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I. INTRODUCTION

The central question in equilibrium statistical mechanics is the calculation of

various physical quantities—pressure, magnetization, charge distribution, and so

on—from the knownmany-body distribution function. The technical difficulty lies

in first formulating the macroscopic quantity as the average of some quantity and

then performing the calculation. The first task is often straightforward. In most

cases, the second task can be cast as an average over the one- or two-body

distributions that result from integrating the original N-body distribution over N-1

or N-2 of the coordinates. In equilibrium, the velocity distribution is always

Maxwellian and therefore trivial, so the real work concerns the configurational part

of the averages. The configurational part of the one-body distribution is precisely

the same as the average local (number) density, while that of the two-body

distribution is closely related to the pair distribution function. As explained below,

the pair-distribution function can itself be viewed as the one-body distribution in a

system subject to a particular external potential, so that it follows that a large part of

equilibrium statistical mechanics is solved by a general method to obtain the one-

body distribution—or, equivalently, the local density—of systems subject to

arbitrary external fields. This is the rationale behind Density Functional Theory

(DFT), which aims to provide just such a method.

Themodern approach toDFT can be traced back to thework of van derWaals on

the free energy of fluids made inhomogeneous by gravity [1, 2]. Consider a system

confined to a volume V in which the local density is rðrÞ and the average density
is �r ¼ R

V
rðrÞ dr. Naively, one might imagine that if the free energy per unit
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volume in a bulk fluid, for which rðrÞ ¼ �r, is f ð�rÞ, so that the total free energy

F ¼ Vf ð�rÞ, then the free energy of the inhomogeneous fluid is F ¼ R
V
f ðrðrÞÞ dr.

However, as discussed by van der Waals, a small volume of fluid bounded on one

side by fluid at a lower density and on the other side by fluid at a higher density will

feel a force due to the different numbers of interactions between it and the

neighboring volumes. Thus, the free energy must contain terms taking this into

account and a simple analysis of the forces leads to squared-gradient terms, thus

giving the well-known squared-gradient model, which is still widely used today.

Similar ideas were rediscovered in the form of Ginzburg–Landau theory [3] and in

the work of Cahn and Hilliard [4] on planar interfaces.

However,DFTismore than just the idea that the free energy can be expressed as a

functional of a set of order parameters. The formal development ofDFTbeginswith

the theorem of Mermin that, for a given temperature and chemical potential, an

external field will give rise to a unique equilibrium density distribution and that this

profilewillminimizeaparticular functional [5].Theuniquenessof theexternalfield/

density distribution mapping means that the field can be eliminated in favor of the

density so that the functional determining the density has only a trivial dependence

on the field. Once the field-independent, nontrivial part of that functional is known,

all problems involving external fields can in principle be solved.

The required functional can furthermore be expressed, exactly, as an infinite

series constructed from the correlation functions of a bulk homogeneous fluid.

Since liquid-state theory gives models for those functions, the earliest approaches

to DFT involved trying to use the lowest terms from that series as an approximate

model. This led to the first DFT of freezing by Ramakrishnan and Yussouff [6] as

well as to thework by Saam and Ebner on the properties of nonuniform fluids such

as the liquid–vapor interface [7, 8]. Many other theories followed, all based on the

idea of using knowledge of bulk liquids to model the DFT functional for more

complex systems.

At about the same time that this early work was beginning, in the mid-1970s,

Percus gave the exact DFT for one-dimensional hard rods [9]. Of course, attempts

were quickly made to generalize these results to higher dimension with limited

success. However, in the 1990s, Rosenfeld formulated Fundamental Measure

Theory (FMT) as a generalization of the old Scaled Particle Theory [10–12] and it

was soon recognized that this was best thought of in terms of a generalization of

Percus’ results. FMT represented a departure from othermethods in that it does not

explicitly depend on some sort of mapping to an effective liquid. As discussed

below, it has many attractive features and is currently considered the best

approximate DFT for hard-sphere systems.

Implicit in all of this is the fact that hard-core systems are much better

understood than are more realistic particles with attractive interactions. However,

as is the case in liquid-state theory, the hard-core system is a useful first

approximation and attractive interactions can be treated in a perturbative or
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mean-field fashion. This represents the state of the art in most calculations. On this

basis, the use of DFT has exploded so that today, new papers based on DFT are

published in numerous journals every month.

Over the course of the development of the history,many important reviews have

beenwritten. The 1979 reviewbyEvans [13] helped to unify and define the subject,

and his 1992 review [14] is an excellent summary of the state of DFTat that time,

including a very interesting discussion of the history of DFT and the interplay

between the classical and quantum theories. Important overviews have also been

written by Baus and Lutsko [15] and L€owen [16]. An excellent review stressing

applications is given by Wu [17]. The point of the present chapter is to describe

DFT in its current form. The next section gives the formal theory. It seems

appropriate to emphasize this because it is important to understand the limitations

of the theory as well as its use. Section III presents a review of liquid-based DFT

models.While FMT is viewed as the most accurate model for hard-core systems, it

is also more complicated than the earlier theories and computationally more

demanding. Thus, it is still quite common to see even the simplest DFT models

used (e.g., in the study of three-body contributions to freezing [18] and of

glasses [19]) while, for example, the Modified Weighted Density Approximation

(discussed below) is also still frequently used [20]. The next section is devoted to

explaining the development of FMT starting with the exact results of Percus, the

SPT-inspired FMT of Rosenfeld followed by the important idea of dimensional

reduction and culminating in the very accurate functionals currently in use.

Notwithstanding its successes, FMT is not perfect and the section concludes with

a discussion of open questions and problematic issues. Section V addresses the

problem of attractive interactions and gives some representative calculations for

simple fluids. Section VI is devoted to attempts to use DFT to understand

dynamical phenomena, the so-called Dynamical Density Functional Theory and

Energy Surface methods. The chapter ends with a short summary.

II. FUNDAMENTALS

A. Statistical Mechanical Preliminaries

Since the local density is the fundamental unknown,DFTis formulated in the grand

canonical ensemble with the temperature T and the chemical potential m as fixed

parameters. Consider a classical, conservative system of N particles having

coordinates and velocities, qi and pi respectively. The dynamics are governed

by a Hamiltonian ĤN ¼ K̂N þ V̂N þ ÛN; where the kinetic energy is

K̂N ¼
XN
i¼1

p2i =2mi ð1Þ
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The potential is an arbitrary function of the coordinates, V̂N ¼ Vðq1; . . . ; qNÞ
and the energy of interaction with the external field is

ÛN ¼
XN
i¼1

fðqiÞ ð2Þ

In the following, a caret will indicate a microscopic quantity having an instanta-

neous value calculated from the particle positions and momenta. The equilibrium

distribution, f , giving the probability density that the system consists ofN particles

with positions qN � q1; . . . ; qN and momenta pN � p1; . . . ; pN is

f ðqN ; pN ;N; f½ �Þ ¼ 1

X½f�N!hDN expð�bðĤN�mNÞÞ ð3Þ

where the inverse temperature is b ¼ 1=kBT , kB is Boltzmann’s constant and h is

Planck’s constant. The notation ½f� on the left-hand side indicates a functional

dependence. The grand potential, W, and the grand partition function, X, are

X f½ � ¼ expð�bW f½ �Þ ¼
X1
N¼0

1

N!hDN

Z
expð�bðĤN�mNÞÞdpNdqN ð4Þ

where dqN ¼ dq1 . . . dqN , and so on.

The local number density simply counts the number of particles in a given

volume and so its microscopic expression is

r̂ðrÞ ¼
XN
i¼1

dðr� qiÞ ð5Þ

Note that we use the traditional notation even though in other contexts the symbol r
more commonly refers to the mass density. For single-component systems, this is

unimportant but care must be exercised when the particles have different masses.

