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Using classical density functional theory to determine crystal-fluid surface tensions
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Classical density functional theory is used to determine the fluid-solid surface tensions for low-index faces
of crystals of hard spheres and Lennard-Jones particles. The calculations make use of the recently introduced
explicitly stable fundamental measure theory model for hard spheres, and we show that this gives state-of-the-art
accuracy compared to simulation. For the Lennard-Jones system, results are presented for both solid-liquid
and solid-vapor interfaces, and in both cases the FCC results compare favorably with existing results from the
literature. We find that the BCC crystal has significantly lower solid-liquid surface tension than the FCC structure.
For the solid-vapor interface, our results indicate that the BCC phase is unstable with respect to transition to the
HCP structure, in agreement with various zero-temperature results in the literature.
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I. INTRODUCTION

Surface tension is the fundamental controlling factor in a
wide range of technological applications such as the crystal-
lization [1], mechanical degradation of propellers (bubble cav-
itation [2]), wetting [3], and the design of super-hydrophobic
surfaces [4] and the filling of pores (Cassie-Baxter to Wenzel
transition [5]). The practical importance of these problems
is hard to overstate. For example, in the case of crys-
tallization, so-called “Disappearing Polymorphs”—where a
carefully designed chemical process suddenly begins pro-
ducing a different polymorph—is an increasingly important
industrial problem [6]. This is critical, e.g., in pharmaceuti-
cal production, since the efficacies of pharmaceutical drugs
often depend on the polymorph used (see, e.g., Refs. [7,8]).
Indeed, drugs are patented and licensed for specific crystalline
structures [9] making the control of polymorphism in their
production a priority [10].

The calculation of bulk free energies has a long history,
ranging from simple models such as the Lennard-Jones-
Devonshire cell model [11] to more computationally demand-
ing approaches such as liquid-state theory [12] and the most
sophisticated modern techniques including quantum density
functional theory [13]. Fluid-solid surface tensions are, how-
ever, much more difficult to determine since they involve
density variations down to the molecular scale. Until re-
cently, there has been no viable theoretical approach to the
determination of general fluid-solid surface tensions, except
in artificially idealized models: e.g., treating the solid as a
structureless block or working at zero temperature, where only
the interface with a vacuum has physical meaning (see, e.g.,
Ref. [14]). The state of the art has advanced significantly
in the last 20 years with the maturation of classical density
functional theory (cDFT), an approach to the description of
inhomogeneous equilibrium systems that is based on the same
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exact, theoretical framework of fundamental theorems as is
the more familiar quantum DFT used in electronic-structure
calculations [15–18]. Classical DFT can, in principle, be used
to determine the equilibrium structure of inhomogeneous sys-
tems such as liquid-solid interfaces for any lattice-structure
and crystal face. Unlike more heuristic approaches, such as
phase-field crystal theory [19], cDFT is constructed from an
intermolecular potential and as such give realistic results for,
e.g., elastic properties of solids with various classes of inter-
actions [20]. The introduction of provably stable functionals
[21] has allowed its use to be extended even to highly inhomo-
geneous systems such as solid clusters in a fluid background
[22,23].

Despite this promise, application of modern cDFT to the
study of interfacial solid systems has so far been limited only
to the special case of hard spheres [24]. This is partly because
hard spheres have long played a central role in the formal and
practical development of theory and partly because the most
extensive simulation work has been done for hard spheres.
Concerning the latter, the determination of the surface tension
of the fluid-solid interface has proven very challenging as
evidenced, e.g., by the history of this subject discussed in
Ref. [25] and the fact that even today, values reported in the
literature differ by 10% or more [24,25]. One of our goals
here is to extend the use of cDFT to the more realistic and
important case of small molecules interacting via a spherically
symmetric pair potential: a much richer system possessing
both liquid and vapor phases (as opposed to the single fluid
phase in hard spheres) and which also serves as an effective
model for colloids and macromolecules in solution.

In the next section, the cDFT framework is described: the
particular models used in this study and the methodological
adaptations necessary for its use to determine solid-fluid sur-
face tensions. These are benchmarked for the important and
highly nontrivial case of hard spheres where it is shown that
our calculations reproduce prior work and new results are
presented for the recently introduced explicitly stable fun-
damental measure theory model that forms the basis of our
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further applications. In Sec. III we present our results for the
Lennard-Jones potential, considering in turn the liquid-solid
interfaces and the vapor-solid interfaces for multiple crystal
faces. We discuss a perhaps surprising instability of the BCC
solid in contact with a vapor. The paper ends with a brief set
of conclusions.

II. THEORY

A. Classical density functional theory

Classical DFT is a reformulation of some aspects of equi-
librium statistical mechanics [16,17]. It primarily concerns the
local number density ρ(r) which the same as the one-body
distribution function and is based on theorems asserting the
existence of a functional �μ[ρ; φ] of the local density, the
chemical potential μ and any external field φ(r) acting on the
system. This functional is a global minimum when evaluated
at the density ρμ(r; [φ]) corresponding the the equilibrium
density generated by the external field. Furthermore, its value
at this density, �μ[ρμ; φ], is the grand-canonical free energy,
�μ[φ]. Finally, the functional � can be written as

�μ[ρ; φ] = F [ρ] −
∫

ρ(r)[φ(r) − μ]dr, (1)

where the first term, F [ρ], is called the Helmholtz functional
and is independent of both the field and the chemical potential.
In principle, knowing F [ρ] would allow one, via minimization
of �, to determine the equilibrium local density and grand-
canonical free energy for any given external field.

In general, one does not know F [ρ] except in certain spe-
cial cases including the ideal gas and one-dimensional hard
spheres (i.e., hard rods). For hard spheres, a great deal of
work has led to a class of approximate functionals known as
fundamental measure theory [18,26]. Our work uses a recent
version of FMT called “explicitly stable FMT” [21] (esFMT)
that gives a highly accurate description of the thermodynamics
of the bulk hard-sphere solid. (For completeness, details of the
functional are given in Appendix A.) For general spherically
symmetric pair potentials v(r), such as the Lennard-Jones
potential, the potential is split into two parts, v(r) = v0(r) +
watt(r), where v0(r) is the short-ranged repulsive part of the
potential and watt(r) is the long-ranged attractive part. The
former is used to compute an effective hard-sphere diameter
d (T ; [v0]) which, as indicated, depends on the temperature T ,
and the Helmholtz functional is approximated by

F [ρ] = FHS(d (T ; [v0]), T ; [ρ])

+ 1

2

∫
dr1

∫
dr2 ρ(r1)ρ(r2)watt(r12), (2)

where FHS is the approximate esFMT hard-sphere functional.
Further technical details of this model can be found in
Appendix A.

All applications of cDFT involve the minimization of
Eq. (1) with respect to the density to get the equilibrium
local density and the total grand-canonical free energy of the
system. Our calculations are performed by discretizing the
local density on a rectangular computational grid consisting of
Nx × Ny × Nz points with lattice spacing � which was chosen
so that there are about 20 points per hard-sphere diameter.

FIG. 1. Solid-liquid interfaces for both BCC and FCC Lennard-
Jones solids (001) planes as determined from cDFT. The temperature
is kBT = 1.0ε where ε is the LJ energy scale and the length are scaled
to σ , the LJ length scale [see Eq. (5)], which is the typical size of
an atom or molecule. The figure shows the planar densities, i.e., the
densities averaged over the planes perpendicular to the interface.

Periodic boundary conditions are applied in all directions
and the codes implement the real-space formulation of FMT
described in Lutsko and Lam [22] with the analytic FMT
weights given in Ref. [27], where a discussion of the sensi-
tivity to the lattice spacing can also be found. The attractive
term in the free energy is evaluated simply by summing over
the lattice sites efficiently using fast Fourier transforms. In this
work, the external field φ(r) is always zero. The free energy
functionals are then functions of the Nx × Ny × Nz values of
the density at the lattice sites and were minimized using the
FIRE2 algorithm [28].

