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Boulevard du Triomphe, 1050 Brussels, Belgium

(Received 20 June 2022; revised 7 September 2022; accepted 10 November 2022; published 7 December 2022)

We use classical density functional theory (cDFT) to calculate fluid-solid surface tensions for fcc and bcc
crystals formed by hard spheres and Lennard-Jones (LJ) particles. For hard spheres, our results show that
the recently introduced “explicitly stable” functionals perform as well as the state of the art, and for both
interaction potentials, our results compare well to simulation. We use the resulting bulk and interfacial
energies for LJ to parametrize a capillary model for the free energy of small solid clusters and thereby
determine the relative stability of bcc and fcc LJ clusters. We show a crossover from bcc to fcc stability as
cluster size increases, thus providing insight into long-standing tension between simulation results and
theoretical expectations. We also confirm that the bcc phase in contact with a vapor is unstable, thus
extending earlier zero-temperature results. Our Letter demonstrates the potential of cDFT as an important
tool in understanding crystallization and polymorphism.
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Introduction.—Crystallization is a complex phenomenon
that is central to numerous physical, biological, and
technological applications (see, e.g., Kashchiev [1] for a
wide-ranging general discussion). It may involve the direct
formation of the crystal from the mother phase, usually
referred to as the classical nucleation, or via multiple steps
involving one or more other phases such as vapor to
droplets to crystals, usually called nonclassical nucleation
[2,3]. Importantly, crystals involve discrete spatial sym-
metries and the same substance can often form solids with
different crystal symmetries, i.e., different polymorphs, and
one polymorph can transform to another. Control of
polymorphism is a critical practical problem, notably in
the production of pharmaceuticals [4–7].
Crystallization begins with the formation of small clus-

ters and the preference for different polymorphs depends on
their relative free energies (as well as on separate kinetic
factors). The free energies of clusters is often thought of in
terms of the free energy of the bulk-phase interior and the
surface free energy (or surface tension). While the former is
quite accessible, determining solid-fluid surface tensions is
challenging, even using simulations [8,9]. An alternative to
direct simulation is classical density functional theory
(cDFT) [10,11] which offers a unique approach to probing
interfacial properties. As a theoretical technique that
includes fluctuations intrinsically, it gives access to stat-
istical properties without the noise inherent in simulations
and thus offers a useful complementary ab initio approach.
Recent years have seen the maturation of cDFT into a tool
which can provide such information with quantitative
accuracy in comparison to simulations [9,12,13].
Here, we report the calculation of bulk and surface

properties calculated using highly accurate cDFT models

and use the results to model the thermodynamics of small
crystalline polymorphs in a Lennard-Jones (LJ) system. We
use these models to address the long-standing tension
between the landmark paper of Alexander and McTague
[14] suggesting, based on very general Landau-model
arguments, that all crystallization should favor bcc clusters,
and the subsequent failure of simulation to confirm this
prediction (see, e.g., Swope and Andersen [15]). Our
results are consistent with the simulations of tenWolde
et al. [16] and of Desgranges and Delhommelle [17]
suggesting that bcc may well be favored for very small,
subcritical clusters but that a crossover occurs after which
fcc is favored and we predict such a crossover for clusters
of a few hundred atoms at most.
Theory.—Classical DFT is a reformulation of some

aspects of equilibrium statistical mechanics [10,11]. As
in quantum DFT, the primary actor is the local number
density ρðrÞ, which is the same as the one-body distribution
function and exact theorems assert the existence of a
functional of the local density which, upon minimization,
gives the equilibrium density distribution and the total
grand-canonical free energy Ω. In general, the exact func-
tional is not known, and calculations are based on models
designed to satisfy various exact limits.
The present Letter is based on the recently developed

