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ABSTRACT
We present a fundamental framework for the study of crystallization based on a combination of classical density functional theory and
fluctuating hydrodynamics that is free of any assumptions regarding order parameters and that requires no input other than molecular
interaction potentials. We use it to study the nucleation of both droplets and crystalline solids from a low-concentration solution of colloidal
particles using two different interaction potentials. We find that the nucleation pathways of both droplets and crystals are remarkably similar
at the early stages of nucleation until they diverge due to a rapid ordering along the solid pathways in line with the paradigm of “non-classical”
crystallization. We compute the unstable modes at the critical clusters and find that despite the non-classical nature of solid nucleation, the
size of the nucleating clusters remains the principle order parameter in all cases, supporting a “classical” description of the dynamics of
crystallization. We show that nucleation rates can be extracted from our formalism in a systematic way. Our results suggest that in some
cases, despite the non-classical nature of the nucleation pathways, classical nucleation theory can give reasonable results for solids but that
there are circumstances where it may fail. This contributes a nuanced perspective to recent experimental and simulation work, suggesting that
important aspects of crystal nucleation can be described within a classical framework.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0225658

I. INTRODUCTION

Crystallization is an everyday phenomenon for which a fun-
damental physical description remains elusive. The key first step
is nucleation: the formation, via thermal fluctuations, of a suffi-
ciently large cluster of solid as to be thermodynamically stable.
Classical Nucleation Theory (CNT),1 based on macroscopic con-
cepts, such as surface tension and the assumption that the size
of a cluster is the only order parameter, was developed in the
first half of the twentieth century and continues to define the way
we approach the phenomena. However, its extension to crystal-
lization from solution—where both ordering and cluster-building
are important—has always been problematic since, after the size
of a cluster, any choice of additional order parameters is some-
what arbitrary. Furthermore, modern advances in experimental and
simulation capabilities have revealed many so-called non-classical
aspects of solid nucleation,2–9 such as multistep nucleation pathways
(e.g., crystallization via the formation of dense unstructured clus-
ters followed by ordering with little mass change) and the frequent

occurrence of nucleation precursors—small clusters that appear to
play a role in nucleation but which are not expected to exist based
on the classical considerations.

Theoretical efforts to go beyond the standard CNT go back
a long way and include mathematical developments, such as the
seminal work of Langer,10,11 Talkner,12 and others on multidimen-
sional barrier crossing due to thermal fluctuations (the Kramers
problem13), as well as physically motivated extensions of CNT to
include order parameters beyond the cluster size7,14–17 and attempts
to accommodate multistep pathways within its framework.4,5,18–20

Recently, it has been shown that the combination of classical Density
Functional Theory (cDFT) and fluctuating hydrodynamics offers a
relatively fundamental, if still mesoscopic, description of nucleation
able to predict a priori the structure of small clusters (including crys-
talline clusters) and of non-classical pathways.21,22 The advantages
of this approach are that (1) the structure of small clusters is accu-
rately described by cDFT even down to molecular length scales23 and
(2) no order parameters are introduced. In particular, there are no
a priori assumptions about the crystalline structure, nor the nature
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of critical clusters, nor the form of the nucleation pathways—all
emerge as outputs of a theory only based on a molecular interaction
potential.

While this approach, which we call mesoscopic nucleation the-
ory, has many advantages, it remains incomplete as it does not
address the aspects of nucleation that are of most practical impor-
tance and are the focus of most experimental and simulation investi-
gations: namely, the dynamics of the process and, most particularly,
the nucleation rates. The goal of the present work is to fill this gap
and to thus give a complete theory of nucleation that character-
izes nucleation pathways, nucleation rates, and the emergent order
parameters, resulting in a complete description of nucleation of any
system, including crystals, at a much more fundamental level than
that of CNT. This involves three important contributions. The first is
to describe the calculation of the unstable modes: the unstable eigen-
value and corresponding eigenvectors of the critical cluster. We note
that the relevant quantities are not those of the Hessian of the free
energy as is often assumed but rather those of the dynamical matrix
consisting of the product of the kinetic coefficients (determined by
the dynamics of fluctuations) and the free energy Hessian. In our
examples, we demonstrate the remarkable result that, taking this into
account, the natural order parameter—i.e., the dynamics projected
onto the unstable mode—corresponds almost entirely to the mass
of the cluster for the nucleation of both liquid and crystalline clus-
ters, thus suggesting that both processes are (at least dynamically)
“classical.” This is puzzling as the pathways for the solid clusters are
clearly non-classical, starting first as droplets and with crystalline
ordering only forming late in the nucleation process as previously
reported.22

Our second contribution, which allows us to make sense of
this apparent paradox, is the introduction of what we term the
“kinetic distance” as the natural reaction coordinate of the pro-
cess. This is a natural distance measure in density space dictated
by, and therefore closely related to, the dynamics of the process so
that large kinetic distances imply long times and small distances
imply short times. We show that when the pathways are expressed
in terms of this quantity, the pathways leading to both droplets
and solid clusters at the same thermodynamic conditions are nearly
indistinguishable except that the solids show almost instantaneous
jumps corresponding to the development of crystalline order at con-
stant mass. Thus, the kinetic distance reveals that the dynamics are
largely classical (i.e., as assumed in CNT) with very short bursts
of ordering characterizing the non-classical parts of the process. In
our earlier, non-dynamical, work on the nucleation pathways, the
kinetic-distance was not known and we instead used the Euclidean
distance in density space, which is impossible to interpret physi-
cally.22 The dynamics of the process are therefore dominated by the
long “classical” periods of mass accumulation with the short non-
classical bursts of ordering being of secondary importance. The pro-
cess thus possesses both classical and non-classical characteristics
simultaneously.

The third and final contribution is a means of calculating nucle-
ation rates. We do this with two different methods. In the first, we
follow the reasoning introduced by Auer and Frenkel24 and give
an expression that makes use of the information obtained for the
unstable eigenvectors and eigenvalues of the critical cluster. This is
expected to be reasonable for droplet nucleation, which is already
an advance beyond previous work. However, we note that for solids,

this expression can be misleading if the critical cluster happens to
appear during one of the bursts of ordering, and so we also intro-
duce a more heuristic expression involving integration along the
entire nucleation pathway and demonstrate that it is consistent with
the first method for droplets and gives more physically reasonable
results for solids too. An incidental, but satisfying result of our anal-
ysis is a theoretical expression for the attachment and detachment
frequencies for diffusion-limited nucleation that play a central role
in CNT but for which no such theoretical expression has previously
been developed.

These elements—the unstable modes, the kinetic distance, and
the expressions for nucleation rates—together with the basic frame-
work of cDFT and fluctuating hydrodynamics21 and the determi-
nation of the nucleation pathway as the most likely path of the
stochastic dynamics22 give all of the tools necessary for a theoret-
ical description of not only homogeneous nucleation of droplets
and crystals as studied in this work but also heterogeneous nucle-
ation. Being based on hydrodynamics, non-equilibrium effects, such
as flows and temperature gradients, can also be described in a natural
manner.

II. MESOSCOPIC NUCLEATION THEORY
We focus attention here on a two-species system consist-

ing of a larger species in a bath of small molecules: for example,
macromolecules in solution or colloidal systems. Our considerations
are, in particular, relevant to the important problem of nucleation
from solution, including precipitation of crystals. Treating the small
molecules implicitly and working in the overdamped limit,21 the
dynamics of the local number density nt(r) of the larger species is
modeled with the stochastic differential equation,

∂

∂t
n̂t(r) = D∇ ⋅ n̂t(r)∇

δβF(dyn)[n̂t]
δ n̂t(r)