To determine the interfacial free energy between two
phases, we work with a slab geometry with the z axis normal
to the interfaces. The size of the computational cell in the
x and y directions is determined by the dimensions of the
unit cell of the solid while in the z direction, the length is
approximately 50 molecular diameters giving on the order of
25 lattice planes of solid. By way of illustrating the results,
Fig. 1 shows the planar densities, defined as

s(z) ≡
∫

ρ(r′)δ(z′ − z) dr′∫
δ(z′ − z) dr′ (3)

for equilibrated FCC-liquid and BCC-liquid interfaces for a
LJ system. A characteristic difference between the BCC and
FCC structures is that the distribution of density around the
Bravais lattice points has smaller amplitude and is broader for
BCC than for FCC reflecting the less closely packed nature
of the former. This is evidenced in the figure by the smaller,
broader peaks of the planar density for the BCC than for
the FCC away from the interface. The interface between the
solid and liquid includes seven or eight lattice planes for BCC
giving an interfacial width of about five molecular diameters
and about 10 lattice planes for FCC giving a width of around
nine diameters.
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FIG. 2. Nonmonotonic evolution of the interfacial free energy as we change the number of particles. Here the interfacial free energy is that
of a FCC solid exposing the (001) facet to the vapor. The temperature is kT/ε = 0.3, which corresponds to T/T ∗

FCC = 0.375. The image on the
left shows the interfacial free energy and supersaturation cycle as we change the number of particles in the system. (Each dot corresponds to
a calculation with different numbers of particles.) The green square highlights a calculation with half-filled planes, while the red dots indicate
calculations with almost complete planes. The large red dot in the middle (filled circle) is the closest to a complete plane, while the other two
(open circles) are calculations with either a bit too much or too little mass to fill all the planes. The image on the right shows cumulative density
profiles corresponding to these highlighted calculations. The red curves (plain and dotted) correspond to the red dots of the left image (filled
and open, respectively) while the green curve (dashed) corresponds to the green square. Jumps between each plateau indicate the presence of
a solid plane and the height difference between the plateaus indicate how many particles there are on that plane. The last plane at the interface
is located at z ≈ 8σ and is partially filled depending on the number of particles in the calculation. The region beyond that interface (z > 8σ ) is
filled with the vapor which contains almost no particles, leading to a flat curve for the cumulative mass.

B. Determination of the interfacial free energy

For a (hypothetical) infinite system, one would simply set
the chemical potential to the (known) value for coexistence,
μcoex, create some initial condition (e.g., a sharp interface
between the two phases) and then minimize the cDFT func-
tional �μ[ρ, φ = 0] to get the total free energy of the system.
However, for a finite system, the coexistence properties are in
general slightly different from that of the bulk systems so that
minimizing at μcoex results in one phase completely replacing
another. In principle, one should then vary the chemical poten-
tial to find the (adjusted) coexistence value but this is difficult
since it amounts to trying to find an unstable stationary point.
It is more practical (but equivalent; see Appendix B 5 for
details) to minimize the Helmholtz functional F [ρ] at con-
stant particle number, N[ρ] = N0, with N[ρ] ≡ ∫

V ρ(r) dr.
For each value of N0, a stable interfacial system is found
with a spatially constant chemical potential μ which is the
coexistence chemical potential for the finite system.

To calculate the interfacial free energy, or surface tension
[29], a Gibbs dividing surface is introduced to partition the
total volume into the volumes of the two phases, V1 and V2,
via the requirements that V1 + V2 = V and ρ1V1 + ρ2V2 = N0,
where ρ1,2 are the bulk densities corresponding to the applied
chemical potential μ and N0 is the total number of particles
in the relaxed interfacial system. The surface tension is then
calculated as

γ = �μ − ωμ,1V1 − ωμ,2V2

2A
= F − f1V1 − f2V2

2A
, (4)

where A is the area of the interface and the grand potential per
unit volume is ωi = �i/V = fi − μρi, etc., and fi is the bulk
Helmholtz free energy density for the phase i. One notes the
key property of the Gibb’s dividing surface is that the results

are the same using the canonical Helmholtz formulation and
the grand-canonical formulation as is indicated in the second
equality.

For a liquid-vapor interface, the surface tensions obtained
are independent of the number of particles N0 used in the
interfacial calculation (as long as it is not too small or too
large). Given an equilibrated interface, if one adds or subtracts
a small amount of mass, the interface will simply move so as
to have more or less of the denser phase, with no structural
change to the interface nor any change to the densities far from
the interface. As recently discussed by Maeritz and Oettel
[30], this is not the case with a fluid-solid interface since the
solid is not uniform: adding mass to the interface results in a
partial solid plane which will have a higher free energy than a
fully constructed plane. So, if mass is added to an equilibrated
solid-fluid interface and then the system is relaxed, the added
mass may end up as a partially filled plane, an increase of bulk
solid or fluid densities or some combination of both.

Consequently, when performing calculations using a finite
system, there is no unique interfacial free energy for the solid
but rather a periodic variation as a function of N that returns
to a minimum value each time a complete crystal plane is
formed; see Fig. 2, where each point is a result of adding
mass and then relaxing while holding the cell dimensions
fixed in all directions (hence, constant lattice parameter in the
directions perpendicular to the interface). This means that, in
the finite system, there is no unique excess surface free energy.
(Alternatively, it means that the state of the system can only be
specified by introducing an additional variable characterizing
the completeness of the last solid plane—a variable that would
have a fixed value in the thermodynamic limit and, hence,
would become irrelevant.) However, in an infinite system, it
is clear that any added mass would be absorbed into the fluid
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TABLE I. Fluid-solid interfacial and coexistence properties for the hard-sphere system. The physical quantities reported in the table are the
fluid and solid densities, the pressure, the chemical potential, and the fluid-solid interfacial free energies for multiple faces of the FCC solid,
except for the last two rows reporting cDFT results for BCC The rows reporting values from this work are marked by an asterisk. The results
of Davidchack et al. are taken from [25] and those of Oettel et al. from [24].

Source ρ f σ
3 ρsσ

3 βPσ 3 βμ βγ(001)σ
2 βγ(110)σ

2 βγ(111)σ
2

WBII (Oettel et al.) 0.945 1.039 11.87 16.38 0.69 0.67 0.64
WBII (� ≈ 0.0125σ )* 0.946 1.039 11.94 16.46 – – –
WBII (� ≈ 0.025σ )* 0.950 1.041 12.16 16.68 0.69 – –
WBII (� ≈ 0.05σ )* 0.966 1.046 13.09 17.65 0.71 – –
esFMT (� ≈ 0.05σ )* 0.942 1.027 11.96 16.50 0.51 0.47 0.46

Sim. (Davidchack et al.) 0.940 1.041 – – 0.58 0.56 0.54
Sim. (Oettel et al.) 0.938 1.039 – – 0.63 0.61 0.60

BCC WBII (Turci et al. [31]) 1.016 1.045 – – 0.34 0.33 0.32
BCC esFMT (� ≈ 0.05σ )* 0.967 1.008 13.45 18.06 0.21 0.20 0.20

leaving the interface in the minimum energy (i.e., complete
lattice plane) state. We therefore use the minimum value on
this curve to define the surface tension for the corresponding
value of chemical potential. Further justification for this pro-
cedure is given in Appendix B 6 b where it is shown that this
gives the best estimate of the value at coexistence and here
it is simply noted that in the thermodynamic limit the fluid
volume becomes infinite and any finite added mass can go into
the fluid phase, neither changing the structure of the interface
nor the supersaturation.

C. The paradigmatic test case: Hard spheres

The hard-sphere system is the only one for which we found
cDFT results in the literature using modern cDFT functionals
and unconstrained minimizations: Oettel et al. [24] used the
White Bear II (WBII) model cDFT functional [32] to calculate
liquid-solid interfacial energies for several crystalline planes.
To validate our codes and procedures, they were used to per-
form the same calculation, with the same functional, for the
(001) face of an FCC crystal, and the results given in Table I
are in good agreement with theirs. This comparison was fur-
ther used to benchmark the sensitivity of the calculations to
computational details such as grid spacing, etc. Finally, and
most relevant to the present work, results are given for the
recently proposed esFMT hard-sphere model as well as recent
simulation results. One observes that the results using both
cDFT functionals are of similar quality compared to simu-
lation, with the difference however that the esFMT results
are generally lower than the simulation values, whereas the
WBII results are higher. Qualitatively, the ordering γ(111) <

γ(110) < γ(001) of crystal faces according to the interfacial free
energy is consistent in all cases considered. Note, however,
that this differs from the naive expectation that interfacial free
energy is inverse to the planar density: for FCC, the ordering
by planar density is s(111) > s(100) > s(110). This is because the

surface free energy also depends on the nontrivial structure of
the fluid near the interface: the planar density is expected to be
the dominant factor only for interfaces with a vacuum (or low-
density vapor). Quantitatively, the difference of 10% to 20%
between cDFT and simulation results should be contrasted
with the significant variation between simulations results re-
cently reported in the literature, which is at least half this
range. This comparison shows that for interfacial properties,
the esFMT model is competitive with the widely used WBII
functional, which is in accord with previous work concerning
thermodynamics [21]. Finally, recall that there is no question
of FCC-BCC polymorphism in hard spheres because the BCC
phase is unstable to shear [33].