The contribution of the external field to the Hamiltonian can be written as

ÛN ¼
Z

fðrÞr̂ðrÞdr ð6Þ

Hence, it immediately follows that

dW½f�
dfðrÞ ¼ X�1

X1
N¼0

1

N!hDN
expðbmNÞ

Z
r̂NðrÞexpð�bĤNÞdpNdqN

¼ � r̂ðrÞh i
� �r r; ½f�ð Þ

ð7Þ

RECENT DEVELOPMENTS IN CLASSICAL DENSITY FUNCTIONAL THEORY 5



where . . .h if denotes an average in the grand canonical ensemble with field f and

the last line defines the average local equilibrium density, rðr; ½f�Þ. From its

definition, it is easy to see that rðr; ½f�Þ is the probability to find a particle at

position r. A second functional derivative gives

d2W½f�
dfðr1Þdbfðr2Þ ¼ � drðr1; ½f�Þ

dbfðr2Þ
¼ r̂ðr1Þr̂ðr2Þh i� r̂ðr1Þh i r̂ðr2Þh i
¼ rðr1Þdðr1 � r2Þþ rðr1Þrðr2Þhðr1; r2; ½f�Þ ð8Þ

where the structure function hðr1; r2; ½f�Þ ¼ gðr1; r2; ½f�Þ�1 and gðr1; r2; ½f�Þ is
the usual pair distribution function (PDF) [21].

B. Foundations of DFT

Density Functional Theory is based on a fundamental theorem first given by

Mermin [5] stating that the grand potential of an electron gas in the presence of a

one-body potential is a unique functional of the local density. The theorem is a

finite temperature generalization of the Hohenberg–Kohn theorem which applies

to zero-temperature systems and underlies the Density Functional Theory ap-

proach to ab initio quantummechanical calculations. It is in these theorems that the

two, now very different, disciplines called “Density Functional Theory” find their

common roots. In keeping with the focus of this chapter, the proof given here will

follow that found in Evans [13] and Hansen andMcDonald [21] which are specific

to a classical system.

The result is obtained in two steps: First, we form a functional over the space of

distributions and show that the equilibrium distribution minimizes it. Second,

this is used to show that two different external fields must give different local

densities. This means there is a one-to-one relation between fields and densities so

that the field can be eliminated in favor of the density, thus giving a functional of the

density which is minimized by the equilibrium distribution.

Consider the space of distribution functions that are purely functionals of the

applied external field as defined in Eq. (3). For brevity, these will here be denoted

fN ½f� with all other arguments being suppressed. Consider the functional

L½f;f0� � kBT
X1
N¼0

Z
ðlnðfN ½f�=fN ½f0�Þ�lnX½f0�ÞfN ½f� dpNdqN ð9Þ

and note thatL½f0;f0� ¼ �kBT lnX½f0�, which is justW½f0�, the grand potential,
so that

L½f;f0� ¼ L½f0;f0� þ kBT
X1
N¼0

Z
fN ½f�lnðfN ½f�=fN ½f0�Þ dpNdqN ð10Þ
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Using the fact that x ln x � x� 1 with equality only for x ¼ 1, one has thatX1
N¼0

Z
fN ½f�lnðfN ½f�=fN ½f0�Þ dpNdqN

¼
X1
N¼0

Z
fN f0½ � fN ½f�

fN ½f0�
lnðfN f½ �=fN f0½ �Þ dpNdqN

�
X1
N¼0

Z
fN f0½ � fN ½f�

fN ½f0�
� 1

0
@

1
A dpNdqN

¼ 0

ð11Þ

hence L½f;f0� � L½f0;f0�with equality only if the two functions are equal at all
points. This completes the first step of the proof.

Next, suppose thatf 6¼ f0 and use the derived inequality and the explicit form

of the distribution to find

L½f0;f0� < L½f;f0� ¼
X1
N¼0

Z
ðÛN ½f0� � ÛN ½f� � kBT lnX½f�ÞfN ½f� dpNdqN

¼
Z

dr ðf0ðrÞ�fðrÞÞ
X1
N¼0

Z
r̂ðrÞfN ½f� dpNdqN�kBT ln X½f�

¼ W½f� þ
Z

ðf0ðrÞ�fðrÞÞrðr; ½f�Þdr ð12Þ

¼ L½f;f� þ
Z

ðf0ðrÞ�fðrÞÞrðr; ½f�Þdr
Reversing the roles of f and f0 gives

L½f;f� < L½f0;f0� þ
Z

ðfðrÞ � f0ðrÞÞrðr; ½f0�Þdr ð13Þ

If rðr; ½f0�Þ ¼ rðr; ½f�Þ, then these two inequalities imply

L½f0;f0� �L½f;f� <
Z

ðf0ðrÞ�fðrÞÞrðr; ½f�Þdr < L½f0;f0��L½f;f� ð14Þ

which is a contradiction. Hence, different fields cannot generate the same average

local density.

The conclusion is that there is a unique local density for a given external field

and vice versa so that there is an invertible functional relation between average

equilibrium density for a given field, rðr; ½f�Þ , fðr; ½r�Þ. Since two equilibrium
distributions, fN ½f� and fN ½f0�, differ only in the explicit form of the external

field and its implicit effect on the partition function, the distribution is a functional

of the field and, hence, of the local density. We can therefore interpret the

functional L in this way by writing

L½f;f0� ¼ L½f½r�;f0� ¼ W½r;f0� ð15Þ

RECENT DEVELOPMENTS IN CLASSICAL DENSITY FUNCTIONAL THEORY 7



where

rðr; ½f�Þ ¼
X1
N¼0

Z
r̂ðrÞf ðqN ; pN ;N; ½f�ÞdqNdpN ð16Þ

is the density corresponding to the field f. Note that we use the notationW for this

functional as well as for the grand partition function. This is justified by the fact

that the functional chain rule implies that since L½f;f0� is minimized by the field

f ¼ f0, so alsoW½r;f0� isminimized by the equilibrium average density function,

rðrÞ ¼ rðr; ½f0�Þ, corresponding to f0,

dW½r;f0�
dr

����
����
rðrÞ¼rðr;½f0�Þ

¼ 0 ð17Þ

and W½rðr; ½f0�Þ;f0� ¼ W. Finally, it is convenient to separate out the part of

W½r;f0� which is independent of f0 and m by defining

W½r;f0� ¼ F½r� þ
Z

rðrÞðf0ðrÞ�mÞdr ð18Þ

where

F½r� ¼
X1
N¼0

Z
ðK̂N þ ÛN þ kBT ln ðN!hDNÞþ kBT ln f ½f½r��Þf ½f½r�� dpNdqN

ð19Þ
has no explicit dependence on the field f and, hence, is unique for a given

interaction potential. This is the key conceptual point underlying classical density

functional theory: The free energy functional F½r� is independent of the applied
field, and therefore the same model can be used for any external field. Once this

functional is known, the average density for any given external field is calculated

from the Euler–Lagrange equation

0 ¼ dW½r;f�
drðrÞ ) dF½r�

drðrÞ ¼ m�fðrÞ: ð20Þ

This equation plays a central role in DFT: Given an external field and a model free

energy functional, it can be solved to give the equilibrium density. Conversely, it

defines the dependence of the field on the equilibrium density, fðr; rÞ. Finally,
given some independent determination of fðr; rÞ, it can be integrated to give F½r�
as in the case of the ideal gas below.

Once the equilibrium profile is known, let us call it r0ðrÞ, the grand potential is
given by W ¼ W½r0;f�. However, since r0 is the solution to the Euler–Lagrange

equation, the field dependence can be eliminated by noting thatZ
r0ðrÞðm�fðrÞÞdr ¼

Z
r0ðrÞ

dF½r�
drðrÞ
� �

rðrÞ¼r0ðrÞ
dr ð21Þ
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If we abuse the notation somewhat and write

dF½r�
drðrÞ
� �

rðrÞ¼r0ðrÞ
¼ dF½r0�

dr0ðrÞ
ð22Þ

then the grand potential becomes

W ¼ F r0½ ��
Z

r0ðrÞ
dF½r0�
dr0ðrÞ

dr ð23Þ

These expressions should be interpreted with care because they are only valid

when r0ðrÞ is a solution of the Euler–Lagrange equation.

C. Integration of Functional Equations

There are two common circumstances in DFT in which the need arises to integrate

functional differential equations. The first is the case of exactly solvable systems

where one typicaly calculates the partition function for an arbitrary field, fðrÞ,
differentiates with respect to the field to get the local density rðr; ½f�Þ and

then inverts this relation to get the field as a functional of the density, fðr; ½r�Þ.
Then, integrating the Euler–Lagrange equation, Eq. (20), gives the key functional

F½r�. The other circumstance is described in more detail later, but it has to do with

the construction of approximate free energy functionals.

