extracted from the coexistence data gives
a consistency check for the analysis. In general, the temperatures
derived by both methods are in reasonable agreement. The errors
in the critical density are too large to permit us tomakeadefinitive
statement concerningwhether the surface tension obeys the lawof
corresponding states.
Nucleation of Globular Proteins. Globular proteins are

modeled using R = 50 and δ = 1 so that the liquid is metastable
as shown in Figure 1. As discussed above, this makes simulation
extremely difficult so thatwe present only the results of calculations
usingDFT. Indeed, the fact that themetastable phase immediately
tends to nucleate the solid phase in simulation is one of the main
reasons for focusing on the nucleation of the metastable phase
because this appears to be the rate-limiting step. The agreement
found above between DFT and simulation for lower values of R
suggests that these results should be reasonable quantitative
estimates. Figure 5 shows the surface tension as a function of
temperature for different values of the hard-core radius. The trends
noted earlier are repeated with the surface tension for δ=0 being
approximately 501/3≈ 3.7 times that forR=1whereas the value of
δ = 1 is comparable to those for lower values of R.

The liquid-vapor transition is of particular interest because the
metastable liquid phase is thought to play a key role in the process of
precipitation of solid protein crystals from solution.1,2,5 In classical
nucleation theory (CNT), a liquid droplet is treated in the capillary
approximation so that a droplet of radius R has excess free energy

ΔΩ ¼ 4π

3
R3ðωðFlÞ-ωðFvÞÞþ 4πR2γ ð12Þ

where ω(F) = f(F) - μF, f(F) is the bulk Helmholtz free energy per
unit volume of the fluid at density F, μ is the chemical potential, γ is
the liquid-vapor surface tension at coexistence, andFl and Fv are the
densities of the coexisting liquid and vapor, respectively. In this
model, the excess number of molecules in the droplet is

Δn ¼ 4π

3
R3ðFl -FvÞ ð13Þ

The free energy has a maximum at the critical radius, Rc = 2γ/Δω,
withΔω=ω(Fv)- ω(Fl), and a maximum, defining the barrier for
nucleation, of ΔΩmax = 16πγ3/3Δω2. Thus, from these simple
considerationsand thepreviouslynoted trends in the surface tension,
we conclude that if all of the energy scales are proportional toTc then
the nucleation barrierwill decreasewith increasingmolecular size (δ)
and will vary weakly with the range of the potential, R.

To investigate the liquid-vapor transition in more detail, we
have determined the nucleation pathway (specifically, the mini-
mum free-energy path or MFEP) for the nucleation of liquid
droplets fromDFT to compare to the predictions ofCNT forT=
0.4ε or T/Tc = 0.84. The method of calculation is the same as
described in detail in refs 24 and 26. The goal is to identify a path
between the initial state (pure vapor) and the final state (pure
liquid) that is minimal with respect to variations perpendicular to
the path. (For a detailed explanation, see ref 27.) Figure 6 shows
the free-energy barrier and the size of the critical cluster as a
function of supersaturation, S = (Pcoex - P)/Pcoex, where the
chemical potential at coexistence is βμcoex = -2.354 and the
densities of the coexisting phases are Fv = 0.109 and Fl = 0.626.
(Note that although the actual control variable in our calculations
in the grand canonical ensemble is the chemical potential we use
the more familiar definition of supersaturation in terms of
pressure.) Figure 6 shows that classical nucleation theory is in
agreement with DFT for small supersaturation but for large
supersaturation the nucleation barrier calculated with DFT
becomes very small, approaching zero as the vapor density
approaches the spinodal, whereas CNT predicts a finite nuclea-
tion barrier at all densities. The Figure also shows that the excess
number ofmolecules in the critical cluster is also well described by
CNT except at large supersaturations. Figure 7, showing the
critical clusters at different supersaturations, illustrates the reason
for the failure ofCNTat large supersaturation. It shows that large
clusters are indeed well described by the capillary model, having
very narrow interfaces. However, at large supersaturation, the

Figure 4. Surface tensionasa functionof temperature for (a)R=1
and (b) R = 5 as determined by simulation and theory for
different values of the hard-core radius, R = δσ. The curves,
from top to bottom, are for δ = 0, 0.2, 0.4, 0.6, 0.8, and 1.0.

Figure 5. Surface tension as a function of temperature for R=50
as calculated using DFT. The curves, from top to bottom, are
for δ= 0, 0.2, 0.4, 0.6, 0.8, and 1.0.

(26) Lutsko, J. F. Europhys. Lett. 2008, 83, 46007.
(27) Wales, D. Energy Landscapes; Cambridge University Press: Cambridge, U.K.,

2003.
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critical clusters are very small with most molecules affected by the
interface and with central densities far below that of the bulk
liquid. As a consequence, CNT fails to capture the very small
barriers to nucleation. This final point is illustrated in Figure 8,
which shows the nucleationpathway (i.e., the excess free energy as
a function of cluster size) for three different supersaturations. At
the smallest supersaturation, the barrier iswell described byCNT.
However, at large supersaturation, the shape of the nucleation
barrier varies markedly from that assumed in CNT. In particular,
there is virtually no free-energy penalty for the formation of small
clusters.