III. INTERFACIAL PROPERTIES
OF THE LENNARD-JONES SOLID

A. Lennard-Jones potential

Our calculations are based on the Lennard-Jones potential
with energy scale ε and length scale σ ,

vLJ (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (5)

which has been used in a large body of literature as a proto-
typical small-molecule potential and as a basis for modeling
both noble gases and metals. However, the LJ potential is
almost never used in this form: for practical reasons, its range
is truncated at some cutoff distance, rc, and it is shifted giving
v(r) = vLJ (r) − vLJ (rc) for r < rc and zero otherwise. For
molecular dynamics simulations, it is often furthered modified
so that its first derivative, the force, also goes smoothly to zero
at the cutoff with the most notable example of this kind of
modification being that of Broughton and Gilmer [34] which
is

v(r) =

⎧⎪⎨
⎪⎩

vLJ (r) + C1, r � 2.3σ

C2
(

σ
r

)12 + C3
(

σ
r

)6 + C4
(

σ
r

)−2 + C5, 2.3σ � r < 2.5σ

0, 2.5σ � r

(6)
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FIG. 3. Phase diagram of the Lennard-Jones potential showing
coexistence lines for both the FCC and BCC solid as calculated using
our cDFT model. The liquid-vapor critical point is shown as an open
circle, the vapor-liquid-FCC triple point is shown as filled circles,
and the vapor-liquid-BCC triple point as filled squares

with C1 = 0.016132, C2 = 3136.6, C3 = −68.069, C4 =
−0.083312, C5 = 0.74689. (The sign of C4 is incorrectly re-
ported as positive in the original publication.)

The cDFT model, with its mean-field treatment of the
long-ranged part of the potential, is not designed to be quanti-
tatively accurate and so not attempt was made to reproduce
any particular study. This work uses the simple cutoff and
shifted version of the LJ potential with rc = 3σ (consistent
with our previous work [23,27]).

Unlike the hard-sphere interaction, LJ systems exhibit the
standard vapor-liquid-solid phase diagram (see Fig. 3) and the
calculated values of the critical and triple points are given
in Table VI in the Appendixes. For LJ, the minimum free
energy solid phase is either FCC or HCP, depending on the
conditions [35], but there is little difference between their free
energies [27]. We chose to work with the FCC phase out of
convenience and because there are more simulation results
for this phase. Unless otherwise stated, these and all reported
results are for a computational grid spacing of 0.05σ .

In the following, our results are compared to simulations,
where possible, and to reduce the effect of differences in
details of how the potential is cut off [36] the temperature
was scaled to the triple point temperature (for FCC or BCC
as appropriate and denoted T ∗

FCC and T ∗
BCC, or generically

T ∗
XCC) determined from the underlying method (e.g., cDFT or

simulation). The point of the comparisons is thus not to show
quantitative correspondence but just to note that, when such
comparisons are possible, the cDFT results are physically
plausible.

In the following, reference is also made to “exact” zero-
temperature calculations. What is meant by this is simply that
molecules are treated as point particles and the total energy
evaluated as U = 1

2

∑
i �= j v(ri j ) for the relevant configuration:

i.e., a crystal slab adjacent to a vacuum in order to calculate
the surface tension. In bulk calculations, the dimensions of the
periodic box are relaxed to give a minimum of the energy U .
The solid-vacuum interfacial free energies are computed using
a box with the bulk solid dimensions and periodic boundary

FIG. 4. Interfacial free energies for the liquid-solid coexistence
in simple fluids. The temperatures are scaled using the corresponding
triple point temperature: T ∗

FCC or T ∗
BCC. The simulation data comes

from Laird et al. [37]. Error bars are a bit smaller than the symbols,
not taking the finite spacing � into account (see Appendix E for
details).

conditions in the x and y coordinates. The periodicity in the z
direction is removed to emulate the interface with a vacuum.
The molecular positions and dimensions of this solid slab
are in most cases fully relaxed (see Appendix C for a full
explanation).

B. Solid-liquid interfaces

The surface free energies from our calculations for solid-
liquid interfaces are shown in Fig. 4. For the FCC phase,
the ordering of the surface tensions is γ(111) < γ(110) < γ(001),
the same as found for hard spheres above. Note however
that the difference between the surface tensions goes to zero
near the triple point and grows as the temperature increases,
although it is never very large in the range of temperatures
considered here. The figure also includes simulation data from
Laird et al. [37] and shows that the values obtained are physi-
cally reasonable.

For the BCC phase, one sees that at all temperatures the
interfacial free energy is roughly half that of the FCC phase,
suggesting that the BCC structure is energetically more favor-
able than FCC for small clusters, which is a point discussed in
greater detail in the next section. The BCC values show very
little difference between the different crystal planes, although
one can say that γ(110) < γ(111) < γ(001) which, as for FCC,
is different from the planar densities which now order the
planes as s(110) > s(100) > s(111). To our knowledge, there are
no studies reporting liquid-BCC interfacial free energies from
simulation.

C. Solid-vapor interfaces

Interfacial free energies for FCC solid-vapor interfaces
are shown in Fig. 5 together with simulation results. In the
previous section, we described the finite-size effects resulting
in nonmonotonic behavior of the free energy as incomplete
crystal layers are constructed. This is discussed in detail in
Appendix B 6 b, but here it is noted that this effect is stronger
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FIG. 5. Interfacial free energies for the vapor-FCC solid coex-
istence in simple fluids, exposing the (001) plane. The temperatures
are scaled using the corresponding triple point temperature T ∗

FCC. The
simulation data come from [34] and [38]. The filled and open circles
are the cDFT minimal and maximal surface tensions, as discussed
in the text, except at zero temperature where the exact results are
shown. Error bars are a bit smaller than the symbols, not taking the
finite spacing � into account (see Appendix E for details).

for the the solid-vapor interface than for the liquid-vapor
interface. In the figure, the magnitude of the effect is il-
lustrated by showing both the minimum and the maximum
values of surface free energy resulting from it. The minimum
values—which are the physically relevant ones corresponding
to complete crystal planes—are again in reasonable agree-
ment with the available simulation values showing they are
physically reasonable, although the temperature dependence
of the cDFT results are somewhat stronger near the triple point
than observed in simulation. The simulation data comes from
two references that use different techniques. The group of
Broughton et al. [34] pioneered the calculation of interfacial
free energies in the 1980s using indirect methods; they obtain
γ by computing the surface entropy by thermodynamic in-
tegration from zero-temperature approximations. In contrast,
the recent results from Tipeev et al. [38] are computed with the
more direct crystal cleavage method. These two results—the
only ones for the vapor-solid interface that we are aware of
in the literature—differ significantly at higher temperatures
illustrating the difficulty of obtaining this information. Finally,
also shown in the figure are exact zero-temperature values.
As seen in Fig. 5, our results are not as consistent with these
the zero-temperature values, but this is likely due to the finite
size of the computational grid, as supported by the fact that
when the grid spacing is decreased from � ≈ 0.05σ to � ≈
0.025σ , the difference between the zero-temperature limit of
cDFT calculations decreases by a factor 2 (see Table VII in
the Appendixes).

Surface free energies for several planes of low Miller index
are given in Fig. 6. Calculations were also performed for
the BCC phase but there are a number of complications in
this case. While the (001) face presented no problems, when
we attempted to equilibrate the (110) and (111) BCC-vapor
interfaces we found that the entire BCC lattice was distorted;
see Fig. 7. Recall that these calculations are performed in a

FIG. 6. All interfacial free energies (FCC and BCC) for the
vapor-solid coexistence in simple fluids. The temperatures are scaled
using the corresponding triple point temperature: T ∗

FCC or T ∗
BCC. The

finite temperature values are from cDFT and the zero-temperature
values are the exact calculations. Note that the zero-temperature
calculations for BCC are offset on the temperature axis, for clarity.
Error bars are a bit smaller than the symbols, not taking the finite
spacing � into account (see Appendix E for details).

cell with periodic boundaries in the directions parallel to the
interface so that the system is symmetry-constrained and this
presumably explains why no such distortion was observed
when using the (001) BCC crystal face. It might be thought
that this apparent instability is a consequence of the fact that
the cDFT functional is based on a hard-sphere functional and
that hard spheres are well known to be unstable in a BCC
configuration. To explore this further, we performed exact
zero-temperature calculations for a BCC (110) crystal face
in contact with a vacuum to which a small amount of noise
was added to the molecular positions. We again found that the
BCC structure was not stable but rather deformed via a sliding
of the (110) plane (more details are given in Appendix C). In
Fig. 8 we show that the BCC structure in contact with a vapor
(or vacuum at zero temperature) is in fact fully unstable (as
opposed to metastable) to this distortion: the energy decreases
monotonically as small displacements of the (110) plane are
made. (Note that by symmetry, one expects that the BCC
structure is a stationary point—and so a local maximum—of
the free energy.) Furthermore, we find that if we relax a fully
periodic BCC crystal (after adding a small amount of noise
to the system) while allowing the shape of the periodic cell
to change, the system always deforms to an HCP structure,
regardless of the amplitude of the noise.