In either case, we recall that the equation

dF½r�
drðr1Þ ¼ cðr1; r½ �Þ ð24Þ

where the right-hand side is some known functional, is integrable if and only if [22]

dcðr1; ½r�Þ
drðr2Þ ¼ dcðr2; ½r�Þ

drðr1Þ ð25Þ

In this case, we can choose any two functions in density space, r0ðrÞ and r1ðrÞ, and
integrate between them along some path rðr; lÞ where rðr; 0Þ ¼ r0ðrÞ and

rðr; 1Þ ¼ r1ðrÞ, giving

F r1½ ��F r0½ � ¼
Z 1

0

dl
Z

dr
@rðr; lÞ

@l
cðr; r½ �Þ ð26Þ

and the result is independent of the chosen path. In practice, the linear path

rðr; lÞ ¼ r0ðrÞþ lðr1ðrÞ�r0ðrÞÞ is often used.
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D. Expression for the Ideal Gas Contribution to the Free Energy Function

The final ingredient needed to make DFT useful is a way to relate the various

functionals defined in the last subsection to physically meaningful quantities.

In a system with no interactions, f ¼ 0, one has

X½f� ¼ expð�bW f½ �Þ ¼
X1
N¼0

1

N!hDN
ð2pkBTÞ�DN=2

Z
expð�bðfðqÞ�mÞÞdq

� �N

¼ exp L�D

Z
expð�bðfðqÞ�mÞÞdq

� �
ð27Þ

where L ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mpkBT

p
is the thermal wavelength. The average density is thus

rðr; f½ �Þ ¼ dW½f�
dfðrÞ ¼ L�Dexpð�bðfðrÞ�mÞÞ ð28Þ

Denoting the ideal gas free energy functional by Fid½r� and substituting into the

Euler–Lagrange equation, Eq. (20), gives

dFid½r�
drðrÞ ¼ m�fðr; r½ �Þ ¼ kBT lnLDrðrÞ ð29Þ

which is integrated to give the explicit, exact result

bFid½r� ¼
Z 1

0

dl
Z

dr rðrÞ lnLDlrðrÞ

¼
Z

ðrðrÞ lnLDrðrÞ�rðrÞÞdr
ð30Þ

For interacting systems, the ideal-gas contribution is usually treated exactly,

so one canwriteF½r� ¼ Fid½r� þFex½r�where the second term on the right is called

the excess free energy functional. Thus, Euler–Lagrange equation becomes

kBT ln rðrÞþ dFex½r�
drðrÞ ¼ m� fðrÞ ð31Þ

A common method of solving this equation numerically is to write it in the form

rðrÞ ¼ exp bm�bfðrÞ� dbFex½r�
drðrÞ

� �
ð32Þ

and to iterate by making an initial guess at rðrÞ, using this to evaluate the right-

hand side and thus giving a new rðrÞ and so forth. Mixing between the iterations

can be useful.

E. A Simple Example: The Small Cavity

An exactly solvable model that plays an important role later is that of a hard sphere

in a small cavity. Specifically, consider fields that are infinite outside some
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specified region,V , but are still considered to be arbitrary within V . If V is so small

that the maximum number of hard spheres that can occupy it is one, then the

partition function is just

X ½f� ¼ expð�bW f½ �Þ ¼
X1
N¼0

1

N!hDN
ð2pkBTÞ�DN=2

Z
expð�bðfðqÞ�mÞÞdq

� �N

¼ 1þL�D

Z
V

expð�bðfðqÞ � mÞÞdq ð33Þ
Hence, the relation between the equilibrium density and the field is simply

rðrÞ ¼ �kBT
d ln X½f�
dfðrÞ ¼ L�Dexpð�bðfðrÞ � mÞÞ

1þL�D
R
V
expð�bðfðqÞ�mÞÞdq ð34Þ

Integrating this and rearranging gives

L�D

Z
V

expð�bðfðqÞ � mÞÞdq ¼ Nh i
1� Nh i ; Nh i ¼

Z
V

rðrÞdq ð35Þ

The Euler–Lagrange equation then becomes

dbF½r�
drðrÞ ¼ bðm� fðrÞÞ ¼ ln

LDrðrÞ
1� Nh i ð36Þ

so

bF½r� ¼
Z 1

0

dl
Z

dr rðrÞ lnL
DlrðrÞ

1�l Nh i

¼
Z

dr rðrÞlnLDrðrÞþ 1� Nh ið Þ ln 1� Nh ið Þð Þ
¼ bFid½r� þ 1� Nh ið Þ ln 1� Nh ið Þð Þþ Nh i

ð37Þ

Note that this result is quite generally independent of the details of the size and

shape of the cavity and only depends on the condition that the cavity cannot hold

more than one hard sphere.

F. Exact General Expression for the Excess Part of the

Free Energy Functional

Recall the relation

� drðr1; ½f�Þ
dbfðr2Þ ¼ rðr1Þdðr1 � r2Þþ rðr1Þrðr2Þhðr1; r2Þ ð38Þ

derived above (see Eq. 8). Let us write the inverse relation as

dbfðr2; ½r�Þ
drðr1Þ ¼ � 1

rðr1Þ dðr1 � r2ÞþGðr1; r2; r½ �Þ ð39Þ
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wherewemust clarify the nature ofGðr1; r2Þ. Substituting these into the functional
chain rule,

dðr1�r3Þ ¼
Z

drðr1; ½f�Þ
dbfðr2Þ

dbfðr2; ½r�Þ
drðr3Þ dr2

gives the relation

hðr1; r3Þ ¼ Gðr1; r3; ½r�Þ þ
Z

hðr1; r2Þrðr2ÞGðr2; r3; ½r�Þdr2 ð40Þ

This is recognized as the Ornstein–Zernike equation for an inhomogeneous

system [21] so that we can identify the unknown function G as the (two-body)

direct correlation function (DCF), Gðr2; r3Þ ¼ c2ðr2; r3; ½r�Þ.
The excess part of the free energy can be understood by taking advantage of the

fact that it is independent of the applied field. In particular, in the case of the

equilibrium field, fðrÞ ¼ fðr; ½r�Þ, a functional differentiation of the Euler–

Lagrange equation, Eq. (20), gives

d2bFex½r�
drðr1Þdrðr2Þ ¼ � 1

rðr1Þ dðr1 � r2Þ� dbfðr1; ½r�Þ
drðr2Þ

¼ �c2ðr1; r2; ½r�Þ
ð41Þ

This result is very important and deserves to be highlighted: The functional Fex½r�
is a general functional of its argument, r, independent of the applied field.We have

derived its form by assuming a particular field—namely, the equilibrium fieldf½r�.
However, having determined it for this field, it is the same for all other fields as

well. This therefore completes the specification of the general functionalW½r;f0�.
This result can be used to give an expression for the exact excess free energy

functional. Since Eq. (41) is an exact relation and since the two-body DCF is an

exact derivative, it can be integrated through density space to give an exact relation

between the excess free energy functional for the density r0ðrÞ and that for the

density, r1ðrÞ. If one forms a path between these two density profiles parameter-

ized by some scalar such as rlðrÞ ¼ ð1� lÞr0ðrÞþ lr1ðrÞ, then the result is

bFex½r1� ¼ bFex r0½ � þ
Z 1

0

dl
Z

dr1

�
dbFex½rlðr1Þ�

drlðr1Þ
	
r0

@rlðr1Þ
@l

�
Z 1

0

dl
Z 1

0

dl0
Z

dr1dr2c2ðr1; r2; rl0½ �Þ @rl0 ðr1Þ
@l0

@rl0 ðr2Þ
@l0

ð42Þ

Note that this is independent of the parameterization chosen. From the equivalence

of fields and densities, there will be some field that generates the density

profile r0ðrÞ at the given chemical potential. Calling this field fðr1; ½r0�Þ, the
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Euler–Lagrange equation can be used, giving

bFex½r1� ¼ bFex½r0� þ
Z

dr1½bm� ln r0ðr1Þ � bfðr1; ½r0�Þ�ðr1ðr1Þ�r0ðr1ÞÞ

�
Z 1

0

dl
Z l

0

dl0
Z

dr1dr2c2ðr1; r2; rl0½ �Þ @rl0 ðr1Þ
@l0

@rl0 ðr2Þ
@l0

ð43Þ
Specializing to the case that the reference state is a liquid, r0ðrÞ ¼ �r0, the field