“explicitly stable fundamental measure theory” (esFMT)
model [13] for hard spheres. For calculations involving
spherically symmetric pair potentials like the LJ potential,
we use the usual cDFT paradigm of writing the functional
as a hard-sphere contribution (using esFMT) and a mean-
field term accounting for long-ranged attractions (see
Ref. [18] and the companion paper [19] for details).
These expressions are evaluated on a cubic computational
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lattice (not to be confused with the crystal lattice) following
Refs. [18,20] and minimized using the FIRE2 algorithm
[21]. Unless otherwise stated, we used a lattice spacing of
about 0.05 molecular diameters throughout this Letter.
To determine the interfacial free energy between two

phases, we work with a slab geometry with the z axis
normal to the interfaces. The size of the computational cell
in the x-y directions is determined by the dimensions of the
unit cell of the solid, while in the z direction, the length is
approximately 50 molecular diameters giving on the order
of 25 lattice planes of solid. By way of illustrating the
results, Fig. 1 shows the planar densities for equilibrated
fcc-liquid and bcc-liquid interfaces for a LJ system. A
characteristic difference between the bcc and fcc structures
is that the distribution of density around the Bravais lattice
points has smaller amplitude and is broader for bcc than for
fcc reflecting the less-closely packed nature of the former,
as can be seen in the planar densities as well. The interface
between the solid and liquid includes 7 or 8 lattice planes

for bcc giving an interfacial width of about 5 molecular
diameters and about 10 lattice planes for fcc giving a width
of around 9 diameters.
We calculated the surface tension by introducing a Gibbs

dividing surface (see Supplemental Material [22] for
details). Table I shows our results for hard spheres using
both the state-of-the-art White Bear II (WBII) functional,
including for comparison previous calculations [25] and the
esFMT. Our methods are validated by the agreement with
previous work and show that the results using both cDFT
functionals are of similar quality compared to simulation,
with the difference however that the esFMT results are
generally lower than the simulation values whereas the
WBII results are higher. Qualitatively, the ordering γð111Þ <
γð110Þ < γð001Þ of fcc crystal faces according to the inter-
facial free energy is consistent in all cases considered.
Quantitatively, the difference of 10%–20% between cDFT
and simulation results should be contrasted with the
significant variation between simulation results recently
reported in the literature, which is at least half this range.
Table I also shows results for bcc-fluid interfaces and the

only prior results we are aware of, also cDFT calculations
using the WBII functional. As for the fcc phase, the esFMT
surface tensions are systematically smaller than those
determined using WBII and are, in both cases, about half
the surface tension for the fcc interface. Despite the well-
known fact that the bcc phase of hard spheres is unstable to
shear [27], we find no sign of an instability in the bcc in
contact with the fluid phase [19].
Interfacial properties of the Lennard-Jones solid.—Our

calculations are based on the Lennard-Jones potential with
energy scale ϵ and length scale σ, vðx ¼ r=σÞ ¼
4ϵðx−12 − x−6Þ, which is often used as a prototypical
small-molecule potential and as a basis for modeling both
noble gases and metals. The potential is truncated and
shifted so as to go to zero at 3σ as in our previous Letter
[3,18,20]. The phase diagram then includes vapor, liquid,
and solid phases with a liquid-vapor critical point and
vapor-liquid-solid triple points (which are different for
different crystal polymorphs [19]). For LJ, the minimum

FIG. 1. Solid-liquid interfaces for both bcc and fcc Lennard-
Jones solids (001) planes as determined from cDFT. The temper-
ature is kBT ¼ 1.0ϵ, where ϵ is the LJ energy scale and the
lengths are scaled to σ, the LJ length scale which is the typical
size of an atom or molecule. The figure shows the planar densities
sðzÞ, which are the densities averaged over the planes
perpendicular to the interface.

TABLE I. Fluid-solid interfacial and coexistence properties for the hard-spheres system. The physical quantities reported are the fluid
and solid densities, the pressure, the chemical potential, and the fluid-solid interfacial free energies for multiple faces of the fcc solid,
except for the last two rows reporting cDFT results for bcc. The rows reporting values from this Letter are marked by an asterisk.