+∇ ⋅
√

2Dn̂t(r)̂ξt(r), (1)

where the caret indicates stochastic quantities, D is the tracer dif-
fusion constant for a single monomer of the large species in the
bath, F(dyn)[n̂t] is the dynamical free energy functional for the
large species, and ξ̂t(r) is Gaussian-distributed white noise, rep-
resenting the effect of the bath. In addition, β = 1/kBT, where
kB is Boltzmann’s constant and T is the temperature. Note that
here and below, we use the generic term “monomer” to refer to
what could be an atom, molecule, or colloid particle. This mini-
mal description can be derived from the microscopic equations of
motion by first using projection operator techniques to obtain fluc-
tuating hydrodynamics25,26 and then adding additional dissipative
and fluctuating terms to take account of the bath followed by the
overdamped limit.27 The local density appearing in Eq. (1) is then
understood to be a coarse-grained density, e.g., the instantaneous
microscopic density averaged over small volumes. What we have
termed the “the dynamical free energy” is usually the thermody-
namic free energy of a system constrained (e.g., by the presence of
external fields) to have the specified coarse-grained density, which
can also be thought of as a local equilibrium free energy. An inter-
pretation of this model is that density fluctuations on length scales
smaller than the coarse-graining scale are accounted for in the
dynamical free energy, and Eq. (1) describes fluctuations of the
density on larger length scales.
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Only formal expressions for the dynamical free energy are
known, and to proceed, one must introduce a model. For this,
we turn to classical Density Functional Theory (cDFT) where one
of the main goals is the development of constrained free energy
functionals.28,29 The sophisticated models developed over several
decades are routinely used to determine the free energy, structure,
and thermodynamic properties of inhomogeneous systems, includ-
ing solid clusters.23,30 The only inputs required are the interaction
potentials of the molecules, and no a priori assumptions are made
about crystal structures, lattice parameters, etc. Despite their some-
what different formal origins (cDFT is a strictly equilibrium theory),
the cDFT free energy models are the best available examples of con-
strained free energy functionals capable of describing multiphase
systems down to molecular length scales and as such are the only
feasible option to use in the present context.

In an early discussion of this combination of fluctuating hydro-
dynamics and cDFT for the study of nucleation,21,31 it was noted
that this type of dynamical model has been used to model fluctu-
ations in Brownian systems, in general,32,33 and, particularly, the
Dean–Kawasaki34,35 model used in the study of the glass transition;
see, e.g., Ref. 36. In this context, our main innovation is using a
microscopic free energy functional capable of describing the crys-
tal structure at the atomistic level and our approach to its analysis as
discussed below. Another closely related class of models are the dif-
fuse interface model for multi-phase systems,37 the Cahn–Hilliard
model38,39 for binary systems, and the Phase-Field (PF) and Phase-
Field Crystal (PFC) models40 of which PFC is the closest in spirit to
ours. These can be understood in different ways: either as heuristic
models for which one postulates a Landau-like free energy involving
gradient terms as well as an appropriate dynamics or as approxima-
tions derived from more fundamental approaches, such as Eq. (1).
For PFC, this connection has recently been developed in detail by
van Teefelen et al.41 where it was noted that a crucial assumption
is that the free energy can be expanded in gradients of the density
and the expansion truncated at low order. This can only be justi-
fied when the density does not vary too fast over microscopic length
scales. For crystallization, as illustrated below, one necessarily finds
density changes of orders of magnitude over an atomic diameter,
thus stressing this assumption. Furthermore, in order to stabilize
a crystalline structure,42,43 various other simplifications are intro-
duced, such as the use of a small selection of reciprocal lattice vectors
in order to stabilize the solid phase with the further implication of
fixed lattice constants (no lattice relaxation at surfaces, etc.). As a
result of these approximations, its predictive power, at least at the
microscopic level, is compromised.41,44 Furthermore, the represen-
tation of three phase systems within this framework is non-trivial
and the subject of on-going research.45 One of our main goals is to
work with the full microscopic model so as to avoid these issues, and
in Sec VI, we return to the differences between our approach and
PFC.

III. IMPLEMENTATION
Our calculations are based on a discretization of this model. We

label the Cartesian grid points with a super-index I ←→ (ix, iy, iz)
and the values of the density on the grid as n̂ I

t . The grid indices
take on values 0 ≤ ia < Na for a = x, y, z, the super-index has val-
ues 0 ≤ I < NxNyNz , and the grid spacing is taken to be Δ. The

operator ∇ ⋅ n̂(r)∇ becomes a matrix, which we call −gIJ(n̂)
that plays the role of a position-dependent diffusivity (or, more
abstractly, kinetic prefactor; see Appendix A for details). The
stochastic differential equation becomes

∂

∂t
n̂ I

t = −
D
σ2 gIJ(n̂t)

∂βΩ(n̂t)
∂ n̂ J

t
+
√

2D
σ2 qIK(n̂t) ⋅ ξ̂K

t , (2)

where we use the Einstein convention of summing over repeated
indices and we let n̂t , with no indices, represent the entire collection
of values n̂ I

t and where σ is a length scale associated with the inter-
action potential (see Appendix D). The first term on the right now
refers to Ω ≡ F − μN, which is the result of our use of fixed-density
boundary conditions to model an open system (see Appendix B
for more details). In the noise term, the amplitude and noise are
both three-vectors at each lattice point. The amplitude of the noise
is related to the coefficient of the gradient via qIK ⋅ qJK = gIJ, which
is a fluctuation–dissipation relation, assuring that in equilibrium
the system obeys a canonical distribution P(n) ∼ exp (−βΩ(n)).
Finally, and importantly, we will consider here only open systems
for which the density on the boundaries of the computational cell
is held constant: this is equivalent to setting the chemical potential
for the system. In this representation, a pure solution corresponds to
constant density throughout the system.21

As is commonly done, we will restrict ourselves to the weak-
noise limit, which in some sense corresponds to low temperatures46

for which the following properties have been established:21 if the sys-
tem makes a transition from one local minimum of the free energy
to another, then the most likely path (MLP) (given the stochastic
dynamics) passes through a saddle point and corresponds to the two
steepest descent paths that result from perturbing the system at the
saddle point in the direction of the unstable eigenvector (in positive
and negative directions). In this way, the concept of the critical clus-
ter (a saddle point on the free energy surface) and its critical role
in the phase transition emerges naturally. The critical cluster n∗ is
defined by

∂βΩ(n)
∂nJ ∣

n∗
= 0, (3)

and expanding the stochastic equation about this value gives

∂

∂t
δ n̂ I

t = −
D
σ2 gIJ(n∗)(∂

2βΩ(n)
∂nJ∂nK )

n∗
δ n̂K

t +
√

2D
σ2 qIJ(n∗) ⋅ ξ̂ J

t (4)

so that the unstable direction is a solution of the eigenvalue problem

gIJ(n∗)(∂
2βΩ(n)
∂nJ∂nK )

n∗
vK = λvI (5)

for λ < 0. The matrix in parentheses is the Hessian of the free
energy, and the product of the kinetic factor times this matrix will be
referred to henceforth as the dynamical matrix. Because the dynam-
ical matrix is real, but not symmetric, there is, for each eigenvalue, a
corresponding left eigenvector that solves
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uIgIJ(n∗)(∂
2βΩ(n)
∂nJ∂nK )

n∗t

= λuK , (6)

and the collection of left and right eigenvectors forms a bi-
orthogonal set. While distinct, it is easy to see that the two eigen-
vectors are related by uIgIJ(n∗)∝ vJ . In fact, as discussed in
Appendix C, we will use a normalization throughout this work
according to which uI gIJ = vJ and uIv

I = 1. It has been discussed
elsewhere21 that the structure of the stochastic equation imposes a
Riemannian geometry on density space, with the matrix inverse of
the diffusivity matrix, denoted with subscripts as gIJ , playing the role
of the metric on the space. For this reason, we use the standard nota-
tion of covariant and contravariant vectors related via the metric.
This just means that for any (covariant) vector with lower indices, vI ,
there is a corresponding (contravariant) vector with upper indices
defined as vI = gIJvJ .

IV. NUCLEATION OF DROPLETS AND SOLIDS:
ORDER PARAMETERS AND PATHWAYS

We will first illustrate this framework with calculations for the
nucleation of dense droplets from a low-concentration, or “weak,”
solution of particles interacting via a Lennard-Jones (LJ) potential
and via a more short-ranged pair interaction introduced by Wang
et al. to model colloidal interactions47 and which we refer to as the
WHDF potential (the explicit forms of both potentials are given
in Appendix D). The WHDF interaction gives generally lower sur-
face tensions than the LJ, thus allowing us to sample both the high
(with LJ) and low (with WHDF) supersaturation regimes at sim-
ilar computational expense. As stated above, what we have called
the dynamical free energy is modeled by a cDFT functional, specifi-
cally the explicitly stable fundamental measure theory model48 with
the attractive part of the potential described by a mean field term.
Our grid has 64 points in each dimension for the LJ potential and
128 for the WHDF potential, giving more than 250 thousand grid
points overall in the former case and more than 2 × 106 in the latter.