These observations change as a function of the computa-
tional grid spacing. For coarser lattices (e.g., � = 0.2σ ), the
possible displacements of the (110) plane are larger and the
minimum in the free energy is not observed, as evidenced in
Fig. 8. Indeed, the equilibrium shift of the (110) plane is on
the order of 0.1σ which is thus smaller than the computational
grid spacing in this case and so inaccessible. Nevertheless,
when we try to relax a (110) interface on the coarser lattice,
a distortion of the bulk is observed, an example is shown
in Fig. 7, albeit somewhat different from that seen on the
finer lattice. We believe this is caused by the large distances
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FIG. 7. BCC interface distortions in solid-vapor calculations resulting from cDFT calculations at kBT/ε = 0.3. The interfaces are
perpendicular to the (110) direction and the (001) (i.e., z direction) is perpendicular to the image. The top figure shows the positions of
atoms (density peaks) after relaxation where different shades indicate different z positions. The structure is distorted throughout the crystal,
and the interfaces are not flat in contrast to the middle image in which only the densities in the four layers at the interface were allowed to
relax (thus more faithfully simulating a semi-infinite bulk crystal). The lower image shows results of unconstrained relaxation with a coarser
grid (� ≈ 0.2σ ). The interior structure is distorted but the faces remain flat. These images were generated using Visit [39].

between computational grid sites, which prevents a proper
relaxation along the direction normal to the interface. A better
arrangement of the atomic positions is thus found by making
an angle with the z axis, which allows for intermediate dis-
tances between atoms to be accessible.

The instability of the BCC structure also disappears when
we increase the temperature. In Fig. 8 we show that when the
temperature increases, the free energy of the minima corre-
sponding to the shifted plane also increases and eventually
disappears when the temperature reaches the vapor-liquid-

FIG. 8. Variation of the Helmholtz free energy per particle (i.e.,
the internal energy per particle in the case of the zero-temperature
limit) as we shift the atom positions on one of the (110) planes. The
red curve shows the exact zero-temperature results while the dotted
and dashed lines show partially relaxed cDFT calculations for two
different grid spacings. The minimization in the cDFT calculations is
constrained to Gaussian peaks for the solid density, in order to keep
the atoms in place. For LJ, the thermodynamic conditions are that
of the BCC-vapor coexistence while for hard spheres it is BCC-fluid
coexistence. The black curve labeled “HS” are results of hard-sphere
calculations.

BCC triple point. This is in agreement with the observation of
a stable BCC structure in the liquid-solid coexistence region,
at higher temperatures.

Finally, Fig. 8 also shows results for hard spheres. In this
case, there is only a single (high-density) fluid phase and
there is no instability. This is consistent with the fact that
no instability is seen in the LJ fluid interface since at high
temperatures, the LJ system approaches the hard-sphere limit.

The conclusion is that the LJ BCC crystal-vapor interface
is indeed unstable below the triple point, at least for the (110)
plane. Our observations are in agreement with previous work,
see, e.g., Ref. [40] and the remarks in Swope and Andersen
[41]. We were nevertheless able to determine BCC surface
tensions for all three planes by using a modified procedure
whereby the BCC slab was taken from a previously relaxed
perfect crystal and the interior of the slab was frozen (i.e.,
not allowed to relax), with only the layers near the interface
relaxing. Further details of the procedure, and a comparison
to unconstrained calculations in the case of FCC, are given
in Appendix D. Finally, having identified this instability, we
tested it for the case of a BCC-liquid interface and found that
even when starting with a displacement in the unstable direc-
tion, the system relaxed to a perfect BCC-liquid interface thus
suggesting (but not proving) that the BCC-liquid interface is
metastable, as opposed to the BCC-vapor case.

IV. CONCLUSIONS

The work presented here demonstrates that classical den-
sity functional theory can be used to determine the surface
free energies for both hard spheres and the Lennard-Jones
potential. For hard spheres, our results show that the explicitly
stable FMT gives surface free energies that compare as well to
simulation as the older White Bear models. For the LJ solid,
we determined the surface tensions for the three lowest-index
faces for both the FCC and BCC phases in contact with the
liquid phase (the melt) and the vapor phase. It was noted
that, in accord with zero-temperature results, the BCC-vapor
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interface is unstable for certain crystal faces but there was
no indication that this was the case for the interface with
the liquid. Although our cDFT model is not expected to be
quantitatively accurate, we nevertheless found that when the
temperature is scaled to the triple point, the FCC surface
tensions compare reasonably well to the available simulation
results. Interestingly, the differences between the surface ten-
sions of the crystal faces seems to become very small (perhaps
to vanish) at the triple point—for both the vapor and the
liquid—and to increase as one moves away from it.

Our methods should be applicable to a wide range of
systems involving other interaction potentials. Furthermore,
the results can be used to parametrize simple models for the
free energy of interfacial systems such as the capillary model
that is a key ingredient of classical nucleation theory [1]. In
particular, we have recently discussed the use of our results
to understand the competition between FCC and BCC phases
during the crystallization in LJ systems [42].
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APPENDIX A: THE CDFT FUNCTIONAL

The cDFT functional used in this work is the “standard”
model consisting of a hard-sphere contribution and a mean-
field treatment of the attractive part of the potential,

F [ρ] = FHS(d (T ; [v0]), T ; [ρ])

+1

2

∫
dr1

∫
dr2 ρ(r1)ρ(r2)watt(r12). (A1)

The potential is divided in two using the standard WCA pre-
scription [45–47] v(r) = v0(r) + w(r) with the short-ranged
part,

v0(r) = [v(r) − v(r0)]�(r0 − r), (A2)

where r0 is the minimum of the potential v(r) and �(x) is the
step function which has value one for x > 0 and zero for x <

0. The attractive part of the potential is w(r) = v(r) − v0(r).
From this, we calculate the effective hard-sphere diameter
using the Barker-Henderson prescription [48],

d =
∫ r0

0
(1 − e−βv0(r) )dr. (A3)

The hard-sphere part is divided into an ideal-gas contribu-
tion and an excess contribution,

FHS(d, T ; [ρ]) = FIdeal(T ; [ρ]) + Fex(d, T ; [ρ]), (A4)

where the (exactly known) ideal gas functional is

FIdeal(T ; [ρ]) = kBT
∫

[ρ(r) ln ρ(r) − ρ(r)] dr. (A5)

For the excess part we use the fundamental measure form

Fex(d, T ; [ρ]) =
∫

�[�n(r, d; [ρ])] dr, (A6)

where �(�n) is a rational function of the fundamental mea-
sures, �n(r, d; [ρ]), which are linear convolutions of the local
density:

nα (r, d; [ρ]) =
∫

wα (r − r′; d )ρ(r′) dr′. (A7)

The weights used in FMT (for a single species) are
wη(r, d ) = �[(d/2) − |r|], which generates the average of
the density over a the volume of a hard-sphere, and the
scale, vector, and tensor weights ws(r, d ) = δ[(d/2) − |r|],
wv (r, d ) = r̂δ[(d/2) − |r|] and wT (r, d ) = r̂r̂δ[(d/2) − |r|]
respectively, which average the density over a sphere of di-
ameter d . Different versions of FMT (e.g., “White Bear,”
“esFMT,” etc.) are distinguished by their particular forms for
the function �. We use the “explicitly stable FMT” or esFMT
introduced in Ref. [21] for which

�(�n) = − 1

πd2
ns ln(1 − nη ) + 1

2πd

n2
s − n2

v

1 − nη

+ 1

24π

× n3
s − 3nsn2

v + 3nv · nT · nv − Tr
(
n3

T

)
(1 − nη )2

. (A8)

APPENDIX B: DETERMINATION OF THE INTERFACIAL
FREE ENERGY

1. Computational grid

The calculations are performed on a Nx × Ny × Nz compu-
tational grid with spacings �x, �y, and �z. The dimensions
of the computational grid are chosen to match multiples of
the solid lattice constants by adjusting the grid spacings. The
number of points Nx, Ny, Nz are fixed and are multiples of the
points N ′

x, N ′
y, N ′

z defining a single solid cell. It is important to
keep the same number of points for the grid—up to an integer
multiple—in order to be consistent with the thermodynamics
of the discrete system (physical properties such as the bulk
free energies at coexistence will depend on the discretization).
We find that working with the same number of points across
calculations is easier than imposing a fixed spacing, because
we can determine the equilibrium lattice constants with con-
tinuous increments in the grid spacing, rather than by discrete
jumps as we would have by changing the number of points.
Finally, the lattice constants used in the interface calculations
are determined from homogeneous (bulk) calculations and
correspond to those of the relaxed solid at coexistence with
the fluid phase.