bfðr1; ½r0�Þwill be a constant such that m� fðr1; ½r0�Þwill be chemical potential

that generates �r0 which, though an abuse of notation, wewill denote asmð�r0Þ. This
should not be confused with the applied chemical potentialm, which is an external
parameter in the grand canonical ensemble. Then, taking the linear parameteriza-

tion through density space, the excess functional is

1

V
bFex r1½ � ¼ bfexð�r0Þþ

@bfexð�r0Þ
@�r0

ð�r1 � �r0Þ

� 1

V

Z 1

0

dl
Z l

0

dl0
Z

dr1dr2c2ðr1; r2; ½ð1� l0Þr0 þ l0r1�Þ

� ðr1ðr1Þ � �r0Þðr1ðr2Þ � �r0Þ ð44Þ
This is still not useful because it involves the unknown two-body direct correlation

function for an arbitrary density distribution. The idea underlying many DFT

models is that, at least in the liquid state, the DCF is relatively simple in structure

compared to other properties such as the pair distribution function. For example,

the PDF in a dense simple fluid has a slowly decaying oscillatory structure

describing successive shells of neighbors, whereas, for example, in the hard-

sphere fluid, the DCF is well-approximated as a monotonic cubic function

vanishing outside the hard core. Hence, it was hoped that relatively crude

approximations to the DCF might be adequate.

Oneway to implement this intuition is to perform a functional Taylor expansion

of the DCF about another reference liquid density,

c2ðr1; r2; ½rl�Þ ¼ c2ðr12; �rðlÞÞ

þ
X1
n¼3

1

ðn�2Þ!
Z

dr3 . . . drNcnðr3; . . . ; rN ; �rðlÞÞ

ðrlðr3Þ � �rðlÞÞ . . . ðrlðrNÞ � �rðlÞÞ ð45Þ

where the right-hand side is written using the higher-order direct correlation

functions for the liquid,

cNðr3; . . . ; rN ; �rÞ ¼ dN�2c2ðr1; r2; ½r�Þ
drðr3Þ . . . drðrNÞ

����
rðrÞ¼�r

ð46Þ
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Equations (44) and (45) give an exact expression of the excess free energy

functional in terms of the properties of a uniform fluid. It is independent of the

path taken through density space so that one can choose, for example,

rlðrÞ ¼ lrðrÞ and it is also exact for all choices of �r0 and �rðlÞ. In principle,

this gives a method to describe nonuniform systems, even solids, based only on

knowledge of the uniform fluid. Unfortunately, little is known about the higher-

order direct correlation functions so that in practice, only the first three terms of

the expansion are used. A simple approximation consists of truncation of the

higher-order terms and the choice �rðlÞ ¼ �r0, giving

1

V
bFex r1½ � ’ bfexð�r0Þþ

@bfexð�r0Þ
@r0

ð�r1� �r0Þ

� 1

2V

Z
dr1dr2c2ðr12; �r0Þðr1ðr1Þ � �r0Þðr1ðr2Þ � �r0Þ ð47Þ

However, this is not really satisfactory because it is inconsistent when the target

system is itself the uniform fluid, that is, r1ðrÞ ¼ �r1. To remedy this, one should

take �r0 ¼ �r1, which is the oldest and simplest approximate DFT, first studied by

Ramakrishnan and Yussouff [6]:

1

V
bFex r1½ �� 1

V
bFexð�r1Þ ’� 1

2V

Z
dr1dr2c2ðr12; �r0Þðr1ðr1Þ� �r1Þðr1ðr2Þþ�r1Þ

ð48Þ
This approximation, which involves only knowledge of the DCF in the liquid,

is still a standard starting point for calculations in which simplicity is favored

over accuracy.

G. Correlation Functions

Given the free energy functional F½r�, the entire hierarchy of direct correlation

functions follows immediately by functional differentiation. In many cases,

however, it is more useful to have the pair distribution function,

gðr1; r2;m; ½f�Þ, giving the probability to find a particle at position r2 given that

their is one at position r1. One method is to use the Ornstein–Zernike equation for

inhomogeneous fluids [see Eq. (40)]. However, as pointed out by Percus [23, 24],

DFT provides another method of obtaining the PDF which can be easier to

implement in practice. Suppose the system interacts via a two-body potential,

vðr1; r2Þ, and is subject to an external potential fðrÞ. The two-body distribution

rðr1; r2;m; ½f�Þ is the probability to find one particle at position r1 and another at
position r2. It is related to the PDF by rðr1; r2;m; ½f�Þ ¼ rðr1;m; ½f�Þ�
rðr2;m; ½f�Þgðr1; r2;m; ½f�Þ. Since the one-body density is the probability to find

a particle at a given position, it follows that rðr1; r2;m; ½f�Þ=rðr1;m; ½f�Þ ¼
rðr2;m; ½f�Þgðr1; r2;m; ½f�Þ is the conditional distribution giving the probability
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to find a particle at position r2 given that there is one at position r1. Conceptually,

this is identical to the probability to find a particle at position r2 in a system with a

particle fixed at position r1. A fixed particle is equivalent to an external field acting

on the rest of the system, so another way to interpret this is that rðr2;m; ½f�Þ�
gðr1; r2;m; ½f�Þ is the same as the density profile in a systemwith the same external

field plus the field vðr1; r2Þ,
rðr2;m; ½f�Þgðr1; r2;m; ½f�Þ ¼ rðr2;m; ½f0

r1
�Þ ð49Þ

where

f0
r1
¼ f0ðrÞþ vðr1; rÞ: ð50Þ

Using the Euler–Lagrange equation, Eq. (32), this can be written as

rðr2;m; f½ �Þgðr1;r2;m; f½ �Þ

¼ exp bm�bfðr2Þ�bvðr1;r2Þ�dbFex½n�
dnðr2Þ

����
nðrÞ¼rðr;m;½f0

r1
�Þ

 !
ð51Þ

Thus, by solving the DFT with the field f0
r1
, one obtains the PDF for the

system with field f. In particular, if f ¼ 0, one finds that the PDF of the bulk fluid

is given by

�rðmÞgðr1; r2;mÞ ¼ exp bm�bvðr1; r2Þ�dbFex½n�
dnðr2Þ

����
nðrÞ¼rðr;m;½f0

r1
�Þ

 !
ð52Þ

These relations are often used in practical calculations to get the PDF from a DFT

calculation. Furthermore, since the sameDFTallows one to calculate both the PDF

and theDCF and since they are related via theOrnstein–Zernike relation, this gives

a method to check the self-consistency of model calculations analogous to the

comparison of the virial and compressibility routes to the equation of state in

liquid-state theory.

H. Parameterized Profiles and Gradient Expansions

In a typical application of DFT, given some approximation to the free energy

functional, the Euler–Lagrange equations are solved to get the equilibrium density

profile and, from this, the free energy is calculated. Since the density profile is a

function, this procedure involves discretization and can become computationally

very expensive. In many cases, one is able to make a reasonable guess as to the

general properties of the density profile and can therefore propose an analytic

form that is expected to closely approximate the exact result. For example, in the

case of a planar interface in which the density is uniform except in one direction,
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a hyperbolic tangent is a natural choice:

rðz; �r�1; �r1; z0; aÞ ¼ �r�1 þ ð�r1��r�1Þ expðaðz� z0ÞÞ
expðaðz� z0ÞÞþ expð�aðz�z0ÞÞ

ð53Þ
so that there are four parameters: the densities at z ¼ �1, the location of the

interface, z0, and the inverse width, a. A similar form, with the Cartesian

coordinate z replaced by the radial coordinate r, might be used to described a

spherical cluster (droplet or bubble in a liquid–vapor system). A very important

parameterization used in many calculations of solids is to approximate the density

as a sum of Gaussians centered at the lattice sites:

rðr;a; x; �rlattÞ ¼ x
X1
n¼0

a

p


 �3=2
expð�aðr�RnÞ2Þ ð54Þ

where the sum is over lattice vectors, Rn, the magnitudes of which depend on the

lattice density �rlatt, where a controls the width of the Gaussians and 0 < x � 1 is

the occupancy that allows for the possibility that not all lattice sites are occupied.