The discretization and constant-density boundary conditions used
to mimic an open system are described in Appendixes A and C.
While the dynamical matrix is far too large to be calculated explic-
itly, it turns out that the structure of the cDFT model allows for the
computation of its product with any given vector to be performed
efficiently using fast Fourier transforms. This is enough to allow for
the use of sophisticated libraries for the calculation of a limited num-
ber of eigenpairs (including both left and right eigenvectors), and
our calculations use SLEPC.49–52

Critical clusters were constructed (as described in Appendix D)
for the Lennard-Jones system under conditions of high supersatu-
ration (S ≡ βΔμ = 4.00, where Δμ is the excess chemical potential)
and conditions of low supersaturation (S = 0.51) for the WHDF sys-
tem. Then, the largest several (up to 10) eigenvalues and eigenvectors
were calculated. In the examples presented here, as well as many oth-
ers, we find a single unstable (negative) eigenvalue. Figure 1 shows
the droplet critical clusters as well as the left and right eigenvectors
in the unstable direction. The density of the critical clusters oscil-
lates, which is typical any time a liquid with strong short-ranged
repulsion is confined: it represents layering of the fluid in alternating
shells of high and low density. In the LJ droplet, a large density at the
center of the cluster simply indicates a high probability of finding a
particle there. The right eigenvectors, the unstable directions in den-
sity space, are complicated, with many structures corresponding to
that of the density itself. However, the left eigenvectors are remark-
ably simple, being nearly flat within the clusters and then decreasing
outside the clusters until vanishing at the boundary. (That it is
not completely devoid of structure is shown in the supplementary
material.)

The meaning of this simplicity becomes clear when one con-
siders two points. First, since the eigenvectors of the dynamical
matrix form a complete set, any local density, n, can be written
as an expansion of the form n = ∑α c(α)v(α), where the index α
labels the different eigenvectors (so it is not lattice index) and the
coefficients are calculated from the corresponding left eigenvectors,
c(α) = v(α)I nI . We let α = −correspond to the unstable (negative

FIG. 1. The black line shows that density in a critical droplet as a function of distance from the center, for an open Lennard-Jones fluid with temperature kBT/ϵ = 0.3 and
supersaturation S = 4.00 (left panel) and for a WHDF fluid with kBT/ϵ = 0.275 and S = 0.51 (right panel), where ϵ and σ are the energy and length scales of the respective
potentials. The oscillations are signs of packing of the fluid due to the confinement, and the large peak in the Lennard-Jones density indicates a high probability that a particle
is in the center of the droplet. The dashed lines show the left and right eigenvectors for the unstable mode of the dynamical matrix, and the dotted line shows the same for
the Hessian of the free energy, with no dynamics (left and right eigenvectors are therefore the same). The right eigenvectors (and those based on the Hessian) reflect the
structure of the droplet, whereas the (dynamic) left eigenvector is very simple, corresponding to a probe of the mass of the droplet, a result only possible because of the
mass-conserving dynamics. Note that the droplets are spherically symmetric, so the figures give complete information about the various quantities.
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eigenvalue) mode so that the projection of the density onto the
unstable direction is the coefficient c(−). The second observation is
that the total mass of the system is calculated as the sum of the den-
sity at each point multiplied by the volume element, ∑I nIΔ3, and
this can be written as MInI, where the covariant vector MI has all
elements equal to Δ3, which would simply be a horizontal line in
traversing the system in Fig. 1. The excess mass of the cluster is then
ΔN = MI(nI − nI

0), where nI
0 is the uniform density of the mother

phase. Since the left eigenvector is (nearly) constant within the clus-
ter, and the density outside the cluster is virtually the same as in the
mother phase, it follows that v(−)I (nI − nI

0) is very nearly propor-
tional to the excess mass as well. Thus, the projection of the local
density onto the unstable direction is, up to an irrelevant additive
constant, a measure of the excess mass of the cluster. Since the unsta-
ble direction is also the MLP for nucleation, the identification of the
projection of the density onto this direction as the order parameter is
intuitively appealing. Furthermore, Berezhkovskii and Szabo16 (see
also the discussion in ch. 18 of Peters17) have shown that this is
the only choice of order parameter that leads to the correct nucle-
ation rate in a one-dimensional description of nucleation. All of this
together leads to the conclusion that the emergent order parameter
at the critical cluster is, in both cases, the excess mass of the cluster
as assumed in CNT. This conclusion is reassuring since one expects
CNT to describe droplet nucleation.

Again using the procedures described in Appendix D, we have
generated solid clusters under the same thermodynamic conditions
as for the droplets. As previously observed,22 crystallization path-
ways involve an initial critical cluster followed by a sequence of
shallow minima and maxima corresponding to the formation of
complete shells of solid as the cluster grows. Figure 2 shows the
first critical cluster and the unstable eigenvectors associated with
it for the LJ potential (see the supplementary material for corre-
sponding images for the WHDF case). Roughly, half the mass is
localized into “particles” and half is delocalized liquid-like fluid.

We recall that in this formalism there is no explicit representation
of colloidal particles or of crystal lattices and that all such struc-
ture observed forms spontaneously during minimization of the free
energy so that “particles” are really just locations where the local
density (the probability of finding a colloidal particle) is very high,
surrounded by a region with very low probability, thus indicating
a localized particle. In this cluster, as well as in the WHDF case,
these “particles” are located at the vertices of an icosahedron, with
additional peaks in front of each one of its 20 facets. This hcp-like
stacking of particles on the icosahedron facets is the first shell of what
is sometimes referred to as an “anti-Mackay” structure. Structures
with icosahedral symmetry have been observed in super-cooled liq-
uids and glasses53–55 and can be obtained when a liquid crystallizes in
a confined environment.56,57 The eigenvectors are shown in Fig. 2 as
three-dimensional contour plots overlaid on the cluster image. One
clearly sees the same structure as for the droplet: the right eigenvec-
tors reflect the density of the cluster, whereas the left eigenvector is,
quite surprisingly given the complexity of the structure, almost con-
stant within the cluster, as in the case of the droplet. Once again, this
suggests that the order parameter is closely related to the excess mass
of the clusters.

We have calculated nucleation pathways (i.e., the most likely
path) from the initial low-concentration state to the various criti-
cal clusters using the string method.22 In brief, one creates an initial
guess at the path consisting of some number (we typically use 30)
images of the system with the density interpolated between the ini-
tial, uniform, state and the final critical cluster, which is then relaxed
based on the deterministic dynamics, under the constraint that the
distance between the images remains fixed.

To present the results, we introduce a natural measure of
distance in density space. Note that the deterministic dynamics
is driven by the gradient of the free energy, combined with the
kinetic factor, gIJ(n), in Eq. (2). This can be interpreted as gradi-
ent descent in a curved space in which one measures the distance

FIG. 2. Local density of the solid-like critical cluster (left, displayed on a log-scale) and the left and right eigenvectors (center and right, both linear scales) for the unstable mode
of the LJ cluster. The cluster has an excess mass of about 40 particles of which about half are localized into fixed “atoms” and about half in a fluid state. In the eigenvector
images, the local density is represented in gray and the eigenvectors in color. The eigenvectors are qualitatively very similar as for the droplet: the left eigenvector is nearly
constant inside the solid cluster, while the right eigenvector is similar to the density as evidenced by the fact that one only observes color on the localized gray sites.
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between a density distribution nI and another nI+ dnI, infinitesimally
close, as ds2 = dnIgIJdnJ (we will call this dimensionless quantity the
“kinetic distance” and details concerning its calculation are given in
Appendix F).

The excess mass (number of particles) and free energy of the
clusters as they evolve along the nucleation pathway are shown in
Fig. 3 using the kinetic distance along the pathway as the inde-
pendent variable. The nucleation pathway for the LJ cluster is
complex: first, an icosahedral critical cluster is formed followed by
a solid–solid transition to an FCC crystalline lattice. For the WHDF
interaction, our calculation terminates at an icosahedral structure
and further calculations would be necessary to determine if an even-
tual transition to a close-packed structure occurs (as one would
expect).