Source ρfσ
3 ρsσ

3 βPσ3 βμ βγð001Þσ2 βγð110Þσ2 βγð111Þσ2

WBII (Härtel et al. [9]) 0.945 1.039 11.87 16.38 0.69 0.67 0.64
*WBII (Δ ≈ 0.0125σ) 0.946 1.039 11.94 16.46 � � � � � � � � �
*WBII (Δ ≈ 0.025σ) 0.950 1.041 12.16 16.68 0.69 � � � � � �
*WBII (Δ ≈ 0.05σ) 0.966 1.046 13.09 17.65 0.71 � � � � � �
*esFMT (Δ ≈ 0.05σ) 0.942 1.027 11.96 16.50 0.51 0.47 0.46
Simulation (Davidchack [8]) 0.940 1.041 � � � � � � 0.58 0.56 0.54
Simulation (Härtel et al. [9]) 0.938 1.039 � � � � � � 0.63 0.61 0.60
bcc WBII (Turci et al. [26]) 1.016 1.045 � � � � � � 0.34 0.33 0.32
*bcc esFMT (Δ ≈ 0.05σ) 0.967 1.008 13.45 18.06 0.21 0.20 0.20
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free-energy solid phase is either fcc or hcp, depending on
the conditions [28], but there is little difference between
their free energies [18]. We chose to work with the fcc
phase out of convenience and because there are more
simulation results for this phase.
Below, to check plausibility, we compare our results to

simulation when possible, and to reduce the effect of
differences in details of how the potential is cut off [29],
the temperature is scaled to the triple point temperature (for
fcc or bcc as appropriate and denoted kBT�

fcc ¼ 0.798ϵ and
kBT�

bcc ¼ 0.742ϵ, or generically T�
xcc) determined from the

underlying method (e.g., cDFT or simulation). The chemi-
cal potential will be expressed in terms of the supersatu-
ration SðTÞ≡ ðμ − μcoexÞ=kBT, where μcoex is the chemical
potential for coexistence (at the given temperature) of the
two phases of the interface. For low-density vapors this is
almost the same as the log of the ratio of the density to the
coexisting density or the pressure to the coexisting pres-
sure, but this does not, of course, hold for the liquid.
Finally, for the vapor phase, we have also performed exact,
zero-temperature calculations whereby the free energy is
simply replaced by the internal energy and the vapor
density is zero [19].
The surface free energies from our calculations for solid-

liquid interfaces are shown in Fig. 2. For the fcc phase, the
ordering of the surface tensions is γð111Þ < γð110Þ < γð001Þ,
the same as found for hard spheres above. Note, however,
that the difference between the surface tensions goes to zero
near the triple point and grows as the temperature increases,
although it is never very large in the range of temperatures
considered here. Figure 2 also includes simulation data
from Laird et al. [30] and shows that the values obtained are
physically reasonable.
For the bcc phase, one sees that at all temperatures the

interfacial free energy is roughly half that of the fcc phase,

suggesting that the bcc structure is energetically more
favorable than fcc for small clusters as will be discussed
below. The bcc values show very little difference between
the different crystal planes, although in fact γð110Þ < γð111Þ <
γð001Þ. To our knowledge, there are no studies reporting
liquid-bcc interfacial free energies from simulation.
Interfacial free energies for solid-vapor interfaces are

shown in Fig. 3 together with simulation results. The fcc
results are again in reasonable agreement with the available
simulation values showing they are physically plausible,
although the temperature dependence of the cDFT results
are somewhat stronger near the triple point than observed in
simulation. The simulation data come from two references
that use different techniques. Extrapolation of our results to
zero temperature differs somewhat from the exact results,
also shown in Fig. 3, but this is likely due to the finite size
of the computational grid [19].
For the bcc phase, we encountered the presence of an

instability in the crystal structure when calculating γð110Þ
and γð111Þ. Our zero-temperature calculations confirmed
previous observations [15,33] that the bulk bcc phase (for
LJ) is unstable with respect to displacement of the (110)
plane leading to distortions of the bulk crystal when
calculating these surface tensions. These zero-temperature
calculations show that the system is unstable to trans-
formation to an hcp lattice. Our cDFT calculations con-
firmed that the instability persists at finite temperatures up
to the triple point. In order to calculate the surface tension
in this case, it was necessary to freeze the bulk solid and to
only relax the planes near the interface [19]. Importantly, no
such instability was found for the bcc-liquid interface [19].
Polymorphic behavior.—The capillary model used in

classical nucleation theory (CNT) (assuming uniform bulk
phases inside and outside a spherical cluster and an
infinitely thin interface) results in the standard CNT
expression for the excess free energy of a cluster [1,34],

