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Abstract – We examine the non-extensive approach to the statistical mechanics of Hamiltonian
systems with H = T +V , where T is the classical kinetic energy. Our analysis starts from the
basics of the formalism by applying the standard variational method for maximizing the entropy
subject to the average energy and normalization constraints. The analytical results show i) that the
non-extensive thermodynamics formalism should be called into question to explain experimental
results described by extended exponential distributions exhibiting long tails, i.e. q-exponentials
with q > 1, and ii) that in the thermodynamic limit the theory is only consistent in the range
0� q� 1 where the distribution has finite support, thus implying that configurations with, e.g.,
energy above some limit have zero probability, which is at variance with the physics of systems
in contact with a heat reservoir. We also discuss the (q-dependent) thermodynamic temperature
and the generalized specific heat.

Copyright c© EPLA, 2011

Introduction. – The observation of natural phenom-
ena and of laboratory experiments provides a wide spec-
trum of experimental results showing distributions of
data that deviate from exponential decay as predicted for
Boltzmann behavior [1]. It was the goal of non-extensive
statistical mechanics developed originally by Tsallis [2]
to offer a new approach to explain the non-Boltzmann
behavior of non-equilibrium systems1. More precisely the
primary motivation for non-extensive thermodynamics is
as a way to understand deformed exponential distribu-
tions (such as q-exponentials exhibiting long tails when
q > 1) found empirically in many areas of physics and
other scientific disciplines [5]. The interest raised by
this new approach has grown over the years and has
produced an abundant literature [6] reflecting new theo-
retical developments and a considerable number of appli-
cations to subjects as diverse as defect turbulence, energy
distribution in cosmic rays, earthquake magnitude value
distributions and velocity distributions in micro-organism
populations or distributions of financial market data.
Parallel to these developments, critical analyses were

(a)E-mail: jlutsko@ulb.ac.be
(b)E-mail: jpboon@ulb.ac.be
1We note that other approaches exist such as super-statistics [3]

and the fractional and non-linear Fokker-Planck equations (see,
e.g., [4] and references therein)

presented questioning the merits of the non-extensive
theory [7] and thereby of its applications as well. These
criticisms raised questions that often gave rise to onto-
logical conflicts [8]. Most of the criticisms are based
on phenomenological analyses and thermodynamic argu-
ments questioning the compatibility of the theory with
classical statistical thermodynamics. More recently, the
non-extensive theory was also re-examined on the basis
of analyses demonstrating the necessary discreteness of
systems to which the theory applies [9] and the limits of
validity of the non-extensive formalism for a Hamiltonian
system, the q-ideal gas, a model system of independent
quasi-particles where the interactions are incorporated in
the particles properties [10,11]. Here we merely adopt the
viewpoint of analytical rigor to establish the validity limits
of the non-extensive formalism for the general class of clas-
sical Hamiltonian systems with continuous variables and
consequently of the class of physical systems to which the
non-extensive interpretation applies.
In the formalism, the q-exponential distributions arise

as the result of a variational calculation maximizing the
generalized entropy, the q-entropy, under the constraints
of normalizability of the distribution function and of a
prescribed average energy [6]. The goal of the present
work is to investigate the exact form of the distribu-
tion so derived for classical Hamiltonian systems from
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both the usual Tsallis entropy [2] and the homogeneous
entropy [12]. The conclusion is found to be the same
in both cases: the theory is only consistent in the ther-
modynamic limit for 0� q� 1. For finite systems of N
particles, the upper limit is 1+ a/N for a∼O(1). This
means i) that the non-extensive thermodynamics formal-
ism cannot be used, at least in any straightforward way,
to explain phenomena for which one observes that q takes
a value q > 1 (corresponding to asymptotically power-law
distributions) i.e. when the distributions exhibit extended
exponential forms with long tails, and ii) that, within the
validity domain, the distribution has finite support, thus
implying that configurations with, e.g., energy above some
limit have zero probability, a strange situation for systems
with typical molecular potentials which are steeply repul-
sive at small distances. We treat successively the case
according to the development based on the Tsallis entropy
Sq and the case based on the homogeneous entropy S

H
q .