These pathways exhibit several remarkable features. In par-
ticular, the kinetic distance along the pathways corresponds

monotonically, and almost linearly, to excess mass in both cases.
Even more surprising, the excess energy of the eventual solid and
liquid clusters is almost identical until, at a given point the (even-
tual) solid-like cluster shows an abrupt jump in free energy, almost
a discontinuity. During this process, the excess mass is almost con-
stant and the main difference is that the localization into “particles”
occurs. This leads to the unexpected conclusion that while order-
ing does occur independently of mass accumulation, in a kind of
three-step process of mass increase, then ordering, and then mass
increase, the ordering is very fast (in the sense that the kinetic dis-
tance between the ordered and unordered clusters is very small).
Nevertheless, the unstable eigenvalues at the critical cluster differ
significantly for the two processes as can be seen from the values
given in Table I. Table I also gives the unstable eigenvalues for the
corresponding free energy Hessians and illustrates the differences
between the two calculations.

FIG. 3. Excess mass (total number of particles compared to the initial uniform state, left panel), excess free energy (center panel), and “localization” (right panel) as functions
of kinetic distance along the most likely paths for both the solid cluster and the liquid droplet for both potentials. Black symbols are the results for the “solid” pathways, and
red lines are the droplet pathway. The kinetic distance for the WHDF system is multiplied by a factor of 5 in the middle panel so as to improve visibility. All pathways end in a
critical cluster; in both solid pathways, an initially liquid-like droplet first transforms into an icosahedral cluster. In the case of LJ, this is followed by a solid–solid transition to
the FCC structure. The localization is a measure of order within the cluster (as described in Appendix E) and shows that the near discontinuity in the free energy corresponds
to a sharp increase into solid-like localization of the density and then the reorganization into an FCC structure. The left and center panels both include insets showing a
detailed view of the reorganization of the liquid droplet into an icosahedral solid (inset a). The center panel also shows similar zooms of the ico–fcc transition in LJ (b) and the
liquid–ico transition in the WHDF system (c). The insets in the right hand panel show (a) a close-up of the divergence between the droplet and solid pathways for the WHDF
interaction and (b) the extreme point of the transition from icosahedral order to FCC order via a dis-ordered, fluid-like intermediate state.
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TABLE I. Unstable eigenvalues of the Hessian of the free energy and of the dynamical matrix for the two interaction potentials.
For the dynamical matrix, the eigenvalues are dimensionless, while for the Hessian, they have units of (length)6 and are
expressed in terms of the length scale of the potential. The ratio of the droplet to the solid is also given in each case and
illustrates how different are the static and dynamic values.

λ(−)σ−6 (free energy Hessian) λ(−) (dynamical matrix)

Droplet Solid Ratio Droplet Solid Ratio

LJ (Ico) −0.005 05 −0.002 80 1.8 −1.61 × 10−5 −6.88 × 10−3 0.0024
LJ (FCC) −0.005 05 −3.71 × 10−5 136 −1.61 × 10−5 −5.51 × 10−2 0.000 29
WHDF −1.93 × 10−4 −6.44 × 10−6 30 −9.42 × 10−4 −1.75 × 10−4 5.4

V. NUCLEATION RATES
Classical nucleation theory is based on the assumption that

the number of particles in a cluster is a good order parameter for
the transition from vapor to liquid or to solid. One expects that
in the general context of MeNT, the order parameter should in
some sense correspond to movement along the nucleation pathway,
which would mean that at the critical cluster, it would involve the
projection of the density onto the unstable direction, v(−)I nI , and
the fact that v(−)I (nI − nI

0)∝ ΔN indicates that the excess mass is
indeed a good order parameter. The same assumption underlies the
“parameter-free” estimations of nucleation rates from simulation
developed by Auer and Frenkel.24 The idea is to begin with the CNT
expression for the nucleation rate,

J = n0 f (N∗)
√

1
2π
∣βΩ′′(N∗)∣ e−βΔΩ∗ , (7)

where (in our version) Ω(N) is the grand-canonical free energy
(which in CNT only depends on the order parameter, namely, the
mass of the cluster), ΔΩ∗ = Ω(N∗) −Ω0 is the excess free energy
of the critical cluster with Ω0 that of the mother phase, f (N∗) is
the rate of attachment of monomers to the critical cluster (which,
by definition of the critical cluster, is exactly equal to the rate of
detachment of monomers), and n0 is the density (concentration) of
the mother phase. Surprisingly, the CNT attachment rate for dif-
fusive systems is not agreed upon: although some works use the
Smolochowski rate for coalescence,1 this is not well-accepted17 and
more often one resorts to ill-defined concepts, such as typical jump

distance and typical jump time to make estimates. Auer and Frenkel
evaluated these various elements directly from simulation and then
used the values to get a model-free determination of the nucle-
ation rate (assuming that the size of the cluster is the correct order
parameter).

We show in Appendix G that the attachment and detachment
frequencies at the critical cluster can be extracted from our model
with the result

f (N∗) = g(N∗) = D
σ2 (MJv

(−)J)
2

(8)

and that this results in the CNT nucleation rate

J = n0
D
σ2 ∣MJv

(−)J ∣

¿
ÁÁÀ∣λ(−)∣

2π
e−βΔΩ∗ , (9)

which involves only quantities accessible from the model free energy
functional and the corresponding dynamical matrix. Evaluations
using this are given in Table II. In the case of the WHDF inter-
action, the kinetic prefactor for the solid and the droplet is almost
the same and the difference in the rates of the processes is entirely
due to the Arrhenius factors. In contrast, the kinetic factors for the
LJ solids are much larger (indicating faster processes) than for the
droplet, which seems paradoxical since the solid pathway involves
the same accumulation of mass as for the droplet plus the additional
time needed for the ordering: even if the latter occurs very fast, the
mass accumulation should be the same.

TABLE II. Calculated nucleation rates for the LJ icosahedral saddle (Ico), the LJ FCC critical cluster, and the WHDF critical
cluster. It also shows the free energy barriers, the prefactors Z ≡ J/e−βΔΩ of the exponentials in Eq. (9), and the ratio of the
full rates calculated from the same expression. The final section of this table shows the Z-factors and the ratios of the full
rates as calculated from the heuristic one-dimensional model involving the full nucleation pathway.

βΔΩ∗ CNT rates Full path rates

Droplet Solid Z-droplet Z-solid Jdroplet
JSolid

Z-droplet Z-solid Jdroplet
JSolid

LJ (Ico) 104.9 102.0 1.76 × 10−9 1.65 × 10−6 6 × 10−5 3.38 × 10−10 5.56 × 10−10 0.03
LJ (FCC) 104.9 104.5 1.76 × 10−9 3.03 × 10−7 4 × 10−3 3.38 × 10−10 1.74 × 10−9 0.13
WHDF 21.4 24.7 9.24 × 10−5 1.67 × 10−4 15 5.33 × 10−5 4.64 × 10−5 31

J. Chem. Phys. 161, 104502 (2024); doi: 10.1063/5.0225658 161, 104502-7

Published under an exclusive license by AIP Publishing

 11 Septem
ber 2024 10:18:56

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

We pause to observe that the application of the CNT rate
formulas to crystallization, even with our expressions for the attach-
ment and detachment rates, carries with it various uncomfortable
assumptions. It has previously been noted22 that in crystallization,
one expects to see a sequence of free energy minima and maxima
along the crystallization pathway due to the formation of com-
plete shells (free energy minima) and the nucleation of new layers
(involving free energy maxima) as the crystal grows. Hence, the CNT
picture of crossing a unique energy barrier cannot really be correct.
Indeed, in the WHDF case, our critical cluster is icosahedral, but the
final thermodynamically stable phase is FCC, so we know that there
will be at least one further solid–solid transition along the pathway.
Thus, the use of the CNT-type analysis must, at some level, be quite
heuristic for the crystallization and one of the advantages of our for-
malism is that it provides the tools to analyze this in the future. For
now, we simply note that this assumption is also made in simula-
tions whenever this route to estimating nucleation rates is used. We
believe it can be justified, at least as a first approximation, if the criti-
cal cluster has the highest free energy of any of those occurring along
the full pathway, but formalizing this intuition will require further
analysis.