Given that we have access to the nucleation pathway and not
just the critical cluster, it is possible to evaluate the nucleation rate

directly. Under the assumption of stationary nucleation and
treating the number of molecules as a continuous variable, the
nucleation rate is given by the otherwise exact expression

Js ¼
Z ¥

1

dn

f ðnÞ CðnÞ
� �-1

ð14Þ

where f(n) is the monomer attachment rate for a cluster of size n
and C(n) = C0 exp(-Ω(n)/kBT) is the equilibrium distribution of
cluster sizes.28-30 The monomer attachment rate is assumed to be
proportional to the surface area of a cluster and to the gas pressure,
f(n) = f0(P/kBT)n

2/3 with f0 = γcv0
2/3(kBT/2πm0)

1/2 where γ is the
sticking probability for a monomer that collides with a cluster of
size n (assumed here to be independent of n), c is a geometric factor,
and m0 and v0 are the mass and volume of a molecule so that the
area of the cluster is cv0

2/3n2/3.30 Figure 9 shows the calculated
nucleation rate as a function of supersaturation. The nucleation
rate estimated fromDFT is significantly higher than that estimated
from CNT, in part because of the exponential amplification of the
differences in barrier height seen in Figure 6 and in part because of
the differences in the shape of the barrier.

Figures 6 and 9 both show nonmonotonic behavior near the
spinodal. In the later case, the implication is that there is an
optimal supersaturation that gives the maximal nucleation rate.
However, this is likely to be an artifact of the calculations. As
discussed in detail by Wilemski and Li,31 mean-field models such
as that used here and simpler models such as the square gradient
model predict a divergent critical nucleus size at the spinodal due
to the unrealistic mean-field equation of state. In any case,
because the nucleation barrier is on the order of kBT for S ≈
0.4, it is likely that the process of nucleation at higher super-
saturations shares features of both nucleation and spinodal
decomposition sometimes termed spinodal nucleation,31,32 in
which case the nucleation characteristics (rate and critical
nucleus) would not be described by the simple theory given here.
There are, therefore, two issues affecting the interpretation of
these results. The first is the validity of mean-field theory, which
definitely breaks down near the spinodal,31,32 and the second is
that even if the maximum occurred in the region of validity of the
theory it would be masked by density fluctuations that would
cause small volumes to become unstable with respect to spinodal
decomposition.

Figure 6. (a) Free-energy barrier for the nucleation of dense liquid
from the low-density phase as a function of supersaturation.
(b) Size of the critical cluster. In both cases, the solid lines are from
the DFT calculations and the broken lines are from the prediction
of CNT.

Figure 8. Excess free energy as a function of cluster size at three
different values of supersaturation. The broken lines are a fit to
CNT expression ΔΩ = -(2ΔΩ/ΔN*)ΔN þ (3ΔΩ/ΔN*

2/3)ΔN2/3,
where the starred quantities refer to the critical nucleus.

Figure 7. Density distribution in the critical clusters for various
values of supersaturation.

Figure 9. Dimensionless nucleation rate as a function of super-
saturation. The scaled nucleation rate is Js* = Jσ3/f0.
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Conclusions

In this article, we have constructed a pair potential that allows
us to move smoothly from a simple fluid (i.e., Lennard-Jones
interaction) to the short-ranged, hard Lennard-Jones used as a
model for globular protein interactions. The potential depends on
two parameters: the size of the molecule, characterized by the
excluded volume parameter δ, and the range of the potential,
controlled by the dimensionless parameter R. We compared the
liquid-vapor surface tension as determined from Monte Carlo
simulations to DFT calculations for the cases of R=1 and 5 and
molecular radius ranging from zero to one (in Lennard-Jones
units). Our results indicate that the combination of thermo-
dynamic perturbation theory and the MC-VDW DFT model
gives a good quantitative description of the liquid-vapor equa-
tion of state and surface tension over a wide range of temperature.
Significant differences do appear as expected near the critical
point because the mean-field equation of state is not accurate in
this region.Our primary conclusion from these calculations is that
it is the increase in excluded volume rather than the decrease in the
range of the potential that causes a dramatic decrease in the
surface tension. In fact, from Figures 4 and 5, one sees that
whereas the surface tension for a zero hard-core radius is strongly
affected by the range of the potential, the surface tension at the
largest excluded volume is relatively insensitive to the range.

For fixed δ, changing R changes the range of the potential.
However, themodel potential can in fact be rewritten in terms of a
single dimensioness parameter Rδ6 so that in absence of a cutoff,
changing R and changing δ are in some sense equivalent. The
actual physical relevance of the two parameters is that δ controls
the size of the exluded volume and R controls the strength of the
attractive interaction. Hence, one way to phrase our results is that
changing the excluded volume has a much stronger effect on

physical properties such as surface tension than does changing the
strength of the attraction. These results suggest that increasing the
excluded volume of a molecule leads to a decrease in surface
tension and hence a decrease in the height of the barrier to the
nucleation of the dense phase. Conformational changes can in
fact be affected in some cases by changes in pH33-35 and by
light,36 thus suggesting a means for taking advantage of this
phenomenon to control crystallization rates in such systems.

For the R= 50 case, we were not able to simulate the liquid-
vapor interface because of the strong instability of the system
to crystallization. Our theoretical calculations indicate similar
behavior in the surface tension as found for smaller values of R.
We have also calculated the nucleation pathway and thereby
determined the barrier and rate of nucleation of liquid droplets
from the vapor. We found very low barriers, less than 100kBT
even at relatively low supersaturation. Away from the spinodal,
classical nucleation theory gives a good description of the barrier
height and the size of the critical nucleus. At higher supersatura-
tions, as the spinodal is approached, the nucleation pathway
calculated from DFT differs significantly from that predicted by
CNT. DFT also predicts a vanishing nucleation barrier at the
spinodal and nonmonotonic behavior of the size of the critical
nucleus and the nucleation rate near the spinodal. The shape of the
barriers suggests that the excess free energy of small, subcritical
clusters is very small, indicating that theymight have relatively long
lifetimes. However, the details of this picture become increasingly
uncertain near the spinodal because of the limitations ofmean-field
theory and in any casemay not be observable because they occur in
the region of spinodal nucleation.
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