The reason for examining the two cases is the criterion of
stability against perturbations of the probability distrib-
ution function, or Lesche stability [13]: the homogeneous
entropy was shown to be Lesche stable while the Tsal-
lis entropy is not [12]. We also present the results for
the generalized (q-dependent) thermodynamic properties
of Hamiltonian systems in both cases.

Tsallis entropy. – Non-extensive statistical mechanics
is developed on the basis of three axioms: i) the q-entropy
for systems with continuous variables is given by [6]

Sq = kB
1−K ∫ ρq (Γ) dΓ

q− 1 , (1)

where Γ is the phase space variable and K must be a
quantity with the dimensions of [Γ]q−1, i.e. K = �DN(q−1)

(D denotes the dimension of the system andN the number
of particles) and the classical Boltzmann-Gibbs entropy is
retrieved in the limit q→ 1; ii) the distribution function
ρ(Γ) is slaved to the normalization condition

1 =

∫
ρ (Γ) dΓ; (2)

iii) the internal energy is measured as

U =

∫
Pq (Γ)H dΓ=

∫
ρq (Γ)H dΓ∫
ρq (Γ) dΓ

, (3)

where Pq(Γ) is the escort probability distribution [14]
which is the actual probability measure. We consider
Hamiltonian systems with H = T +V , where T is the
classical kinetic energy. The distribution function ρ(Γ)
is obtained by maximizing the q-entropy subject to the
normalization (2) and average energy (3). Introducing the
Lagrange multipliers ᾱ and γ̄, the variational method leads
to

0 =
kBKq

1− q ρ
q−1(Γ)− ᾱ− qγ̄ (H −U)∫

ρq (Γ) dΓ
ρq−1(Γ), (4)

which is solved to yield

ρ (Γ) =
(1− (1− q) γ (H −U)) 1

1−q∫
(1− (1− q) γ (H −U)) 1

1−q dΓ
, (5)

with γ = γ̄
K
∫
ρq(Γ)dΓ

and where the normalization condition

(2) has been used to eliminate the multiplier ᾱ. The other,
γ, is determined from the energy constraint (3); using (5)
in (3), we have

0 =

∫
(1− (1− q) γ (H −U)) q

1−q (H −U) dΓ∫
(1− (1− q) γ (H −U)) q

1−q dΓ
, (6)

which by multiplying the numerator by (1− q)γ and
adding and subtracting one gives∫

(1− (1− q) γ (H −U)) q
1−q dΓ=∫

(1− (1− q) γ (H −U)) 1
1−q dΓ. (7)

Note that the sign of the factor f(Γ)≡ 1− (1− q)γ(H −
U) is, so far, arbitrary so that we allow for the cancel-
lation of a (possible imaginary) factor throughout these
equations. However, this is only possible in the expression
for the distribution (5) if the sign of f(Γ) is independent
of Γ. Given this fact, the sign can be fixed by making
the substitution f(Γ) = s|f(Γ)| in the energy constraint
which requires that s

q
1−q = s

1
1−q so that s= 1. Since the

kinetic energy is in principle unbounded, the constant sign
of the argument means that the distribution may have
to be restricted to some subset of phase space so that it
should be written as

ρ (Γ) =

(1−(1−q) γ (H−U)) 1
1−q Θ(1−(1−q) γ (H−U))∫

(1−(1−q) γ (H−U)) 1
1−q Θ(1−(1−q) γ (H−U)) dΓ

, (8)

where Θ(x) is the step function which is one for x> 0
and zero otherwise. We note that the introduction of the
step function is in fact a redefinition of the variational
problem in the sense that we have replaced ρ(Γ) with
ρ̄(Γ)Θ(f(Γ)) in eq. (1)–(3) and then maximized with
respect to ρ̄(Γ). If we do not do this, then there is simply no
solution to the variational problem which is real and non-
negative for all Γ. To see this, we note from the variational
equation (4) that if ρ(Γ) vanishes for some value of Γ
then it necessarily follows that ᾱ= 0, which is untenable
since ᾱ will generally assume a non-zero value due to the
normalization condition. Therefore, we can only restrict
the support of the distribution by redefining the variation
problem. We now turn to the determination of the possible
values for q.
Case: q < 1. The exponent occuring in the distribution

is 1
1−q > 0 so that if γ > 0, then the distribution must have

finite support since for some sufficiently large value of T ,
the argument, f(Γ), becomes zero, and from (5) we have