This is actually a very flexible parameterization, as can be seen when it is written

in Fourier space as

rðr;a; x; �rlattÞ ¼ x�rlatt
X1
n¼0

expðiKn 	 rÞexpð�K2
n=4aÞ ð55Þ

where the sum is now over all reciprocal lattice vectors,Kn. In this form, it is clear

that lima! 0 rðr;a; x; �rlattÞ ¼ x�rlatt, which is the uniform fluid limit. Hence, the

Gaussian approximation can be used to approximate both liquid-like and solid-like

systems and, most importantly, the transition from one to another. Note that

with this parameterization, the calculation of the ideal contribution to the free

energy is not trivial. If the lattice parameter is denoted a, then for aa2 
 1,

asymptotic expressions are available [25], but these are not very useful. For

aa2 � 1, a simple calculation [25] gives Fid r½ � ’ 3
2
lnðaL2=pÞ � 5

2
, which

becomes essentially exact for aa2 > 100. At intermediate values, the calculation

must be performed numerically. The accuracy of the Gaussian parameterization

has been the checked in several studies, and it seems to always be a very good

first approximation [26–28].

Denote an arbitrary parameterized profile as rðr;GÞ, where G ¼ fGigni¼1

represents a set of n parameters. If there is a set of parameters so that rðr;GÞ
is the exact equilibrium functional, then

@W½r;f0�
@Gi

¼
Z

dW½r;f0�
drðr;GÞ

@rðr;GÞ
@Gi

dr ¼ 0 ð56Þ
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so

@F½r�
@Gi

¼
Z

@rðr;GÞ
@Gi

ðm� fðrÞÞdr ð57Þ

If the only effect of the field is to confine the system to a volume V , then this

becomes

@F½r�
@Gi

¼ m
@�rðGÞ
@Gi

V ; �rðGÞV �
Z

rðr;GÞdr ð58Þ

which is the key equation that serves to fix the parameters in practical calculations.

In some cases, a simple parameterization of this form is insufficient. For

example, to describe a liquid–solid interface, one would might use the Gaussian

parameterization but with values of the average density and of a that vary as one

moves from the liquid region to the solid region. There is no difficulty in extending

the discussion of parameterized profiles to this case, but even with the parameteri-

zation the calculations can be quite expensive. If the variation of the parameters is

expected to be slow relative to the atomic and interfacial length scales, then one

might imagine performing a gradient expansion of the free energy. There are

actually two versions of the gradient expansion in use [29] and both are based on a

parameterization of the density appropriate for liquid–solid interfaces. The first is

due to Evans [13] and refined by Oxtoby and Haymet [30, 31]. Imagine that we

have some parameterization, rðr;GðrÞÞ, and calculate the (Helmholtz) free energy

difference between this system and that of a uniform fluid at second order in

perturbation theory [see Eq. (48)],

bF½r��bFð�r0Þ ’ bFid½r��bFidð�r0Þ
� 1

2V

Z
dr1dr2c2ðr12; �r0Þðrðr1;Gðr1ÞÞ � �rÞ rðr2;Gðr2ÞÞ � �rð Þ

¼ b

Z
Df ðrðr;GðrÞÞ; �r0Þdr1�

1

2V

Z
dr1dr2c2ðr12; �r0Þ

�ðrðr1;Gðr1ÞÞ � �rÞðrðr2;Gðr2ÞÞ � rðr2;Gðr1ÞÞÞ ð59Þ

where the second line uses the uniform free energy difference per unit volume,

Df ðr; �r0Þ ¼
1

V
FðrÞ � 1

V
Fð�r0Þ ð60Þ

Thus, the first term looks like a local free energy contribution while the second

depends on r1ðr2;Gðr2ÞÞ�r1ðr2;Gðr1ÞÞ, which can then be expanded in gradients
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of GðrÞ. Further development of this model depends on an explicit choice for the

parameterization,

rðr;GðrÞÞ ¼ r0 1þG0ðrÞþ
X
n¼1

expðiKn 	 rÞGnðrÞ
 !

ð61Þ

The result, truncated at second order in the gradient expansion, is

bF r½ � � bFð�r0Þ ’ b

Z
Df ðrðr;GðrÞÞ; �r0Þþ

1

2

XD
i;j¼1

XN
a;b¼1

Kab
ij

@GaðrÞ
@ri

@GbðrÞ
@rj

( )
dr

ð62Þ
with

Kab
ij ¼ dab

1

2
r20

Z
expðiKa 	 rÞrirjc2ðr; �r0Þdr ð63Þ

and can be found in the cited papers. One feature of this model is that the local

free energy term still involves rðr;GðrÞÞ, so that the long-wavelength and short-

wavelength variations of the density are not completely separated.

An alternative expansion was given by L€owen, Beyer, andWagner [32, 33] and

further developed by Lutsko [29]. The idea is that space is divided into Wigner–

Seitz cells centered on the lattice sites. Within each cell, the free energy is

functionally Taylor-expanded about the value of the density parameters at the

center of the cell; and the result, which will depend on terms like GðrÞ � GðRnÞ, is
again expanded in gradients of the parameters. It turns out that if the gradient

expansion is truncated at second order, this automatically truncates the functional

expansion at second order as well. At this point, the free energy has the gradient

form, but iswritten as a sumoverWigner–Seitz cells. The transition to a continuum

description is subtle and requires the further neglect of contributions of higher

order in the gradients of the density parameters. The final result is

bF r½ � ’ b

Z
1

V
b~FðGðrÞÞþ 1

2

XD
i;j¼1

XN
a;b¼1

Kab
ij ðGðrÞÞ

@GaðrÞ
@ri

@GbðrÞ
@rj

( )
dr ð64Þ

where

~FðGÞ ¼ bF½rG�
Kab
ij ðGÞ ¼

1

2V

Z
r12;ir12;jc2ðr1; r2; rG½ �Þ @rðr1;GÞ

@Ga

@rðr2;GÞ
@Gb

dr1dr2
ð65Þ

and the notation F½rG� indicates the functional F½r� evaluated with the function

rðr;GÞ—that is, for fixedvalues ofG. This result ismore general andmore complex
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than the previous one. The DCF occurring here is that for the system with uniform

density parameters, not the uniform fluid as in the previous case. It also does not

depend on any particular parameterization of the density. In fact, if one makes

the approximation c2ðr1; r2; ½rG�Þ � c2ðr12; �r0Þ and uses the Haymet–Oxtoby

parameterization for the density, then the coefficients Kab
ij ðGÞ become the same

in both theories.

One important aspect of both theories is that the expression for the coefficient

Kab
ij will only be finite if the DCF is short-ranged (or goes to zero sufficiently

quickly so that the second moment exists). In fact, the derivations implicitly

assume that analogous higher-order terms also exist so that in general the

interactions should be short-ranged. This is not a problem if the potential is

truncated, as is typically the case when comparing to simulation, or if the free

energy is separated into a short-ranged and a long-ranged contribution, as is

discussed in more detail below, and the gradient expansion only applied to the

short-ranged part. A final comment is that the use of gradient expansions has been

questioned in general on the grounds that they treat correlations too crudely [34].

This criticism seems more apropos of the first form of the gradient model where

one is using a very crude model for the DCF function (namely that of a uniform

liquid). In the more sophisticated model, no such assumption is made and, in fact,

the truncation of the functional Taylor expansion at second order is an exact

consequence of the truncation of the gradient expansion at second order, thus

suggesting that this criticism may carry less weight.

III. DFT MODELS BASED ON THE LIQUID STATE

A. A Preview of DFT: The Square Gradient Model

The previous section dealt with the theoretical basis for DFT without giving

much indication as to how it could be used in practice. Toward this end, we

observe that some knowledge is available for the liquid state. If there is no applied

field, then there is no source of spatial anisotropy and the average density must be

a constant, rðrÞ ¼ �r. (Note that we often speak of solids in the absence of fields
and these are not translationally invariant; however, there must actually be a field

that serves to fix the position and orientation of the crystal lattice: Averaging over

all translations and rotations of the lattice would give a uniform density. We

assume it is enough that such a field act at the boundaries of the system and that

its effect is negligible in the thermodynamic limit.) Rather than having no field at

all, we will assume the system is in a container, which means that the field is

zero in the interior region and infinite outside this region. Again, we assume

that the interior can be made so large that the surface effects of the container

are negligible. Then, if the available volume is V , the grand potential is
1
V
W ¼ L �r;f �r½ � ¼ 0½ � ¼ �r lnLD�r��rþ 1

V
Fex �r½ ��m�r; hence, it follows that
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1
V
Fex �r½ � is the excess Helmholtz free energy for a uniform liquid which will be

denoted as fexð�rÞ. Whenever necessary, it is assumed in DFT that this function as

well as other properties of the uniform liquid such as its two-body DCF,

c2ðr1; r2; ½�r�Þ ¼ c2ðr12; �rÞ, the pair distribution function, and so on, are known

or knowable from liquid-state theory (thermodynamic perturbation theory or

integral equation theories, see, for example, Ref. 21).