To further understand these results, we have also developed a
more elaborate evaluation of the rates based on a one-dimensional
theory derived from our analysis and that involves integration along
the entire nucleation pathway [see Appendix H, Eq. (H7)]. Results
using this expression are also given in Table II. We cannot claim
that this full-path value is more accurate than the CNT result, given
the limited resolution of the nucleation pathway using the string
method. Nevertheless, it is interesting to note that for WHDF, the
full-path rate is very similar to the CNT result, differing only by a
factor of two. However, while the kinetic factor for the LJ droplet is
again similar to the CNT value, the values for the solids are quite dif-
ferent from their CNT values and indeed of similar magnitude as for
the droplet. Referring to Fig. 3 and Table I provides some insights. In
the case of the WHDF solid, the critical cluster appears after a period
of mass accumulation that in turns occurs after the abrupt ordering:
the eigenvalues being computed and used in the CNT rate expres-
sion are therefore characteristic of the mass-accumulation process.
In contrast, the LJ solid critical clusters both appear during the
ordering process so that the eigenvalues being computed are related
to the time-scale of the ordering: the large dynamic eigenvalues
obtained for these cases indicate the relative speed of the ordering.
Only by integrating over the entire path is the much slower mass-
accumulation accounted for, in which case the kinetic factors are
much more comparable to that of the droplet.

Finally, we note that the fact that for identical thermody-
namics conditions the nucleation rate for droplets in the WHDF
system is much higher than for direct nucleation of crystals sug-
gests the preferential formation of the latter with the possibility
that crystal nucleation may then occur within the droplets. In
contrast, no such preference is suggested for the LJ system, thus
implying the preferential formation of crystals directly from the
solution.

VI. DISCUSSION
We have shown how the powerful combination of cDFT

and fluctuating hydrodynamics can give unique insights into the

process of crystallization at the microscopic level. Our results high-
light the absolute necessity of a realistic dynamical description
of fluctuations. In the present case, if one simply computed the
unstable mode of the free energy, it would lead to the erroneous
conclusion that the solid and droplet clusters are governed by very
different order parameters, reflecting their very different density
distributions, and that the order parameters having little physical
interpretation. In contrast, the fact that MeNT is based on hydro-
dynamics that conserves mass leads both to different left and right
eigenvectors and to the critical and surprising fact that the projec-
tion of the density onto the unstable mode is simply a measure of
the excess mass of the system.

For the examples of solid-like critical clusters discussed here, it
was found that the development of order, which is a necessary part of
the formation of crystalline structures, seems to have little effect on
the kinetics of the process and that, contrary to most expectations,
taking account of a separate order parameter corresponding to crys-
talline order is unnecessary. This provides independent support for
the idea of using CNT-like expressions for the nucleation rate for
crystallization, as underlies the original work of Auer and Frenkel,24

and the subsequent works based on it. However, we found that if
the critical cluster appears during the ordering process, the kinetics
sampled in its neighborhood are not typical of mass accumulation
and can therefore give deceptively large kinetic factors. In fact, our
results suggest that the kinetic factors for the solid should, in general,
be comparable to that for a droplet.

Despite these observations, we emphasize that the nucleation
pathway for crystallization studied here is multistep in nature:
formation and growth of a liquid-like droplet—which seems indis-
tinguishable whether the pathway results in a droplet, a crystalline
cluster, or an amorphous cluster—is followed by rapid localization
into solid-like regions, followed once more by mass accumulation
until criticality is reached. This is consistent with the pathways
described previously for Lennard-Jones systems.22 The suddenness
of the ordering was not evident in the earlier work because paths
were plotted as functions of the Euclidean distance in density space
and not the kinetic distance that is relevant for the dynamics (see
additional figures in the supplementary material). Our unexpected
conclusion is that despite this multistep process, the nucleation
rate appears to be quite insensitive to the ordering—other than via
the jump in free energy—and so can be described in the language
of CNT. This provides a line of evidence, completely indepen-
dent of experiment and simulation, for the idea4,5,18 that while the
details of the nucleation pathways of crystallization may be (or, per-
haps, usually are) highly nonclassical—with independent phases of
mass accumulation and ordering and possibly multiple interme-
diate structures—the dynamics is dominated by the diffusive, and
therefore slow, rate of mass accumulation, which is occasionally
interrupted by brief periods of ordering or re-ordering, thus giving
it a mostly classical appearance.

This scenario—of mass accumulation followed by ordering—is
consistent with some of the earliest discussions of two-step nucle-
ation, including the seminal simulations of ten Wolde and Frenkel7

for LJ and early experimental work by Vekilov58 on protein crystal-
lization from solution. Notably, in contradiction to our results here,
Vekilov’s experiments indicated that the crystallization rate of the
proteins was much lower than expected from a naive application
of CNT. However, in the following decade, Vekilov and co-workers
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refined their understanding of the process into one in which the ini-
tial liquid clusters that precede the solid phase are large (containing
104 or more molecules) and, for reasons still not well understood,
metastable; see, e.g., the work of Maes et al.9 In that work, the slow
crystallization dynamics is attributed to high viscosity within the
dense droplet. Thus, one possibility is that, even though the over-
damped model accounts for slower diffusive dynamics in denser
regions via the free energy functional, it may be that the over-
damped approximation is too crude inside the droplets and one
should instead use the full hydrodynamic model.21 In recent years,
the surprising metastability of the droplets has been investigated by
Vekilov’s group, and they have proposed that it is due to the pres-
ence of transient oligomers that are stabilized in the concentrated
clusters,59 although details of this scenario have been challenged.60

Whatever the explanation, the existence of metastable high concen-
tration droplets indicates that the protein results involve physical
elements that remain poorly understood and are not at present
included in our calculations.

We note also the important role played by the icosahedral clus-
ters, which seem to occur frequently as the first manifestation of an
incipient solid-like structure. Strikingly, in other calculations that we
will describe elsewhere and in which the droplet has a higher free
energy barrier than the solid, we see a droplet go through an icosahe-
dral intermediate step, which then transforms back to a droplet. Our
work seems to indicate, in general, very complex landscapes with
many local maxima and minima and correspondingly complicated
pathways.

One notable result of our analysis is the role played by the
geometry of density space. As discussed in detail by Graham,61,62 a
diffusive stochastic dynamics induces a metric in the space of the
stochastic field, which is to say in our case a natural way of calculat-
ing the distance between two local densities. This is exploited here in
the definition of the “kinetic distance,” which is calculated using this
metric as well as by the fact that the weak-noise approximation to
the nucleation pathway is steepest descent under this metric.21 (We
recall that the geometric interpretation of steepest descent is that one
draws a circle around the starting position, calculates the energy at
each point on the circle, and then moves to the point with the low-
est energy: the metric tells us how to draw a circle.) One potential
danger of less fundamental approaches is that the metric, which in
our case is the operator D∇ ⋅ n̂(r)∇, is replaced, either for simplicity
or for technical reasons,41,45 to D∇2, thus fundamentally changing
the geometry of density space. An example of the latter is when
the logarithms in the ideal gas contribution to the free energy are
replaced by polynomial approximations, as is often the case in phase
field crystal models, since one wishes to preserve Fickian diffusion
in the low-density limit. In the language of Riemannian geometry,
this is a shift from a curved to a flat metric and it would be interest-
ing in the future to investigate the importance of such a qualitative
change.

Any theoretical approach to this phenomenon is going to
involve heuristic elements due to the underlying complexity and
intrinsically multiscale nature of the problem and ours is no excep-
tion. The principle assumption is our use of cDFT free energy
functionals as the dynamic free energy. This is an assumption that
could be explored at a formal level, but here, we only note that, in
practice, the most common cDFT free energy functionals are just
mean field models, and as such, it could be argued that it makes

more sense to use them as we do here, as part of a dynamic descrip-
tion, than as true thermodynamic free energies, as in cDFT, which
should contain renormalization effects that go beyond the mean
field.