ρ (Γ) =
expq (−γ (H −U))∫
expq (−γ (H −U)) dΓ

, (9)
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where expq(x)≡ (1+ (1− q)x)
1
1−qΘ(1+ (1− q)x) is the q-

exponential function.
If γ < 0, then f(Γ) is always positive, and the distri-

bution function never goes to zero so that there can be
no finite support. This however leads to another problem
since f(Γ) is unbounded as the kinetic energy increases
which, in turn, means that the integral of f(Γ) over
momenta will diverge so that the distribution cannot be
normalized. We conclude that γ < 0 is not allowed. We
remark that it might be thought that one could intro-
duce a limit on the kinetic energy, but this is not in keep-
ing with the proposal that the non-extensive distribution
be a generalization of the canonical distribution which
describes open systems in contact with a reservoir.
Case: q > 1. The exponent being then 1

1−q < 0, we write
the distribution function as

ρ (Γ) =

(1+|1−q| γ (H−U))−| 11−q |Θ(1+|1−q| γ (H−U))∫
(1+|1−q| γ (H−U))−| 11−q |Θ(1+|1−q| γ (H−U)) dΓ

.

(10)

If γ > 0, the distribution will be normalizable provided

that
(∑
p2i
)−| 11−q | is integrable over dNDp (for large p)

which is to say that
(
P 2
)−| 11−q | PND−1dP be integrable

for P →∞; this means we must have −1>ND− 1−
2
∣∣∣ 11−q ∣∣∣, or 1< q < 1+ 2

ND
which condition reduces to the

classical Boltzmann result (q= 1) in the thermodynamic
limit2.
The other possibility is γ < 0. We then write the

distribution as

ρ (Γ) =

(1−|γ| |1−q| (H−U))−| 11−q |Θ(1−|γ| |1−q| (H−U))∫
(1−|γ| |1−q| (H−U))−| 11−q |Θ(1−|γ| |1−q| (H−U)) dΓ

.

(11)

When integrated over momenta, this expression would
show a singularity at T = 1

|γ||1−q| +U −V , unless

∫ (
X −

∑
i

p2i

)−| 11−q |
dp3N ∼

∫ √X
0

(
X −P 2)| −11−q |P 3ND−1dP ∼

∫ X
0

(X −Y )| −11−q |Y 3ND−2
2 dY

is finite; this requires that 1−
∣∣∣ 11−q ∣∣∣= 1− 1

q−1 > 0, i.e.
q > 2 . But ρq(Γ) must also be integrable and in order that

2Note that ρq(Γ) must also be integrable which imposes that

−1>ND− 1− 2q
q−1 or q < 1+

2
ND−2 , but this condition is weaker

than the constraint 1< q < 1+ 2
ND
.

the singularity be integrable imposes 1− q
q−1 > 0 which is

incompatible with the condition q > 2.
Furthermore the maximization condition demands

that the second derivative of the q-entropy (1) be
−kBK q ρq−2 < 0, which is satisfied if q > 0. So in
summary, the distribution function exists in the thermo-
dynamic limit for γ > 0 and 0� q� 1, and ρ(Γ) has the
form of a q-exponential with finite support.

Homogeneous entropy. – The homogeneous entropy
was proposed as an alternative to the Tsallis entropy
because it has various desirable properties that the Tsallis
entropy does not share such as being Lesche stable and
giving positive-definite heat capacities [12]. It is therefore
interesting to ask whether it is subject to the same
limitations as found for the Tsallis entropy. The analysis
follows essentially the same lines as above except that
in this case ρ(Γ) is the physical probability [12] and so
the energy is computed with the normal average. The
homogeneous entropy reads [12]

SHq = kB
1−
(
K
∫
ρ
1
q (Γ) dΓ

)q
1− q , (12)

whereK is a quantity with the dimensions [Γ]
1−q
q , i.e.K =

�
DN 1−q

q , and the normalization and energy constraints are

1 =

∫
ρ (Γ) dΓ ; U =

∫
ρ (Γ)H dΓ.