FIG. 2. Interfacial free energies for the liquid-solid coexistence
in simple fluids. The temperatures are scaled using the corre-
sponding triple point temperature: T�

fcc or T�
bcc. The simulation

data come from Laird et al. [30]. Error bars are a bit smaller than
the symbols, not taking the finite spacing Δ into account (see
Ref. [19] for details).

FIG. 3. Same as Fig. 2 for vapor-solid coexistence. The zero-
temperature values are the exact calculations and for bcc are
offset on the temperature axis, for clarity. The inset shows the fcc
(001) results compared to the simulation data of Broughton and
Gilmer [31] and Tipeev et al. [32].
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ΔΩ ¼ 4
3
πR3Δωs−f þ 4πR2γs−f, where Δωs−f is the free-

energy difference between the solid and fluid per unit
volume, R is the radius of the cluster, and γs−f is the
effective surface tension (a weighted average of the values
for the various faces). The radius Rc ¼ −2γs−f=Δωs−f for
which the derivative of ΔΩ vanishes is the critical radius in
classical nucleation theory and the value of the excess free
energy is the CNT barrier [1]. A more extended presen-
tation of the capillary model and its use is given in the
Supplemental Material [22].
We tested the capillary model by comparing it to clusters

generated using cDFT [35] by freezing liquid droplets [20]
and using the canonical-grand-canonical duality for critical
clusters proven in Refs. [3,20]. An example of a perfect bcc
cluster is shown in Fig. 4, together with the predicted zero-
temperature equilibrium shape determined using our sur-
face tensions and the WULFFPACK PYTHON package [36].
While the (110) plane dominates the structure in both cases,
the smaller facets are replaced by rounded edges as one
might expect at finite temperatures. Comparison of the
excess free energies predicted by the capillary model and
those of actual clusters generated by cDFT, see Fig. 5,
confirm that, as crude as it is, the model gives quite
reasonable values for both fcc and bcc structures. As
expected, the capillary prediction using the lowest surface
tension for each lattice is a hard lower bound on the cluster
free energies since the real clusters contain a mixture of
crystal faces, are not spherical, and also involve line
tensions between the facets.
Using our surface tensions and bulk free energies, the

capillary model predicts that bcc is more stable than fcc for
small clusters and that this reverses for large clusters. The
size of cluster (expressed as number of atoms) above which
fcc becomes favored, i.e., the crossover size, as a function
of temperature is shown in Fig. 6 (see also the
Supplemental Material [22] where the state points pre-
sented in Fig. 6 are shown in the context of the phase

diagram) [37]. For crystallization from both melt and vapor,
the maximal crossover size occurs near the triple points,
although for the freezing, the variation with temperature is
rather weak. In the case of the vapor background, the large
crossover value near the triple point is due partly to an
increase in the difference in surface tensions but mostly to
the fact that the bulk free energies become very close at this
temperature. This is consistent with the Alexander and
McTague [14] result that bcc should be the first structure
formed in the process of nucleation and with the observa-
tions of tenWolde et al. [16] of predominantly bcc structure

FIG. 4. Left: example of bcc cluster generated by freezing a
droplet of liquid in a vapor background, in a cDFT calculation
[37]. Right: Wulff construction using the interfacial free energies
obtained from cDFT calculations. The yellow, green, and blue
facets are (110), (001), and (111), respectively. The image on the
left is an orthogonal projection generated using VisIt [38], while
the one on the right was produced using WULFFPACK [36].