To compute the interfacial free energies for multiple planes
of the BCC and FCC lattices, we have to orient the solid in the
(rectangular) computational grid so as to expose the desired
Miller plane on one of the slab. The common representation
of the BCC and FCC lattices already features the (001) plane
on the side of the cubic cell; the task is, however, nontrivial
for all other cases. The bases we used are given in Table II
for all lattices and planes considered. The relative dimensions
of the rectangular cells as well as the exact number of points
N ′

x, N ′
y, N ′

z that constitute each unit cell are given in Table III.
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TABLE II. Bases of the rectangular cells used to describe the BCC and FCC solid lattices, depending on the Miller plane that must be
exposed on the side (looking from the z direction).

BCC (001) BCC (110) BCC (111) FCC (001) FCC (110) FCC (111)

0 0 0 0 0 0 1/6 1/2 0 0 0 0 0 0 0 0 0 0
1/2 1/2 1/2 1/2 1/2 0 0 0 1/3 1/2 1/2 0 1/2 1/2 1/2 1/2 1/2 0

1/2 0 1/2 1/6 1/2 1/2 1/2 0 1/2 1/2 1/6 1/3
0 1/2 1/2 0 0 5/6 0 1/2 1/2 0 2/3 1/3

1/2 1/2 1/3 0 1/3 2/3
1/3 0 2/3 1/2 5/6 2/3
1/2 1/2 5/6
1/3 0 1/6
5/6 1/2 2/3
2/3 0 0
5/6 1/2 1/6
2/3 0 1/2

The numbers N ′
x, N ′

y, N ′
z are chosen in a way that the grid

spacings are as close as possible to a target value, usually
� ≡ �x = �y = �z = 0.05σ , considering the usual dimen-
sions of the unit cell. Out of convenience, we keep the
same values across all calculations (the lattice constants
do not change drastically between different thermodynamic
conditions). We also made some calculations with the
larger spacings � ≈ 0.2σ using the same number of points
N ′

x, N ′
y, N ′

z that we used for the fine grid � ≈ 0.05σ , and we
simply used four times more unit cells in the computational
grid. This way the number of points is still large enough to
remain close to the target spacing, in this case � = 0.2σ .

2. Thermodynamic parameters

The thermodynamic parameters as calculated for a compu-
tational grid with spacing �/σ = 0.05 are given in Table IV.

3. Initial condition

The solid phase is initialized using Gaussian peaks located
at the lattice positions, and occupies about half of the compu-
tational grid. The peaks are normalized to 1 − c, where c > 0
is a vacancy concentration usually set to 0.01. Addition of the
liquid requires some care due to the fact that all FMT free
energy functionals diverge when the local packing fraction,
the fundamental measure nη(r), is greater to or equal to one.
In the solid, particularly the FCC phase, at low temperatures,
the local packing fraction is very close to this threshold near

the lattice sites, so that simply adding the uniform fluid can
easily lead to divergent profiles. We have used two different
methods, depending on the particular interface. In the first
method we start with a sharp interface between the fluid and
solid phases, leaving a gap of one hard-sphere diameter in
length to separate the Gaussian peaks from the homogeneous
fluid density ρ f (r):

ρ(r) =
⎧⎨
⎩

ρs(r) if |z| < Lz/4
0 if Lz/4 < |z| < Lz/4 + σ

ρ f (r) if Lz/4 + σ < |z| < Lz/2
, (B1)

where ρs(r) is the sum of the Gaussian peaks approximating
the solid density. To compensate for the presence of the gap,
we initialized the fluid density with the coexistence value
multiplied by the ratio Vf /V ′

f of volumes of the fluid region
with and without the gap.

The second method is a smooth interpolation between the
Gaussian peaks and the homogeneous fluid density,

ρ(r) = ρs(r) f (z; z1,w) + ρ f (r) f (z; z2,w), (B2)

using two double sigmoid functions,

f (z; z0,w) = 1

2

[
tanh

(
z0 + z

w

)
+ tanh

(
z0 − z

w

)]
. (B3)

The inflection points of the double sigmoids, z1 and z2 = z1 +
σ , are located one hard-sphere diameter apart, once again to
avoid nonphysical packing fractions. The parameters are set

TABLE III. Dimensions of the rectangular cells in terms of the interatomic distance d . Columns 2–4 give the lattice constants for the solid
lattice. Columns 5–7 give the number of points used for the computational grid in most calculations. The last two columns give the number of
planes, per unit cell, normal to the z direction as well as the interplanar distances dplanes.

Lattice (plane) alatt/d blatt/d clatt/d N ′
x N ′

y N ′
z No. planes dplanes/d

BCC (001) 2/
√

3 2/
√

3 2/
√

3 26 26 26 2 1/
√

3
BCC (110) 2/

√
3

√
8/3

√
8/3 26 37 37 2

√
2/3

BCC (111) 2
√

2
√

8/3 2 64 37 45 6 1/3
FCC (001)

√
2

√
2

√
2 32 32 32 2 1/

√
2

FCC (110)
√

2 1 1 32 23 23 2 1/2
FCC (111) 1

√
3

√
6 23 40 56 3

√
2/3
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TABLE IV. Lennard-Jones critical point and triple points in the
cDFT model.

kT/ε ρvaporσ
3 ρliquidσ

3 ρsolidσ
3

Liq-Vap critical point 1.295 0.245 0.245 –
FCC triple point 0.798 9.83 × 10−3 0.675 0.916
BCC triple point 0.742 6.12 × 10−3 0.704 0.874

to z1 = Lz/4 and w = σ/2 for vapor-solid interfaces and w =
2σ for the liquid-solid case, where the interface is wider.

The liquid-solid data shown in the main text have been gen-
erated using the first initialization method. In the vapor-solid
case, the first method has been used for the FCC (001), FCC
(111), and BCC (001) curves, but not for the three others. FCC
(110) has been initialized with the smooth interface and due to
the BCC instability, BCC (110) and (111) have been generated
with a different protocol, described in Sec. D. In that case,
the initial condition used the same formula (B2) to create a
smooth interface but the solid density is not a sum of Gaussian
peak but rather the fully relaxed profile at coexistence. In the
end, we find that both methods lead to the same results and
the exact shape of the initial profile is not very important. The
use of two different initialization methods was simply a result
of experimentation to see if one method might lead to faster
convergence than another but in the end no such trend was
found.

4. Minimization of the density functional

The functional is minimized using a modified version
of the FIRE2 algorithm, a kind of gradient descent with
inertia described in [27]. In the low-temperature interface
calculations, the free energy landscape is very hard to navi-
gate through because, as mentioned above, the local packing
fractions are very close to one in the fully relaxed solid.
This means the minimization algorithms can end up wasting
significant time stepping into the unphysical region and back-
tracking. To avoid this, we added an additional term to the
FMT functional that creates an artificial cost for stepping close
to η = 1. The new functional,

Fλ[ρ] = F [ρ] +
∫

λ

(1 − η(r))2
dr, (B4)

is used to iterate minimizations starting with a large ampli-
tude for the repulsive term and then progressively decrease it
until no significant change in the physical properties can be
detected. We usually chose to reduce λ by a factor of 10 each
step, starting from βλσ 3 = 10−7 and going down to βλσ 3 =
10−17. The typical relative difference between the last two
iterations is around 10−5 for the interfacial free energy. The
effect of this mechanism is to allow the densities in regions
away from the lattice peaks to relax before making the fine
adjustments needed at the peaks.