It might seem that one could make a simple DFT model based on the (known)

free energy function of the liquid by postulating that

Fex½r� ’
Z

fexðrðrÞÞdr ð66Þ

which is known as the “local density approximation.” However, a moment’s

thought shows that this is too simple. For example, in the case of a planar

liquid–vapor interface, the grand potential of the liquid and vapor are the same

(by definition of coexistence). Since the coexisting phases are minima of the grand

potential, the free energy for densities between that of the liquid and vapor must be

larger, thus implying that the density functional is minimized by a system with an

infinitely thin interface, which is a very crude and not very useful approximation.

This defect can be corrected, as first discussed by van der Waals himself [1, 2], by

realizing that gradients of the density must be energetically costly since a small

volume in the system with neighboring volumes having different densities will

necessarily feel a net force. Calculating the forces in the limit of slowly varying

densities leads to the well-known “square-gradient approximation” [1, 2],

Fex r½ � ’
Z

fexðrðrÞÞþ 1

2
gðrrðrÞÞ2

� 	
dr ð67Þ

The parameter g is, at this point, unknown and is often treated phenomenologically.

As discussed above, it can be calculated from knowledge of the DCF. To give a

flavor of the types of calculations performed using DFT, we can use this model to

calculate the structure of the liquid–vapor interface. Let the densities of the

coexisting liquid and vapor at some given temperature and chemical potential be �rl
and �rf, respectively. Then, for a planar interface we expect the density to depend
only on one coordinate, say the z-coordinate, and to take the values rð1Þ ¼ �rl and
rð�1Þ ¼ �rv. The Euler–Lagrange equation becomes

df ðrðzÞÞ
drðzÞ �g

d2rðzÞ
dz2

¼ m ð68Þ

where f ðrÞ ¼ r ln r�rþ fexðrÞ. Multiplying through by drðzÞ=dz and integrating
under the assumption that the derivatives vanish at large zj j gives

f ðrðzÞÞ� 1

2
g

drðzÞ
dz

� �2

�mrðzÞ ¼ f ð�rvÞ�m�rv � vð�rv;mÞ ð69Þ
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This equation can be solved by quadratures and, given an analytic form of

fexðrÞ, the profile determined numerically. The excess free energy per unit area, the

surface free energy gwhich is often assumed to be the same as the surface tension,

can then be calculated from

g ¼
Z 1

�1
f ðrðzÞÞþ 1

2
g

drðzÞ
dz

� �2

� mrðzÞ � vð�rv;mÞ
 !

dz ð70Þ

If the profile is monotonic, one can solve Eq. (69) for dr=dz and write this as

g ¼
ffiffiffiffiffi
2g

p Z �rl

�rv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðrÞ�mr�vð�rv ;mÞ

p
dn ð71Þ

so that the surface free energy can be determined by a simple integration without

even solving for the profile.

B. A Survey of Models

One of the applications that motivated the development of early DFT models was

the description of freezing and particularly the description of hard-sphere freezing.

Itwas always recognized that if goodmodels could be created for hard-spheres, then

realistic potentials with long-ranged attractive interactions could, at worst, be

treated perturbatively (an assumption justified by the extension of thermodynamic

perturbation theory to the solid state [35]). At best, a successful model for hard-

spheres would be immediately generalizable to simple fluids and beyond. The

strategy that dominated much of the early work was to try to somehow use

information about the uniform liquid to construct a functional applicable to

nonuniform systems, particularly the solid that in this context is viewed as a highly

nonuniform liquid. In the remainder of this section, a variety ofmodels based on this

approach is reviewed and their successes and shortcomings are pointed out. Amore

thorough discussion of these developments can be found in Evans [13].

1. Models Based on Perturbation Theory about the Uniform Liquid State

a. The Ramakrishnan–Yussouff/Haymet–Oxtoby Theory. Perhaps the earliest

successful DFT of freezing was that due to Ramakrishnan and Yussouff [6] and

further developed by Haymet and Oxtoby [30]. It is based on the truncation of the

perturbative expansion, Eqs. (44) and (45), with the simplest choices �r0 ¼ �rðlÞ ¼ �r1
giving

1

V
bFex r1½ �¼bfexð�r0Þ�

1

2V

Z
dr1dr2c2ðr12;�r0Þðr1ðr1Þ��r0Þðr1ðr2Þ��r0Þþ 			 ð72Þ

Higher-order terms are not written as practical calculations are usually, but

not always, done after truncating the expansion at second order. The suspicion
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that higher-order terms were not negligable, particularly the work of Curtin [36]

indicating that the series converges slowly, if at all, led to a desire

for “nonperturbative” alternatives to this simple theory. Nevertheless, it is still

frequently used as a simplest first approximation.

b. The Effective Liquid Theory. Baus and Colot [37] proposed what was termed a

“nonperturbative” theory, meaning it was not based on perturbation about a liquid

with the same density as the inhomogeneous system (usually a solid, in this

context). It can, however, still be viewed as a perturbative theory based on

Eqs. (44, 45) with �r0 ¼ �r1. The idea was that the unknown DCF be

approximated by that of the liquid at a density, �rELA for which the first peak of

the structure factor of the liquid occurs at the smallest reciprocal lattice vector

of the solid (thus, in some sensematching the structure of the liquid and solid). This

is equivalent to taking �rðlÞ ¼ �rELA in Eqs. (44)–(45) giving

1

V
bFex r1½ � ¼ bfexð�r1Þ�

1

2V

Z
dr1dr2c2ðr12; �rELAÞðr1ðr1Þ��r1Þðr1ðr2Þ��r1Þþ 	 	 	

ð73Þ
which is the ELA result.

c. The Self-Consistent Effective Liquid Theory. Proposed by Baus [38], this

theory involved an actual integration though density space. First, the initial

reference is taken to be zero, �r0 ¼ 0, and then the choice �rðlÞ ¼ l�rSCELA is

made giving

1

V
bFex r1½ �¼� 1

V

Z 1

0

dl
Z l

0

dl0
Z

dr1dr2c2ðr12;l0�rSCELAÞr1ðr1Þr1ðr2Þþ 	 	 	

¼� 1

V

Z 1

0

dl
Z

dr1dr2ð1�lÞc2ðr12;l�rSCELAÞr1ðr1Þr1ðr2Þþ 	 	 	
ð74Þ

where the second line follows from an integration by parts. The density �rSCELA
is chosen to satisfy the self-consistency requirement that the excess free energy

per atom be the same in the solid as in the reference system,

cexð�rSCELAÞ �
1

�rSCELA
fexð�rSCELAÞ ¼

1

r1V
Fex r1½ � ð75Þ

The idea is that there is always some liquid density for which this equation—the

thermodynamic mapping—holds true. Similarly, there is always some liquid

density for which Eq. (74) holds true, the so-called structural mapping. The

SCELA results from a demand for self-consistency in the sense of equating the

structural mapping and the thermodynamic mapping.
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d. Generalized Effective Liquid Theory. A further development of this idea was

proposed by Lutsko and Baus [25, 39]. It extends the idea of the SCELA by

requiring self-consistency for all densities along the integration path in the hope

that this would suppress the contribution of higher order terms. The result is

1

V
bFex r1½ � ¼ � 1

V

Z 1

0

dl
Z

dr1dr2ð1�lÞc2ðr12; �rGELAðlÞÞr1ðr1Þr1ðr2Þþ . . .

ð76Þwith

bcexð�rGELAðaÞÞ ¼ 1

ar1V
bFex ar1½ �

¼ � 1

a�r1V

Z 1

0

dl
Z l

0

dl0
Z

dr1dr2c2ðr12; �rGELAðal0ÞÞ

�ar1ðr1Þar1ðr2Þþ . . .