Following a similar analysis as given in the previous
section, the conclusions are that the condition for normal-
izability is 0� q� 1 and γ > 0 in which case the distribu-
tion function reads

ρ (Γ) =

(
expq (− γ (H −U))

)q∫
dΓ
(
expq (−γ (H −U))

)q . (13)

Here γ = γ̄

(K
∫
ρ
1
q (Γ)dΓ)q

where γ̄ is the Lagrange multi-

plier used to fix the average energy and ρ(Γ) has finite
support.

Thermodynamic properties. – Given that the
formalism is constructed solely on the basis of the three
axioms (1), (2) and (3), the consistent way to define the
thermodynamic temperature is through the thermody-
namic definition ∂S/∂U = 1/T . Considering q < 1 and
γ > 0, we obtain from the Tsallis entropy (1)

TTq =
1

kB γ

(
K

1
1−q

∫
expq (−γ (H −U)) dΓ

)q−1
, (14)

and from the homogeneous entropy (12)

THq =
q

kB γ

(
K

q
q−1

∫
expq

(
−γ
q
(H −U )

)
dΓ

)1−q
. (15)

With the explicit expressions of γ (see (9) and (13)), (15)
gives γ̄ = 1/(kB T

H
q ), the analog of the classical expression,
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whereas the equivalent relation for the Tsallis temperature
is only obtained in the limit q→ 1.
Correspondingly, the expressions for the specific heat

CV =
(
∂U
∂Tq

)
are given by

CTV =
βT /γ[

1
q

(
βT

γ

)4
1

K2
∫
ρ2q−1(Γ)(βT (H−U))2dΓ−2 (1−q)

] (16)

with the classical notation βT = 1/(kBT
T
q ), and by

CHV = q
1
q

(
βH

γ

) 1−q
q kB

K

∫
ρ
2q−1
q (Γ)

(
βH (H −U))2 dΓ,

(17)
where βH = 1/(kBT

H
q ), or

CHV =
1

kB (THq )
2

∫
dΓρ (Γ) (H −U)2 Cq(Γ) (18)

with Cq(Γ) = q
1
q

(
βH

γ

) 1−q
q ρ

q−1
q (Γ)
K

. Equation (18) is the

generalization of the classical expression of the specific
heat given in terms of the energy fluctuations: CV =
〈(∆E)2〉/(kB T 2). The thermodynamic temperatures are
both positive while the generalized specific heat is only
positive-definite in the case of the homogeneous entropy3.

Concluding comments. – Non-exponential distri-
butions are widely observed in nature. Non-extensive
thermodynamics was motivated, in part, as a means of
explaining the origin of such distributions which arise
naturally as a result of maximizing the generalized
entropy with the usual constraints of the normalization
of the distribution and of fixed average energy. We have
shown that when this procedure is applied to Hamil-
tonian systems, the resulting distributions only exist
for the restricted range of 0< q < 1+O ( 1

N

)
. Since the

so-called “fat-tailed” distributions correspond to q > 1,
this means that generalized thermodynamics cannot
be seen as an explanation of their occurrence for these
systems. The problem with larger values of q has to do
with the existence of the integrals over momenta due
to the unboundedness of the kinetic energy. One way
around this would be to redefine the formalism so as
to restrict the momenta a priori by making the ansatz
ρ(Γ) =Θ(T∗−T )ρ∗(Γ), for some fixed positive number
T∗, throughout the variational problem and maximizing
to determine ρ∗(Γ). However, this is obviously quite
artificial and ad hoc since, for example, one could replace
the step function by any function of T that goes to
zero sufficiently quickly as T grows. This suggests the

3It was indeed shown that in the Tsallis formulation the specific
heat can be negative [10].

more straightforward conclusion that in the case of
classical Hamiltonian systems, non-extensive thermody-
namics does not provide a simple, natural explanation of
distributions with fat tails.
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