The applications of our framework are much broader than the
specific results given here. In principle, there is no necessity to work
in the over-damped limit21 and, by keeping the full hydrodynamic
description, the effect of flows, heat transport, and other impor-
tant physical phenomena could be studied as well. Indeed, Gallo
et al.63 have recently studied bubble nucleation using this approach.
Exactly the same concepts can also be used in the study of hetero-
geneous nucleation, which is of not only more practical importance
than homogeneous nucleation but also more problem-specific. It is
also possible to determine the MLP without resorting to the weak
noise limit,21 which would allow for nucleation without necessarily
passing through the critical cluster.46

Crystallization is a prime example of a complex, multiscale phe-
nomenon and as such is approachable at various levels from the
most microscopic level (atomistic simulations) to the most coarse-
grained (CNT), and each provides unique insights and is useful for
addressing different questions. Our theory fits into this spectrum. Its
strengths are that, like simulation, it requires only interaction poten-
tials as input and can describe structures down to atomic length
scales. At the same time, like all theoretical descriptions, it is phrased
in a different conceptual language and so gives direct access to dif-
ferent quantities: in our case, things such as path probabilities21,64

and the microscopic order parameters. Compared to other the-
oretical approaches, it involves fewer assumptions and has more
expressive power but at the cost of being conceptually and compu-
tationally more costly. More coarse-grained methods, such as phase
field crystal theory, give up the detailed description of structures and
dynamics at the smallest length scales in exchange for being compu-
tationally simpler and can therefore be applied to larger and more
complex systems. The most coarse-grained approaches, CNT and
its many elaborations, are computationally inexpensive and can be
adapted to almost any system: they provide the language for dis-
cussing, understanding, and interpreting all nucleation phenomena
at the macroscopic scale. In the theoretical hierarchy, each level
of description can be derived from the more fundamental ones as
approximations with well-defined regimes of applicability. As such,
we view them not as being in competition with one another but as
mutually complementary tools.

SUPPLEMENTARY MATERIAL

The supplementary material includes several additional figures:
1. The final FCC cluster on the LJ nucleation pathway discussed in
the main text. 2. A zoomed view of the left eigenvectors displayed
in Fig. 1 of the main text revealing the fine-scale structure of the
left eigenvector. 3. The analog to Fig. 2 of the main text for the
WHDF potential. 4. The nucleation pathways plotted using both the
kinetic distance, as in Fig. 3 of the main text, and the naive Euclidean
distance used in a previous study.22
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APPENDIX A: DISCRETIZED MODELS

The points on the computational lattice are labeled
I ≡ I(ix, iy, iz) with 0 ≤ ix < Nx, etc. and 0 ≤ I ≤ NxNyNz . We
denote the set of all points as V (for volume), and we denote the
boundary points as ∂V ≡ {I(ix, iy, iz) : ix = 0 or iy = 0 or iz = 0}.
Our calculations always use periodic boundaries so that, e.g.,
I(ix +Nx, iy, iz) = I(ix, iy, iz). If Ð→n = (n1, . . . , nNxNyNz) be the local
density, then the free energy βΩ(Ð→n ) = βF(Ð→n ) − βμN(Ð→n ), where
N(Ð→n ) is the total mass, calculated as described in the main text, μ
is the chemical potential, and F(Ð→n ) is the Helmholtz functional of
cDFT. The latter is written as a sum of an ideal gas contribution,
a hard-sphere contribution, and a mean-field contribution. Our
calculations of the free energy use the discretized forms for these
quantities described in Ref. 65.

Given the explicit form of the free energy functional, the dis-
cretization of the dynamics only requires specification of the kinetic
prefactor, gIJ(n). The calculations presented here were performed
using

gIJ = σ2

Δ5 ∑
a=x,y,z

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

nI+e(a)
+ nI

2
(δI+e(a)J − δIJ)

−nI + nI−e(a)

2
(δIJ − δI−e(a)J

)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

where e(a) is the unit vector in the direction a so that, e.g.,
I + e(x) = (Ix + 1, Iy, Iz). We note that corresponding to this we have

qIK(a) = σ
Δ5/2 (δ

I+e(a)K − δIK)

¿
ÁÁÀnK + nK−e(a)

2
, (A1)

and it is straightforward to confirm that these satisfy the
fluctuation–dissipation relation, which, incidentally, assures that gIJ

is positive semi-definite.

APPENDIX B: BOUNDARY CONDITIONS

In calculating the free energy and its derivatives, we always use
periodic boundaries (for reasons of efficiency: the calculations are
only feasible with fast Fourier transforms). In order for the dynam-
ics to model an open system, we take nI to be constant on the border
of the computational cell (defined as values of I for which one or
more components is zero). In order that the uniform density be
a stationary solution of the deterministic dynamics, we must also
set the forces ∂F/∂nI = Δ3μ for all values of I on the boundary.
The constant μ is simply the chemical potential corresponding to
the vapor. Examination of the resulting difference equations shows
that a mathematically equivalent formulation, that is perhaps more
physically useful, is to replace the free energy by F(n) − μN(n) and
to set FI = 0 for the boundary points. This formulation shows that
the boundary conditions force the use of a “grand canonical” free
energy functional. We also note that the fixed density along the
borders breaks translational symmetry (which is otherwise present
with periodic boundaries), and as a result, the matrix gIJ has no zero
eigenvalues and is invertible.

To avoid any confusion, we note that the periodic boundaries
constitute a spatial boundary condition used to calculated the free
energy and its derivatives, whereas the fixed density on the borders
is a dynamical boundary condition pertaining to the solution of the
time-dependent equations. The two are therefore independent and
compatible as long as the fixed boundary densities are also periodic,
as is the case in our calculations.

APPENDIX C: CALCULATION OF EIGENVALUES
AND EIGENVECTORS

We determine the eigenvalues and eigenvectors using the
SLEPC library using the Jacobi–Davidson method for the Hessian
of the free energy and the Krylov–Schur method for the dynami-
cal matrix. In both cases, the Generalized Minimal Residual method
(KSPGMRES) linear equation solver was used. When diagonalizing
the dynamical matrix, we used two-sided balancing and demanded
that the left and right eigenvectors be calculated.

Suppose that we determine a right eigenvector of the dynamical
matrix, vI. Then, it is easy to see that vI ≡ gIJv

I is a left eigenvector
having the same eigenvalue. We can therefore create a normalized,
conjugate pair of eigenvectors by defining

ṽ I = 1√
vJgJKv

K
vI ,

ṽI =
1√

vJgJKv
K

gILvL,
(C1)

satisfying ṽI = gIJ ṽ
J and ṽI ṽ

I = 1. Similarly, given any left eigenvec-
tor uI , an analogous pair
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ũI =
1√

uJgJK uK

uI ,

ũ I = 1√
uJgJK uK

gILuL

(C2)

also exists. All of our results are written with the assumption that
the eigenvectors obey this normalization. Finally, if we have inde-
pendently determined left and right eigenvectors, uI and vI, then
they should be related by vI = αgIJuJ for some constant, α, where
contraction with uI gives

α = vIuI

uJgJK uK
,

and so vJgJKv
K = αukv

K = (v
I uI)

2

uJ gJK uK
, giving

ṽ I =

√
uJgJK uK

uLv
L vI ,

ṽI =
1√

uJgJK uK

uI.
(C3)

APPENDIX D: CALCULATION DETAILS

The spherically symmetric pair-potentials used in this study
were a cutoff Lennard-Jones (LJ) potential,

vLJ(r) = 4ε((σ
r
)

12
− (σ

r
)

6
) − 4ε(( σ

rcut
)

12
− ( σ

rcut
)

6
),

r < rcut,
(D1)

with cutoff rcut = 3σ and the potential of Wang et al.47 or WHDF
potential,

vWHDF(r) = 114.11ϵ((σ
r
)

2
− 1)(( rcut

r
)

2
− 1)

2

, r < rcut, (D2)

with cutoff rcut = 1.2σ. The computational lattice spacing was
Δ = 0.2σ for the Lennard-Jones and Δ = 0.1σ for the WHDF poten-
tial. Both potentials have a nearly hard-core repulsion at short
distances (r < σ) and an attractive well outside this. The difference
between them is that the ratio of the width of the attractive part of
the potential to the width of the hard-core region is much smaller for
WHDF than for the LJ. This is intended to model typical colloidal
interactions.