¼ � 1

a�r1V

Z a

0

dg
Z a

0

dl0
Z

dr1dr2c2ðr12; �rGELAðg0ÞÞ

� r1ðr1Þr1ðr2Þþ . . . ð77Þ
Notice that when truncated at second order, this can be converted into a differential

equation for �rGELAðaÞ [25],
@2

@a2
abcexð�rGELAðaÞÞ ¼ � 1

�r1V

Z
dr1dr2c2ðr12; �rGELAðaÞÞr1ðr1Þr1ðr2Þ ð78Þ

e. Modified Weighted Density Approximation. The Weighted Density

Approximation (WDA) of Curtin and Ashcroft [40] will be described

separately below. The goal was to try to construct a density functional having

the property that it reproduces the DCF of the liquid in the uniform limit,

c2ðr12; �rÞ ¼ � lim
rðrÞ! �r

d2bFðWDAÞ½r�
drðr1Þdrðr2Þ ð79Þ

The Modified Weighted Density Approximation of Denton and Ashcroft is a

simplified form of the same idea [41]. It is derived by introducing an effective

liquid ansatz,

1

�rV
Fex r½ � ¼ cexð�rMWDA r½ �Þ ð80Þ

and writing the MWDA density as a weighted average,

�rMWDA r½ � ¼ 1

�rV

Z
wðr12; �rMWDA½r�Þrðr1Þrðr2Þdr1dr2 ð81Þ
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and demanding that the weighting function be normalized. Demanding that the

theory reproduce a given DCF, c2ðr12; �rÞ, in the bulk limit is enough to uniquely

determine the weight function as

wðr12; �rÞ ¼ �1

2bc0ð�rÞ c2ðr12; �rÞþ 1

V
�rbc00ð�rÞ

� �
ð82Þ

Then the effective density is determined from

2�rMWDAbc
0ð�rMWDAÞþ �r1�rMWDAbc

00ð�rMWDAÞ

¼ � 1

�rV

Z
c2ðr12; �rMWDAÞrðr1Þrðr2Þdr1dr2 ð83Þ

This is equivalent to a perturbative theory, Eqs. (44) and (45), truncated at second

order with �rðlÞ ¼ �rMWDA and �r0 determined from

�rcexð�r0Þþ ð�r��r0Þ�r0c0
exð�r0Þ ¼ �rcexð�rMWDAÞ

�ð�r�rMWDA�2�r0�rþ �r20Þc0
exð�rMWDAÞ

� 1

2
ð�r��r0Þ2�rMWDAc

00
exð�rMWDAÞ ð84Þ

2. Nonlocal Theories

a. SimplePosition-DependentEffectiveLiquid. In the simple truncated perturbation

theory, one effectively replaces the DCF of the inhomogeneous system by that of a

fluid at some specifieddensity. For bulk properties, thismight suffice, even for the bulk

solid, but it obviously runs into conceptual difficulties when applied tomore complex

systems. For example, what single value of the reference density should be chosen to

approximate correlations in a liquid–vapor interface or vapor–solid interface? For a

liquid–vapor system, far from the interface one knowswhat the DCF should be (since

the DCF in the bulk is required as input for most of the DFTs discussed here). This

suggests the use of a position-dependent reference density. Since the DCF is a two-

point function that is symmetric in its arguments, some care must be taken in

introducing such an approximation. Two simple possibilities are

c2ðr1; r2; r½ �Þ ’ c2 r12;
rðr1Þþ rðr2Þ

2

� �
ð85Þ

and

c2ðr1; r2; r½ �Þ ’ 1

2
ðc2ðr12; rðr1ÞÞþ c2ðr12; rðr2ÞÞÞ ð86Þ
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Substituting the first into the exact expression, Eq. (44), gives, after some

rearrangement,

bFex½r� ’
Z

dr bfexðrðrÞÞ

þ 1

4

Z
v

dr1dr2ðrðr1Þ�rðr2ÞÞ2��c2 r12;
rðr1Þþ rðr2Þ

2
; �r0

0
@

1
A

� 1

2

Z
v

dr1dr2

rðr1Þþ rðr2Þ
2

��r0

0
@

1
A

2

��c2 r12;
rðr1Þþ rðr2Þ

2
; �r0

0
@

1
A

�ðrðr1Þ��r0Þ2��c2ðr12; rðr1Þ; �r0Þ

2
664

3
775

ð87Þ
for the first approximation, where

��c2ðr; r; �r0Þ � 2

Z 1

0

Z l

0

c2ðr; �r0 þ l0ðr��r0ÞÞdl0dl ð88Þ

The second approximation gives a somewhat simpler result,

bFex½r� ¼
Z

dr fexðrðrÞÞ

þ 1

2

Z
v

ðrðr1Þ��r0Þðrðr1Þ�rðr2ÞÞ��c2ðr12; rðr1Þ; �r0Þdr2dr1
ð89Þ

which has the intuitively appealing form of a local effective liquid approximation

plus a contribution that depends on density gradients. It is straightforward to show

that an expansion in the inhomogeneity—that is, in powers of ðrðr1Þ�rðr2ÞÞ—
gives [42]

bFex½r� ¼
Z

dr f ðrðrÞÞþ 1

4

Z
v

ðrðr1Þ�rðr2ÞÞ2

� 2

Z 1

0

lc2 r12; �r0 þ l
rðr1Þþ rðr2Þ

2
��r0

0
@

1
A

0
@

1
Adl

2
4

3
5dr1dr2 þ . . .

ð90Þ
and further expanding the integrand about l ¼ 1 gives, to lowest order,

bFex½r� ¼
Z

dr f ðrðrÞÞ

þ 1

4

Z
V

ðrðr1Þ�rðr2ÞÞ2c2 r12;
rðr1Þþ rðr2Þ

2

0
@

1
Adr1dr2 þ . . .

ð91Þ
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which is thewell-known form used by Saam and Ebner in some of the earliest DFT

calculations [7, 8].

b. Weighted Density Approximation of Curtin and Ashcroft. One criticism of

many of the models discussed so far is that they are formally inconsistent. They

require as input the DCF of the bulk liquid, but the second functional derivative of

the model excess free energy functional does not, in the uniform limit, give the

input function c2ðr12; rÞ. The Weighted Density Approximation of Curtin and

Ashcroft [40] was specifically designed to solve this problem. They begin by

writing the exact expression for the excess free energy functional, Eq. (44), with

�r0 ¼ 0 as

Fex½r� ¼
Z

Yexðr; ½r�ÞrðrÞdr ð92Þ
where

Yexðr; ½r�Þ ¼ �
Z 1

0

dl
Z l

0

dl0
Z

dr2c2ðr1; r2; ½l0r1�Þr1ðr2Þ

They then introduce a local effective liquid approximation

Yexðr; ½r�Þ ¼ cexðrWDAðr; ½r�ÞÞ ð93Þ
where we recall that cð�rÞ ¼ 1

�rV Fð�rÞ is the free energy per atom and cexð�rÞ is the
excess contribution. The local effective density is expressed in terms of aweighted-

density ansatz,

rWDAðr1; ½r�Þ ¼
Z

wðr1�r2; rWDAðr1; ½r�ÞÞrðr2Þdr2 ð94Þ
The weighting function is fixed by demanding that it is normalized,R
wðr; �rÞdr ¼ 1, and that the ansatz be consistent with the (known) DCF in the

liquid state,

c2ðr12; �rÞ ¼ � lim
rðrÞ! �r

d2bFex½r�
drðr1Þdrðr2Þ ð95Þ

leading to [40] wðr; �rÞ ¼ wðr; �rÞ and an integrodifferential equation for wðr; �rÞ.
Taking the Fourier transform,

~wðk; �rÞ ¼
Z

expðik 	 rÞwðr; �rÞdr ð96Þ

the weighting function is determined from

kBT~c2ðk; �rÞ ¼ �2
@cexð�rÞ

@�r
~wðk; �rÞ��r

@2cexð�rÞ
@�r2

~w2ðk; �rÞ

�2�r
@cexð�rÞ

@r
~wðk; �rÞ @~wðk; �rÞ

@�r
ð97Þ
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The WDA is therefore computationally more complex than the simpler effective

liquid theories because it involves a different effective liquid for each wave vector.

c. Tarazona’s Weighted Density Theory. A similar theory was constructed by

Tarazona [43] for the specific case of hard spheres. However, rather than enforce

the exact relation between the excess free energy functional and theDCF, a simpler

approximation was employed. The structure of the theory is the same as that of the

WDA, but the determination of theweighting function is different. It is expanded as

a series,

wðr; rÞ ¼ w0ðrÞþw1ðrÞrþw2ðrÞr2 ð98Þ

and the first two functions,w0ðrÞ andw1ðrÞ, are determined by requiring agreement

with the first two terms of thevirial expansion of theDCF.The final function is fit so

as to give a reasonable reproduction of the Percus–Yevick DCF at higher densities.