FIG. 6. bcc to fcc crossover cluster size as a function of
temperature for the formation from the vapor and from the
liquid. Error bars are mostly due to numerical uncertainties
coming from the surface-tension calculations [19]. The inset
shows an example of the crossover from bcc to fcc stability as a
function of cluster size for kBT=ϵ ¼ 0.8 and Sfcc ¼ 0.5. See the
section “Bulk Thermodynamics” in the Supplemental Material
[22] for a phase diagram showing the state points used here.

FIG. 5. Free-energy barriers of fcc (upper, black curves and
symbols) and bcc (lower, red curves and symbols) clusters in a
vapor background [37]. The full lines are the capillary model
predictions using the smallest interfacial free energy for each
structure, the dashed line is that using the second smallest. The dots
are cDFT calculations of clusters generated by freezing a liquid
droplet [20]. The temperature is kBT=ϵ ¼ 0.3, which corresponds
to T=T�

bcc ¼ 0.580 for bcc and T=T�
fcc ¼ 0.546 for fcc.

PHYSICAL REVIEW LETTERS 129, 246101 (2022)

246101-4



for small clusters and fcc at larger sizes with the crossover
being for clusters of some hundreds of molecules. It is also
helps explain their observation of fcc clusters with bcc
surface layers: since the surface free energy of the bcc is
about half that of the fcc, this is not surprising although one
would have to also determine the bcc-fcc surface tension to
prove that this is to be expected.
Conclusions.—Our Letter is not inconsistent with other

recent ideas for understanding crystallization from the melt.
For example, using simulations to map free-energy surfaces
to probe the thermodynamics of polymorphs [39] is clearly
quite similar in spirit since the ultimate goal is likewise
based on the free-energy landscape. Similarly, the idea that
local structure in supercooled liquids favors one polymorph
over another as discussed by Russo and Tanaka [40] is not
very different from the intuition that the lower surface free
energy of one crystal structure compared to another must be
related to a greater or lesser similarity between the local
structure of the fluid at the interface and that of the crystal.
Of course, nucleation is an inherently nonequilibrium
process, and free energy is only one factor that, along
with kinetics, determines the nucleation pathway [3,41].
For crystals forming from the vapor, or precipitating

from a dilute solution, the bcc phase does have somewhat
lower surface tension but it is unstable, rather than
metastable, so any bcc clusters observed in this case can
only be a transient stage that should eventually decay to the
fcc or hcp structure. Finally, implications for hard spheres
are discussed in the Appendix where it is noted that
additional lattice structures complicate the picture.
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supported by the European Space Agency (ESA) and the
Belgian Federal Science Policy Office (BELSPO) in the
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AO-2004-070.

Appendix: Hard sphere polymorphism.—For hard
spheres, we find lower surface tension for the bcc phase
than for the fcc phase (see Table I), and so one would
expect that it would also be the case that small bcc
clusters have lower free energy small fcc clusters and
hence could play a role in crystallization. Indeed, we show
in Fig. 7 the crossover size as a function of
supersaturation. Yet, careful studies such as that of Auer
and Frenkel [42] and Wöhler and Schilling [43] show no
evidence that small clusters are preferentially bcc. It could
simply be that kinetic factors are more important than
thermodynamics in this case, but we also note that there
are two differences from Lennard-Jones that complicate
the question for hard spheres.
First, unlike for Lennard-Jones, we find that the cross-

over size for hard spheres decreases rapidly with

supersaturation. Since most, if not all, freezing studies in
hard spheres are done at relatively high supersaturation
[43], it may be that the crossover size is very small. Indeed,
for a fluid packing fraction of 0.52, which is at the lower
end of simulation and experimental studies, we estimate the
crossover size to be about 150 atoms. Given that our
calculations are not exact, the actual figure could be lower.
Furthermore, the rapid decrease with supersaturation means
that the crossover size at higher supersaturations is so small
that differences of structure become ambiguous.
A second factor is that in hard spheres it is neither fcc nor

bcc that dominates but rather hcp with random stacking
faults [42] (referred to as rhcp), so that it could simply be
that this structure is even more favored than bcc. Resolving
this would require much more extensive calculations.
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