5. Minimizing at constant chemical potential and minimizing
at constant particle number is equivalent

The two calculations discussed in the main text were
minimizing the functional �μ[ρ] = F [ρ] − μN[ρ] at fixed

chemical potential, μ, and minimizing the Helmholtz func-
tional F [ρ] at constant particle number, N0. The latter can be
implemented by introducing a Lagrange parameter to define

LN0 [ρ] = F [ρ] − λ(N[ρ] − N0) (B5)

and minimizing to get

0 = δLN0 [ρ]

δρ(r)
= δF [ρ]

δρ(r)
− λ,

0 = ∂LN0 [ρ]

∂λ
= N[ρ] − N0. (B6)

Multiplying the former by the density, integrating and making
use of the latter gives

λ = 1

N0

∫
ρ(r)

δF [ρ]

δρ(r)
dr (B7)

so that the calculation reduces to

δF [ρ]

δρ(r)
= 1

N0

∫
ρ(r)

δF [ρ]

δρ(r)
dr. (B8)

In contrast, minimization at constant chemical potential gives

δF [ρ]

δρ(r)
= μ, (B9)

so that it is clear that minimizing at constant particle number
N0 to get the density ρN0 (r) gives the same result as minimiz-
ing at constant chemical potential

μ = 1

N0

∫
ρN0 (r)

δF [ρ]

δρN0 (r)
dr, (B10)

and the two procedures are therefore equivalent.
Another way to look at this is to introduce the parameteri-

zation

ρN (r; [g]) = N
g(r)∫

g(r′) dr′ , (B11)

in which case the usual grand-canonical minimization of
�[ρ] with respect to density now becomes minimization of
�[ρN [g]] with respect to both N and g(r). Holding N constant
and minimizing only with respect to g gives

0 = δ�[ρN [g]]
δg(r)

=
∫ (

δ�[ρ]

δρ(r′)

)
ρ=ρN [g]

δρN (r′; [g])

δg(r)
dr′,

(B12)
and using

δ�[ρ]

δρ(r′)
= δF [ρ]

δρ(r′)
− μ,

δρN (r′; [g])

δg(r)
= [δ(r′ − r) − 1]

N∫
g(r′′) dr′′ (B13)

gives(
δF [ρ]

δρ(r)

)
ρ=ρN [g]

= 1

N

∫
ρN (r; [g])

(
δF [ρ]

δρ(r)

)
ρ=ρN [g]

dr,

(B14)

which is the same as Eq. (B8) except that now we solve for
g. In the following, we will denote the chemical potential
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resulting from this minimization with respect to g at constant
N as

μN ≡ 1

N

∫
ρN (r; [g])

(
δF [ρ]

δρ(r)

)
ρ=ρN [g]

dr. (B15)

6. Protocol for determining the surface tension and resulting
finite-size effects

a. The protocol

Minimizing the free energy for an interfacial system at
constant chemical potential can only be done at phase coexis-
tence. This means that one must know the chemical potential
for coexistence exactly: any error will lead to the interface
moving until one phase fills the entire computational cell.
Furthermore, for a finite system, the chemical potential that
gives phase coexistence will not be the same as that for bulk
coexistence because the effects of the interface extend into the
“bulk” region so that, in principle, one has to move infinitely
far from the interface in order for the density to reach its bulk
value.

On the other hand, minimizing at constant particle number
always gives phase coexistence with different values of the
total number of particles being accommodated by changing
the size of the two “bulk” regions, with no change to the
interface. When one of the phases is a solid, however, there are
additional complications. In the extreme case of a solid-vapor
interface, the interface cannot be moved continuously since
it involves discrete lattice planes for the solid. So, starting
with a complete planar interface and adding some mass, the
mass must partly go into creating a new partial crystal plane
and partly into raising the density of the vapor. The former
will inevitably increase the interfacial energy and the latter
increases the chemical potential. One therefore expects that,
starting with a complete crystal plane, as mass is added the
surface tension will increase, reach some maximum and then
decrease again until reaching a minimum when a new crystal
plane is formed with a corresponding variation of the chemical
potential. This is illustrated in Fig. 2, taken from our calcula-
tions.

Our protocol for determining the surface tension is there-
fore as follows. First, an interfacial system is equilibrated at
constant particle number, N , giving in the end the relaxed
density, ρN (r), and the chemical potential μN as defined
above. We then determine the bulk properties of the two
phases at this chemical potential by minimizing the grand-
canonical free energy giving the average bulk density of
each phase, ρ̄μN ,i, as well as its grand-potential free energy
density ωμN ,i and the corresponding Helmholtz free energy
densities fN,i = ωμN ,i − μN ρ̄μN ,i. The Gibb’s partition is de-
termined using VN,1 + VN,2 = V and VN,1ρ̄N,1 + VN,2ρ̄N,2 = N
giving VN,1 = N−ρ̄N,2V

ρ̄N,1−ρ̄N,2
, etc., and the excess surface free energy

calculated as

γN = �μ[ρN ] − ωμN ,1VN,1 − ωμN ,2VN,2

2A

= F [ρN ] − fN,1VN,1 − fN,2VN,2

2A
, (B16)

where A is the area of the planar interface. As argued above,
the finite-size effects mean that the chemical potential is not

that at bulk coexistence which, in turn, implies that in general
ωμN ,1 �= ωμN ,2.

b. N dependence for a finite system

We examine the N dependence of the surface tension by
calculating the derivative

2A
dγN

dN
=

∫ (
δ�[ρ]

δρ(r′)

)
ρN

dρN (r′)
dN

d r′ − dωμN ,1

dN
V1

− dωμN ,2

dN
V2 − ωμN ,1

dV1

dN
− ωμN ,2

dV2

dN
. (B17)

Using Eq. (B8), one has that

d�[ρN ]

dN
=

∫ (
δF [ρ]

δρ(r′)

)
ρN

dρN (r′)
dN

dr′ − dμN N

dN

= μN

∫
dρN (r′)

dN
dr′ − N

dμN

dN
− μN

= −N
dμN

dN
, (B18)

and similarly for the homogeneous contributions, assuming
that the homogeneous calculations are performed in a volume
of size V0,

dωμN ,i

dN
= 1

V0

d�μN ,i

dN

= 1

V0

d[F [ρμN ,i] − μN
∫

ρμN ,i(r)dr]

dN

= 1

V0

∫ (
δF [ρ]

δρ(r′)

)
ρμN ,i

dρμN ,i(r′)
dN

dr′

− 1

V0

d[μN
∫

ρμN ,i(r) dr]

dN

= −ρ̄μN ,i
dμN

dN
, (B19)

giving the exact result

2A
dγN

dN
= −ωμN ,1 − ωμN ,2

ρ̄μN ,1 − ρ̄μN ,2
. (B20)

Let the value of the chemical potential and free energy density
at bulk coexistence be μ∗

12 and ω∗
12, respectively. For a liquid-

vapor interface, one expects the differences between ωμN ,i

and μN,i and the bulk coexistence quantities to be small and
decreasing with system size so dγN/dN should be similarly
small and decreasing with system size. On the other hand,
for a solid-vapor interface, as explained above, one expects
the surface tension to go through a periodic variation as mass
is added and new crystal planes are formed. This implies
that during each cycle, dγN/dN should go to zero twice: at
the minimum and the maximum of the surface tension so
that in both cases, one must have ωμN ,1 = ωμN ,2. Since this
is also expected to hold at bulk coexistence and since one
expects the thermodynamic limit to correspond to the case
of perfectly formed crystal planes, the minimum value of the
surface tension, as a function of N , would seem to be the best
estimate.
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c. Reducing the computational effort

It is possible to reduce the need for determining the bulk
free energies for every value of N as is needed in Eq. (B16).
To derive the expression, let the index a stand for either phase
1 or phase 2 and b be the other. Then expanding about the bulk
coexistence values gives

fN,a ≈ f ∗
a + f ′∗

a (ρμN ,a − ρ∗
a ) = f ∗

a + μ∗(ρμN ,a − ρ∗
a ) (B21)

and

VN,a ≈V ∗
N,a − V ∗

N,a

ρ∗
a − ρ∗

b

(ρμN ,a − ρ∗
a )

− V ∗
N,b

ρ∗
a − ρ∗

b

(ρμN ,b − ρ∗
μN ,b) (B22)

so that

fN,aVN,a ≈ f ∗
a V ∗

a + μ∗(ρμN ,a − ρ∗
a )V ∗

N,a

− f ∗
a

V ∗
N,a

ρ∗
a − ρ∗

b

(ρμN ,a − ρ∗
a )

+ f ∗
a

V ∗
N,b

ρ∗
a − ρ∗

b

(ρμN ,b − ρ∗
b ). (B23)

Adding the contributions for the two phases and simplifying
gives

fN,1VN,1 + fN,2VN,2

≈ f ∗
1 V ∗

1 + f ∗
2 V ∗

2 + [μ∗(ρ∗
1 − ρ∗

2 ) − ( f ∗
1 − f ∗

2 )]

× V ∗
N,1(ρμN ,1 − ρ∗

1 ) + V ∗
2 (ρμN ,2 − ρ∗

2 )

ρ∗
1 − ρ∗

2

. (B24)

However, the combination μρ − f = p, the pressure, and at
coexistence p∗

1 = p∗
2 so the term involving the chemical po-

tential vanishes showing that, up to second order, one has that

γN ≈ F
[
ρμN

] − f ∗
1 V ∗

N,1 − f ∗
2 V ∗

N,2

2A
, (B25)

which is the expression used in our calculations.