To find critical clusters, we first minimize the free energy of a
system consisting of a droplet in a background of low-density fluid
under fully periodic boundary conditions (e.g., no fixed density at
the boundary): this implies constant total number of particles and
so a canonical-like minimization. It has previously been shown that
such a cluster is a stationary point when the system is opened: that is,
when the density is held constant at the boundary and the total num-
ber of particles allowed to vary.22,23 In this grand-canonical system,
the cluster may be either a local minimum or a saddle point—there

is no way to know except to test it, e.g., by calculating the eigenval-
ues. Notice that when this is done at sufficiently low temperatures,
the clusters spontaneously form solid-like, amorphous or crystalline,
order.23

Regardless of the nature of the cluster so obtained, we use it as
the endpoint for the determination of the nucleation pathway using
the string method as described in detail in Ref. 22. If the cluster
anchoring the string was a local minimum, a critical cluster appears
somewhere along this pathway. However, because of the limited
resolution of the string method—i.e., the fact that the pathway is
characterized by a finite number of images—the “critical cluster”
identified is not in fact exactly a saddle point of the free energy sur-
face. We therefore further refine it using various methods (e.g., an
eigenvector-following method66) to be described in a future publi-
cation. This refined critical cluster is then used as the endpoint for
a new string calculation and, in the case of LJ reported in the main
text, a separate string calculation was used to generate the solid–solid
pathway from the refined critical cluster to the endpoint of the initial
string calculation.

APPENDIX E: MEASURE OF ORDER
WITHIN THE CLUSTERS

We track the development of order in the clusters using a quan-
tity that we call “localization.” It is ignorant of the specific type of
solid structure that is appearing and simply measures how much
the density is peaked around the “atomic” positions. We define it
in terms of the local packing fraction ηI(R), which measures the
amount of mass within a radius R around a lattice position I. The
evaluation of these packing fractions on the computational lattice is
not trivial and is explained in Ref. 65. The radius R is the effective
hard sphere radius of our cDFT model. We estimate how much the
density is localized around a position I by computing the excess of
mass ηI(R/2) − ηI(R)/8 within a smaller radius R/2, which we then
normalize to get

lI = ηI(R/2) − ηI(R)/8
ηI(R) − ηI(R)/8

. (E1)

This (local) measure of localization is zero if the mass ηI(R) is uni-
formly distributed in the sphere of radius R and one if this entire
mass is located in the smaller sphere. The density-weighted average
of lI over the entire computational lattice is our (global) measure of
localization within the cluster,

l̄ = 1
N∑I

nI lIΔ3, (E2)

where N = ∑I nIΔ3 is the total number of particles.

APPENDIX F: CALCULATING DISTANCE
ALONG THE STRING PATH

The string method results in a series of snapshots of the
system along the nucleation pathway. We label these consecu-
tively as nα for α = 0, 1, . . . with α = 0 corresponding to the initial
uniform system as shown in Fig. 3. We approximate the distance
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between successive points along the pathway by defining the differ-
ence ΔnI

α+1/2 = nI
α+1 − nI

α and the average n̄I
α+1/2 = 1

2(n
I
α+1 + nI

α) and
evaluating

Δs(α, α + 1) =
√

ΔnI
α+1/2gIJ(n̄α+1/2)Δn J

α+1/2 (F1)

and then using s(α) = ∑α
γ=1 Δs(γ − 1, γ). Since we only have an

explicit representation for the matrix gIJ and we require the inverse
for this evaluation, we write

gIJϕJ = ΔnI
α+1/2 (F2)

and solve this system of linear equations for ϕI using tools from the
PETSC library.67,68 We can then replace ΔnIgIJΔnJ by ΔnIϕI .

APPENDIX G: USING MeNT TO DETERMINE
THE CNT NUCLEATION RATE

The CNT nucleation rates require as input the free energy at the
critical cluster, the second derivative of the free energy with respect
to particle number at the critical cluster, and the attachment rate.
The free energies are of course directly given from our model. To
determine the CNT attachment and detachment frequencies (which
are only needed at the critical cluster in order to calculate the CNT
nucleation rates), we compare the stochastic model near the critical
cluster to the assumed dynamics of CNT. To this end, the stochastic
equation is expanded to first order to get

d
dt

δ n̂ I
t = −

D
σ2 gIJ(n∗)(∂

2βΩ(n)
∂nJ∂nK )

n∗
δ n̂K

t +
√

2D
σ2 qIJ(n∗) ⋅ ξ̂ J

t .

(G1)
Using the fact that δN =MIδn̂ I ≃ (MJv

(−)J)v(−)I δn̂ I , we find

d
dt

δN = − D
σ2 (MLv

(−)L)v(−)I gIJ(n∗)(∂
2βΩ(n)
∂nJ∂nK )

n∗
δ n̂K

t

+
√

2D
σ2 (MLv

(−)L)v(−)I qIJ(n∗) ⋅ ξ̂ J
t

= − D
σ2 λ(−)(MLv

(−)L)v(−)I δ n̂ I
t

+
√

2D
σ2 (MLv

(−)L)v(−)I qIJ(n∗) ⋅ ξ̂ J
t

≡ − D
σ2 λ(−)δN +

√
2D
σ2 (MLv

(−)L)̂ξt , (G2)

where, in the last step, we have replaced the white noise by a simpler
form having the same covariance and therefore corresponding to the
same Fokker–Planck equation.69

In CNT, it is assumed that the size of clusters changes by the
attachment and detachment of monomers and that these occur with
rates f (N) and g(N) for a cluster of size N. This means that the
probability that a cluster has size N at time t + τ is, for small τ,

P(N; t + τ) = P(N; t) + τ f (N − 1)P(N − 1; t)
− τ( f (N) + g(N))P(N; t)
+ τg(N + 1)P(N + 1; t), (G3)

which can be rearranged as

P(N; t + τ) − P(N; t)
τ

= δ2((g(N) − f (N))P(N; t))
2

+ δ2
1(( f (N) + g(N))P(N; t))

2
, (G4)

where we have used the standard notation for centered finite dif-
ferences, viz., δh f (x) ≡ f (x + h

2 ) − f (x − h
2 ). Taking the limit that

τ → 0 leads to a differential equation in time, treating N as a contin-
uous variable, and replacing the finite differences by derivatives give
a partial differential equation for P(N; t) that is first order in time
and second order in N,

∂

∂t
P(N, t) = ∂

∂N

⎛
⎜
⎝

(g(N) − f (N))P(N, t)
+1

2
∂

∂N
[( f (N) + g(N))P(N, t)]

⎞
⎟
⎠

, (G5)

and is recognized as a Fokker–Planck equation. (This is essentially
the same as the Tunitskii equation of CNT.1) That Fokker–Planck
equation is in turn equivalent to the (Ito) stochastic equation,69

d
dt

N̂t = ( f (N̂t) − g(N̂t)) +
√

f (N̂t) + g(N̂t )̂ξt. (G6)

Comparing this to Eq. (G2) and evaluating both at the critical clus-
ter, we can identify the attachment and detachment frequencies as

f (N∗) = g(N∗) = D
σ2 (MJv

(−)J)
2
= D

σ2 (
dN
ds
)

2

n∗
. (G7)

To relate these quantities to the thermodynamics, as in CNT,
we turn to the evaluation of the derivative of the free energy along
the MLP. The derivative of the free energy with respect to the par-
ticle number along the MLP is evaluated using the fact that the
MLP points along the deterministic driving force (in the weak noise
approximation), so near the given point on the MLP, n(MLP), the path
can be parameterized as

n(MLP)I(α) = n(MLP)I + αgIJβΩJ(n(MLP)), (G8)

and so

dβΩ
dN
∣
n(MLP)

= lim
α→0

⎛
⎜
⎝

dβΩ(n(MLP)(α))
dα

⎞
⎟
⎠
/
⎛
⎜
⎝

dN(n(MLP)(α))
dα

⎞
⎟
⎠

=
βΩI(n(MLP))gIJ(n(MLP))βΩJ(n(MLP))

MK gKL(n(MLP))βΩL(n(MLP))
. (G9)
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At the critical point, the first derivative of the free energy vanishes,
and so, near the critical point, the steepest descent equation for
δnI = nI− n∗I takes the form

dδnI

dt
= D

σ2 gIJ(n∗)βΩJK(n∗)δnK (G10)

and the displacement along the MLP obeys

δnI ∝ gIJ(n∗)βΩJK(n∗)δnK , (G11)

or in other words, it is the direction of the unstable eigenvector.
Hence, we now have

n(MLP)I(α) = n∗I + αv(−)I , (G12)

and straightforward evaluation gives

dβΩ
dN
∣
n∗
= 0,

d2βΩ
dN2 ∣

n∗
= λ(−)

v
(−)

J v(−)J

(MIv
(−)I)

2 =
λ(−)

(MIv
(−)I)

2 . (G13)

It is also useful below to note that along the MLP,

ds =
√

dnIgIJdnJ =
√

ΩIgIJdΩJdα, (G14)

and so

dN
ds
= MK gKLβΩL√

ΩIgIJdΩJ

. (G15)

At the critical cluster, these become ds = dα and

(dN
ds
)

n∗
=MIv

(−)I , (G16)

respectively.
Finally, using Eqs. (G7) and (G13), to evaluate the CNT

expression for the nucleation rate, Eq. (7) gives Eq. (9).