7. Bulk free energies

The bulk phases are homogeneous because they possess
translational symmetry: continuous translational symmetry in
the fluid phases (i.e., the density is a constant independent
of position) or discrete translational symmetry in the solid
(determined by the Bravais lattice). In the case of the fluid,
the determination of the density therefore reduces to solving
an algebraic equation. For the solid on must perform a full,
three-dimensional cDFT minimization. For this, the density
was initialized with Gaussian peaks centered on the lattice
positions, which are normalized to 1 − c, where c > 0 is the
vacancy concentration in the solid. We chose to minimize the
density functional at constant particle number because it was
found to be more convenient to have direct control over the
vacancy concentration. So, the minimizations were performed
for several concentrations of vacancies starting from 1 × 10−2

and dividing by 2 until reaching 1 × 10−6. The solid proper-
ties over this range of densities, including effective chemical
potentials and the free energies, are returned as an output of

TABLE V. Interfacial free energies from zero-temperature cal-
culations. The quantity shown is γ σ 2/ε for different levels of
relaxation: nothing relaxed, relaxing the distances between solid
planes parallel to the interface, and relaxing all the atom positions.

Interface type Not relaxed Relaxing planes Relaxing atoms

FCC (001) 2.604 2.585 2.578
FCC (110) 2.752 2.737 2.739
FCC (111) 2.485 2.480 2.474
BCC (001) 2.508 2.438 2.431
BCC (110) 2.379 2.373 –
BCC (111) 2.692 2.680 –

the calculation. We then use interpolations of these properties
to minimize the free energy with respect to lattice constant
and vacancy concentration at constant chemical potential.

Because our implementation does not allow precise calcu-
lations below c ≈ 10−6, we extrapolate the solid free energies
at higher chemical potentials assuming that the Helmholtz free
energy per unit volume and density does not vary for such
small changes in the vacancy concentration. This extrapola-
tion step is necessary to compute the solid bulk properties
at low temperatures since the vacancy concentrations are ex-
tremely small.

APPENDIX C: ZERO-TEMPERATURE CALCULATIONS

1. Surface free energies

Exact calculations can be carried out for a vacuum-solid
interface at a temperature of absolute zero. This is a limit case
for the vapor-solid calculations since the vapor density goes
to zero with the temperature. The interfacial free energy is
computed by summing the inter-particle energies of all pair of
atoms, U = 1

2

∑
i �= j v(ri j ), for a solid lattice in a rectangular

box with periodic boundary conditions only in the x and y
directions. The periodicity is purposefully broken in the z
direction in order to mimic the presence of an interface with a
vacuum.

The computational grid is made out of 1 × 1 × N unit cells
of the solid, using the same bases and dimensions given in
Tables II and III. When computing the total energy of the
solid slab, we make enough copies of the lattice in the x
and y directions in order to compute all the interactions up
to the potential cutoff distance. The number of cells in the
z direction, N , is large enough so that the two interfaces do
not interact with each other. In practice, the length of the
computational cells in the z direction are so that there are at
least 25 solid planes in the slab.

The dimensions of the computational grid are that of the
relaxed solid cell at coexistence with the vacuum. The cor-
responding lattice constants are found by minimizing the
internal free energy of a homogeneous solid (i.e., with peri-
odic boundary conditions in all directions). The lengths in the
x and y directions are fixed during the relaxation but the length
in the z direction is allowed to change so that the interplanar
distances can relax.

In Table V we give three sets of data for the surface free
energies. The first set are interfacial free energies computed
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FIG. 9. Instability of the BCC interface in a zero-temperature calculation: Relaxed atoms (in blue) starting from the regular BCC lattice
positions (in red). The displacements of the atoms in the slab are the same as those shown in Fig. 10 (same projection on the first image).
These displacements are almost parallel to (110) planes, but due to random perturbations imposed on the initial lattice the system is divided
in domains where the shift of the atomic positions occurred in different directions. The side lengths of the box in the directions parallel to
the interface are kept fixed during the minimization of the internal energy and have periodic boundary conditions. The direction normal to the
interface does not have periodic boundary conditions to emulate the presence of an interface with a vacuum, located on the left and right faces
of the box. The length in the normal direction is allowed to change, but this image shows a superposition of the initial and final configurations
where the atom positions have been rescaled to fit in the same bounding box. The initial density of the solid in the slab is the coexistence
value of 1.0536 σ−3. The lattice dimensions have been determined using the two-atom BCC cell (not subject to the plane shift), minimizing
the internal energy per particle. The visualization is performed using the program Ovito [49].

from the unrelaxed solid slab in contact with a vacuum. The
surface free energy is computed in a manner similar to what
we use for cDFT calculations,

γ = Uslab − ehomNslab

2A
, (C1)

where Uslab is the total energy of the solid slab (no periodic
boundaries in the z direction), ehom is the internal energy per
particle of the homogeneous solid, Nslab is the number of
atoms in the slab and A is the contact area between the vacuum
and one side of the solid slab. Note that at zero temperature,
internal energies and free energies are the same quantities.
In the column labeled “relaxing planes,” the interfacial free
energy is given when we allow the interplanar distances to
change, for planes parallel to the interface, keeping the atoms
fixed on these planes. In the last column, “relaxing atoms,”
all the atomic positions are allowed to change as indepen-
dent variables. The results in these last two calculations are
almost the same because the atoms keep the same configu-
ration after the complete minimization. The only exception
are the BCC (110) and (111) interfaces, which are subject
to the (110) plane sliding instability of the BCC structure
(see Fig. 9).

2. Instability of the BCC lattice

As mentioned in the main text, the BCC structure is un-
stable with respect to a displacement of some (110) planes.
Relaxing every atom positions in our BCC (110) and (111)
interface calculations result in a different structure than the
regular BCC lattice, both at the interface and deep into the
bulk (see Figs. 7 and 9).

We further investigate this phenomenon with zero-
temperature calculations, starting from a unit cell that exposes
the BCC (110) plane (see Tables II and III). We first equi-
librate the cell by minimizing the internal free energy with
respect to the interatomic distance. Then we slide one of
the (110) planes by moving the z = clatt/2 atoms in the y
direction. Figure 8 shows the energy as a function of the
displacement of the (110) plane. At zero temperature, the
internal energy decreases monotonically with the displace-
ment until an equilibrium value is reached. That equilibrium
shift is lshift = 0.0963 clatt, which is 0.1572 d in terms of the
interatomic distance. The corresponding variation for the in-

ternal energy per particle is −0.0586 ε. Calculations in which
we relax the positions of all the atoms in the cell give the
same values at the level of precision considered (keeping the
dimensions of the cell fixed). Figure 10 shows the resulting
configuration when all the atomic positions are relaxed. In the
first of the four images, the main distortion is that the middle
row of atoms moves horizontally which is the sliding of the
(110) plane while some smaller relaxation occurs in the two
rows adjacent to the sliding row.

In addition to relaxing the atom positions, one can also
relax the lattice dimensions by allowing the lattice vectors
to relax. This is not a situation we encounter in our cDFT
calculations, as the dimensions are fixed, but it helps under-
stand which structure the BCC lattice is relaxing towards.
What we observe by doing such calculations is that the com-
plete relaxation of the BCC lattice end up with the HCP
configuration. To show this, we once again minimized the
internal energy of the homogeneous BCC solid, starting once
again with the BCC (110) cell and periodic boundary con-
ditions. In addition to the 3N coordinates of the atoms in
the cell, six parameters are necessary to define the lattice
vectors. These parameters are the three lattice constants,
i.e., the vector lengths, and the three angles between them
(α, β, γ ). Relaxing all 3N + 6 parameters results in an HCP
configuration.

APPENDIX D: STABILIZATION BY FREEZING
THE SOLID BULK

To avoid the distortions in BCC-vapor calculations, we
tested a few techniques to artificially stabilize the density
profile. The most practical method we found is to “freeze”

TABLE VI. Triple point temperatures T ∗ for various lattices and
discretization spacing. The last row shows a quadratic extrapolation
of the results from the three finest grid spacings.

�/σ T ∗
BCC T ∗

FCC

0.2 0.517 0.549
0.1 0.695 0.726
0.05 0.742 0.798
0.025 0.754 0.818
Extrap. 0.759 0.827
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FIG. 10. Instability of the BCC lattice in a zero-temperature calculation: Relaxed atoms (in blue) starting from the lattice positions in
the BCC (110) cell (in red). The lattice dimensions are kept fixed during the minimization of the internal energy. The images on the left are
projections on each axis, exposing the (001), (110), and (11̄0) planes, respectively. The atoms displacement are almost parallel to the (110)
plane. In this example the density of the solid is 1.0536 σ−3, as in Fig. 9. The visualization is performed using the program Ovito [49].

the bulk solid by preventing the density profile from being
relaxed in a large portion of the solid slab. We do this by
setting the free energy derivatives to zero in this region so that
the densities are never updated in the minimization algorithm.
(Note that in this case, the bulk region is initialized with
fully relaxed densities coming from a homogeneous-solid
calculation.)

The FCC (001) solid-vapor interface, which is stable under
all circumstances, was used as a test case to quantify the
amount by which we overestimate interfacial free energies
calculated using this method. Allowing the density to relax in
a region of about 5σ deep in the solid slab, which is about the
width of the interface, we found that the interfacial free energy
is 3 × 10−3 ε/σ 2 higher than the value from unconstrained
calculations.

APPENDIX E: ESTIMATION OF UNCERTAINTIES

Uncertainties on the surface free energies are introduced in
many steps of the calculations, due to limits on computational
resources. In this Appendix we list the major sources of errors
and estimate their contribution to the overall uncertainty.

The first major source or error is the finite size of the
computational cell. This is already the cause of the non-
monotonic variation of the free energy, which is detailed in
Appendix B 6 b. Another effect to consider is that if the solid
slab is too small the two interfaces can interact with each other
and this will corrupt the value for the surface free energy. We

TABLE VII. Influence of the discretization spacing on the prop-
erties of the FCC (001) interface computed at kT/ε = 0.1. The
interfacial free energies in different reduced units are shown next to
each other for comparison. Triple point values are marked with an
asterisk.

�/σ γσ 2/ε γ ∗σ 2/ε T/T ∗

0.2 2.15 1.17 0.182
0.1 2.33 0.92 0.138
0.05 2.38 0.90 0.125
0.025 2.46 0.91 0.122

checked liquid-solid calculations by comparing two sets of
results: the first generated with cells about 50σ in length and
the second with larger cells of about 80σ . The values in both
sets are very similar, the difference lying between 10−4 and
10−3 ε/σ 2. Only the FCC (111) and BCC (110) calculations
show a greater dependence on the system size with differences
in free energies as large as 0.02 ε/σ 2. For vapor-solid calcula-
tions, we simply compared the values of the reported surface
free energy minima and that after the removal of one lattice
plane. Since the interfaces are sharper at low temperatures,
we consider that this is a good estimation for the magnitude
of the interaction between the two interfaces. The differences
are once again smaller than 10−3 ε/σ 2.

Another source of error is the finite size of the discretiza-
tion spacing. Tables VI and VII show the effect of the
discretization on triple point temperatures and on the FCC
(001) surface free energy at a low temperature, respectively.
The last table shows a difference of about 0.08 ε/σ 2 between
surface free energies calculated using the finest spacings we
could afford. Table I also shows a few surface free energies
for different spacings, in the case of a hard-sphere interface,
showing a smaller variation of about 0.02 ε/σ 2. Although
the influence of the discretization spacing can be quite large,
it is not so important to us since we compare systems de-
fined on computational grids with very similar values for
the discretization spacing. Therefore, we do not consider that

TABLE VIII. Influence of small variations in the lattice spacing
� as we change the number of points N ′ ≡ Nx = Ny = Nz/Ncells

in the computational cell. The solid in these calculations is FCC,
and the interface exposes the (001) plane. The dimensions of the
computational grid are that of 1 × 1 × Ncells solid units cells. These
numbers can be used to estimate the inaccuracies in comparisons of
data from slightly different spacings.

Type kT/ε N ′ Ncells �/σ alatt/σ γ σ 2/ε

Vapor-solid 0.1 32 30 0.0490 1.5674 2.384
Vapor-solid 0.1 33 30 0.0476 1.5694 2.367
Liquid-solid 0.8 32 40 0.0511 1.63395 0.4316
Liquid-solid 0.8 33 40 0.0495 1.63424 0.4342
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TABLE IX. Uncertainties in surface free energy calculations. We give here all the contributions from what we identified as major sources
of errors, for all our calculations grouped into categories of similar uncertainties. In the last column we give the final error bar that we associate
with the calculations.

Calculation Uncertainties on γ (units ε/σ 2)

Lattice (plane) Type Temperatures Length Lz Spacing � Parity N ′
xi

Total

FCC (111) Liquid-solid 0.8 � kT/ε � 2.0 0.02 3 × 10−3 3 × 10−3 0.02
BCC (110) Liquid-solid 0.8 � kT/ε � 2.0 0.02 3 × 10−3 3 × 10−3 0.02
BCC (111) Vapor-solid 0.1 � kT/ε � 0.3 0.03 3 × 10−3 0.02 0.04
Others Liquid-solid 0.8 � kT/ε � 2.0 1 × 10−3 3 × 10−3 3 × 10−3 4 × 10−3

Others Vapor-solid 0.1 � kT/ε � 0.7 1 × 10−3 3 × 10−3 0.02 0.02

contribution for the calculation of error bars. Instead, the
difference between the discrete system and the exact limit of
zero spacing can be appreciated in the main text figures by
comparing the cDFT results to those of zero-temperature cal-
culations.

Despite being satisfied with finite-spacing data, we still
care however about the fact that the computational grid spac-
ing is not exactly the same in all calculations. As explained in
Appendix B 1, we choose the dimensions of the cell based on
the equilibrium lattice constants of the solid at coexistence
with the fluid. Because of this—and because the number
of lattice points in the computational cell is an integer—we
cannot choose a fixed grid spacing to use in all calculations.
This should however be a minor concern since the deviations
from the target spacing are about 1/30 of that spacing, and
the errors due to the finite spacing are already quite small
(about 0.1 ε/σ 2). We thus expect small errors about 0.1/30 ≈
3 × 10−3 ε/σ 2 in magnitude.

The last major source of uncertainty is related to the parity
of the number of points in the computational grid. Taking for
example the cubic FCC cell, peaks located on the center of
the cube faces will be centered on a site of the computational
grid if the number of points is odd but not if it is even. For the
narrow peaks of low-temperature calculations, this may have
a noticeable effect on the calculation results. We estimate how
much this affects the surface free energies we compute by
performing two calculations with different number of lattice
points for typical interfaces, which serves as benchmarks.
Table VIII displays results of such calculations for both liquid-
solid and vapor-solid interfaces. The effect is important (about
0.02 ε/σ 2) in low-temperature vapor-solid calculations, since
the solid peaks are very narrow and do not span over many

points in the computational grid. For that same reason it is less
of a concern in liquid-solid calculations where the difference
between results of two calculations with N and N + 1 lattice
points is about 3 × 10−3 ε/σ 2. In this case we may argue that
difference simply comes from the fact that the grid spacing is
slightly different and not because of the parity in the number
of lattice points.

A final concern one may have is that errors in the determi-
nation of bulk coexistence properties can propagate to the final
result for the surface free energy. Indeed, we use a finite set of
calculations and then interpolate the data several times first to
compute bulk free energies along an isotherm and then again
to find the coexistence point for that temperature. The result
of these approximations is that the bulk properties we use to
determine the surface free energy are not exactly the coex-
istence values. However, we have shown in Appendix B 6 c
that the surface free energy is only affected at second or-
der by deviations from coexistence, i.e., proportionally to
(μ − μcoex)2, and these small inaccuracies can therefore be
neglected.

All the contributions listed above along with the final un-
certainties we associate with our calculations are displayed
in Table IX. We report larger errors for some low-temperature
BCC (111) calculations (kT/ε � 0.3) for which we attempted
to stabilize the interface using the frozen bulk method. The
method was not always successful with these profiles and
we dispose of a limit amount of data to properly interpolate
the minimum of the surface free energy γ (N ). We therefore
reported the lowest values we got for the few properly stabi-
lized interfaces, along with large error bars corresponding to
the magnitude of variations between the valid calculations of
lowest surface free energies.

[1] D. Kashchiev, Nucleation: Basic Theory with Applications
(Butterworth-Heinemann, Oxford, 2000).

[2] M. Gallo, F. Magaletti, D. Cocco, and C. M. Casciola, Nucle-
ation and growth dynamics of vapour bubbles, J. Fluid Mech.
883, A14 (2020).

[3] P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod.
Phys. 57, 827 (1985).

[4] R. Evans, M. C. Stewart, and N. B. Wilding, A
unified description of hydrophilic and superhydrophobic
surfaces in terms of the wetting and drying transitions

of liquids, Proc. Natl. Acad. Sci. USA 116, 23901
(2019).

[5] D. Seo, A. M. Schrader, S.-Y. Chen, Y. Kaufman, T. R.
Cristiani, S. H. Page, P. H. Koenig, Y. Gizaw, D. W. Lee, and
J. N. Israelachvili, Rates of cavity filling by liquids, Proc. Natl.
Acad. Sci. USA 115, 8070 (2018).
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