APPENDIX H: HEURISTIC ONE-DIMENSIONAL MODEL

To give an idea of the effect of the entire nucleation pathway on
the nucleation rates, we consider a 1D model based on the infor-
mation derived from the full theory. In the main text, we used a
projection of the stochastic equation onto the unstable mode at the
critical cluster to extract the attachment rate. Here, we follow a sim-
ilar idea and, as in the discussion above (derivatives along the path),
we project in the direction of the deterministic force, giving

βΩI√
ΩIgIJβΩJ

d
dt

n̂ I
t = −

D
σ2

βΩI√
ΩIgIJβΩJ

gIJβΩJ

+
√

2D
σ2

βΩI√
ΩIgIJβΩJ

qIJ ⋅ ξ̂ J
t , (H1)

where we use a short-hand notation in which βΩI ≡ ∂βΩ/∂nI . To
make sense of this, consider the deterministic evolution of the
distance, which obeys

ds
dt
=
√

dnI

dt
gIJ

dnJ

dt
= D

σ2

√
βΩIgIJβΩJ , (H2)

so

βΩI√
ΩIgIJβΩJ

dnI

dt
= −ds

dt
. (H3)

This suggests, then, the model (Stratonovich69) stochastic differen-
tial equation,

ds
dt
= − D

σ2

√
βΩIgIJβΩJ +

√
2D
σ2

βΩI√
ΩIgIJβΩJ

qIJ ⋅ ξ̂ J
t , (H4)

and, again replacing the noise term by an equivalent one with the
same covariance, this becomes

ds
dt
= − D

σ2

√
βΩIgIJβΩJ +

√
2D
σ2 ξ̂t. (H5)

Finally, since all motion is along the MLP,
√

βΩIgIJβΩJ = dβΩ
ds ,

ds
dt
= − D

σ2
dβΩ(s)

ds
+
√

2D
σ2 ξ̂t. (H6)

We pause to note that the equilibrium distribution for this stochastic
process will be P(s)∝ e−βΩ(s) as one would expect if the variable s is
the correct order parameter.

A detailed analysis of this model will be given elsewhere. Here,
we note that the mean first passage time, T(s), for a cluster in state s
to eventually reach the critical state, s∗, corresponding to the critical
cluster can be determined exactly,69 and from this, the nucleation
rate is given by the population over the flux,13 giving the general
expression

J ≃ D
σ2

1
2∫

s∗

s0

c(s)
∫ s∗

s eβΩ(s′)(∫ s′

0 e−βΩ(s′′)ds′′)ds′
ds, (H7)

where c1 is the concentration of monomers. If we assume
that the system begins in a (near-) equilibrium state, c(N)
≈ c1e−β(Ω(N)−Ω(1)), then c(s) ≈ c1e−β(Ω(s)−Ω(0)) dN

ds and this can be
evaluated. (Note that the factor of dN

ds is necessary as c(N) and c(s)
are densities. For example, integrating c(N) over N = 0 to N∗ has
to be the same as integrating c(s) over s = 0 to s∗ since both are the
total number of sub-critical clusters.) Standard approximations give
the intermediate form,

J ≃ D
σ2

1
2
(dN

ds
)

s=0

c1

∫ s∗

0 eβΔΩ(s)ds
, (H8)

and a final evaluation using Laplace’s method gives
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J ≃ D
σ2 c1(

dN
ds
)

s=0

¿
ÁÁÀ 1

2π
∣ d2

ds2 βΩ(s)∣
s=s∗

e−βΔΩ∗ (H9)

or, changing variables,

J ≃ D
σ2 c1(

dN
ds
)

N=1
(dN

ds
)

N∗

¿
ÁÁÀ 1

2π
∣ d2

dN2 βΩ(N)∣
N=N∗

. (H10)

Not surprisingly, this only agrees with the CNT result, given in
Eq. (9) of the main text, if ( dN

ds )N=1
= ( dN

ds )N∗
or, more generally,

if dN
ds is constant, which means that s and N are equivalent as order

parameters.
It is interesting to note that we can use this model to identify the

attachment and detachment frequencies for any sized cluster. First,
we multiply Eq. (H6) by dN/ds to get the Stratonovich stochastic
differential equation,

dN
dt
= − D

σ2 (
dN
ds
)

2 dβΩ(N)
ds

+
√

2D
σ2

dN
ds

ξ̂t , (H11)

which is equivalent to the Fokker–Planck equation,

∂

∂t
P(N, t) = D

σ2
∂

∂N
((dN

ds
)

2 dβΩ(N)
dN

+ dN
ds

∂

∂N
dN
ds
)P(N, t),

(H12)
which can also be written as

∂

∂t
P(N, t) = D

σ2
∂

∂N

⎛
⎜⎜⎜
⎝

(dN
ds
)

2 dβΩ(N)
dN

− dN
ds

d
dN

dN
ds

+ ∂

∂N
(dN

ds
)

2

⎞
⎟⎟⎟
⎠

P(N, t)

(H13)
or, more succinctly,

∂

∂t
P(N, t) = D

σ2
∂

∂N

⎛
⎜⎜⎜
⎝

(dN
ds
)

2 d(βΩ(N) − ln dN
ds )

dN

+ ∂

∂N
(dN

ds
)

2

⎞
⎟⎟⎟
⎠

P(N, t). (H14)

Comparing to the CNT result, Eq. (G5), we can identify

f (N) − g(N) = − D
σ2 (

dN
ds
)

2 d(βΩ(N) + ln ds
dN )

dN
,

f (N) + g(N) = 2
D
σ2 (

dN
ds
)

2

.

(H15)

At the critical cluster, by definition, f(N∗) = g(N∗), so this gives

f (N∗) = D
σ2 ( dN

ds )N∗
= D

σ2 (MIv
(−)I)

2
as in the main text. Note, how-

ever, that the critical cluster is not what one might expect: it is
not the derivative of the free energy that is zero but of the shifted
free energy βΩ + ds

dN . This is related to an assumption that per-
meates CNT although it is seldom discussed. To illustrate within

the present context, let us imagine a sub-critical—and therefore,
equilibrium—fluid. In this case, the probability that a cluster has a
given size should be constant, and in fact, it is easy to determine
the equilibrium distribution from our model. Referring to Eq. (G5),
one easily finds that the probability that a cluster has size N, P(N),
is P(N) = N e−(βΩ(N)+ln ds

dN ), where the prefactor is a normalization
constant. Hence, the effective free energy is shifted. The origin of
this shift is apparent if we change variables from the size of the clus-
ter to its order parameter. Assuming an invertible relation, s(N), the
probability that a cluster has order parameter s, P̃(s) = P(N(s)) dN

ds ,
where the second factor on the right is needed to preserve nor-
malization (integrating over all s must be the same as integrat-
ing over all N). Working this out gives P̃(s) = N e−βΩ̃ (s), where
Ω̃(s) ≡ Ω(N(s)). Hence, the probability has the canonical form
when written in terms of the natural order parameter and it is only
when making a nonlinear change of variable that the “shift” occurs.
In CNT, one sometimes sees presentations in which the order para-
meter is not taken to be N but, rather, the radius of a cluster R.
In that case, it is often assumed that an equilibrium distribution is
proportional to e−βΩ(R) rather than e−βΩ(N) and it is clear that both
cannot be true. The fact that the free energy is shifted in these expres-
sions reflects the fundamental observation that the “classical” picture
really only fully holds when s and N are linearly related: curvature in
their relation indicates that changes in the local density occur, which
are not directly related to changes in total mass, and this violates the
fundamental assumptions of CNT. We will explore these issues more
fully in a future publication.
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