C. Some Applications

1. Freezing of Hard Spheres

The equilibrium density distribution under action of a given external potential f0,

fixed chemical potential m and inverse temperature b is that which minimizes the

free energy functional W½r;f0�. In the language of DFT, different phases corre-

spond to different density distributions. Two phases with densities r1ðrÞ and r2ðrÞ
can coexistwhen they simultaneouslyminimize this functional—that is, when they

both satisfy the Euler–Lagrange equation and when W½r1;f0� ¼ W½r2;f0�. Since
they satisfy they minimize the free energy functional, its value at those density

distributions is the grand-canonical free energy, W½r1;f0� ¼ W. Since the grand

potential is proportional to the pressure, W ¼ �PV , this implies the usual

thermodynamic condition of equal pressures. The Euler–Lagrange equation,

dF½r1�
dr1ðrÞ

¼ m�f0ðrÞ ¼
dF½r2�
dr2ðrÞ

ð99Þ

generalizes the usual condition of equal chemical potentials. Thus, in the grand

ensemble used in DFT, two-phase coexistence is in principle determined by

adjusting the parameter m, determining the resultant densities r1ðrÞ and r2ðrÞ
and evaluating W½r1;f0� and W½r2;f0� until a value of m is found for which

W½r1;f0� ¼ W½r1;f0�. For uniform phases, say liquid and vapor, with a field that

only acts to confine the system to a large but finite volume, this reduces to the usual

conditions:
@f ð�r1Þ
@�r1

¼ m ¼ @f ð�r2Þ
@�r2

f ð�r1Þ�m ¼ f ð�r2Þ�m

ð100Þ
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Solids are most often modeled by using the Gaussian parameterization of

the density [see Eqs. (54) and (55) and the accompanying discussion]. In this case,

the parameters are the number density of lattice sites, �rlatt (or, equivalently, the
lattice constant a), theGaussian parametera, and the occupancy x; or, equivalently,
the average density is �r ¼ x�rlatt. Assuming no field except for at the boundaries of

the (large) volume, the Euler–Lagrange equations for the uniform solid are

@F½r�
@�rlatt

¼ mx

@F½r�
@x

¼ m�rlatt

@F½r�
@a

¼ 0

ð101Þ

In fact, inmany calculations, the occupancy is held fixed to x ¼ 1 since one expects

values very close to this in equilibrium solids. In this case, the second of these

equations is dropped.

All of the theories discussed above give reasonable results for hard-sphere

freezing. Obviously, the quality of the numerical predications depends on the

quality of the liquid-state data that all of these theories require (i.e., the DCF of

the liquid). The Percus–Yevick DCF is very good at low densities but inaccurate at

the high densities characteristic of freezing. For some theories such as the MWDA,

SCELA, and GELA, this is not important for the solid phase as the effective

densities that enter these theories tend to be about half the actual density. However,

in all cases the liquid thermodynamics must also be evaluated, and this always

requires densities at which the Percus–Yevick approximation is not very good.

Since all one really needs for the liquid is the equation of state, it is common in these

cases to use the Percus–Yevick approximation for the solid and to use the

Carnahan–Starling approximation for the liquid because both can be understood

as being accurate approximations in the relevant domains. For other DFTs that

require the liquid-stateDCF at all densities, such asRY, ELA, andWDA, this would

be inconsistent and one must either suffice with Percus–Yevick or make use of the

more accurate, butmore complex, parameterization ofHendersen andGrundke [44]

or the semi-phenomenological approximation of Baus and Colot [45].

The results of several calculations for liquid-FCC solid hard-sphere coexis-

tence are shown in Table I. Rather than the value of the Gaussian parameter, the

more physical Lindemann parameter L, defined as mean-squared displacement

divided by the lattice constant, is reported. For the Gaussian model, one has

L ¼ ð3=aa2Þ1=2 for the FCC solid and L ¼ ð2=aa2Þ1=2 for the BCC solid. All of

the theories give reasonable results, with the GELA being the closest to the
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simulation values. One important defect shared by all theories is that they

uniformly predict a value of the Lindemann parameter which is much too low.

The significance of the apparent accuracy in describing some other properties at

coexistence is therefore open to question. It is also possible to study freezing into

other structures, such as the BCC and simple cubic (SC) lattices [25]. However,

since these structures are metastable, little information is available with the

exception of Curtin and Runge, who used a constrained simulation method to

study hard spheres in a BCC configuration [46]. At �rd3 ¼ 1:041 they found an

excess free energy relative to a uniform ideal gas of 1
�rV bFðrÞ�ðln �rL3�1Þ ¼

6:094 and at �rd3 ¼ 1:1 they found the value 6:878. The WDA gives the values

5:975 and 6:771, respectively, while the GELA gives 6:118 and 6:991 using the

PY DCF and 6:049 and 6:903 using the CS DCF [25]. This seems to confirm the

trends seen in the FCC coexistence data. The accuracy of the various theories in

predicting the pressure of the solid phase for all densities follows the same trends,

with the GELA being very close to simulation. At high densities, problems

develop with the MWDA where multiple solutions to the effective-density

equation develop and where there are regions of no solution [47, 48]. At very

high densities, the GELA seems to predict that the Lindemann parameter goes to

zero at h ’ 0:736, which is very near the FCC close packing density, h ¼ 0:74,
where the Lindemann parameter must be zero. However, for the BCC phase, the

GELA predicts a Lindemann parameter that not only varies little with density,

showing no sign of going to zero at BCC close packing, h ¼ 0:68, but also

TABLE I

Comparison of the Predictions of Various Effective-Liquid DFTs for the Freezing of Hard Spheres to

Data from Simulationa

Theory EOS �hliq �hsol P* L

RYb PY 0.506 0.601 15.1 0.06

MWDAc CS 0.476 0.542 10.1 0.097

ELAd PY 0.520 0.567 16.1 0.074

SCELAe CS 0.508 0.560 13.3 0.084

GELAe CS 0.495 0.545 11.9 0.100

WDAc,f CS 0.480 0.547 10.4 0.093

MCg — 0.494 0.545 11.7 0.126

aGiven are the liquid (�hliq) and solid (�hsol) packing fractions (h ¼ prd3=6), the reduced pressure

(P* ¼ bPd3), and the Lindemann parameter (L) at bulk coexistence. For each theory, the equation of

state used for the fluid, Percus–Yevick (PY), or Carnahan–Starling (CS) is indicated.
bFrom Barrat et al. [49].
cFrom Denton and Ashcroft [41].
dFrom Baus and Colot [37].
eFrom Lutsko and Baus [25].
fFrom Curtin and Ashcroft [40].
gFrom Hoover and Ree [57].
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even increases somewhat with increasing density. All of this is highly unphysical

and indicates a breakdown of the theory.

This generally satisfactory behavior does not translate to other systems. Barrat,

Hansen, Pastore, and Waisman [49] used the RY and ELA theories to investigate

the freezing of atoms interacting with an inverse-power potential, vðrÞ ¼ ðs=rÞn.
In the limit n!1, these so-called “soft spheres” coincide with the usual hard

spheres. For the DCF of the fluid, they used both the Rogers and Young integral

equation [50] and the modified HNC scheme of Rosenfeld and Ashcroft [51].

Their conclusions were that neither theory stabilized the BCC phase even though

from simulation, it is known that the BCC phase is the stable solid phase for

n � 6 [52]. Laird and Kroll carried out a similar study using the MWDA, SCELA

and GELA [53]. They found that the MWDA also predicted freezing into the FCC

structure for all values of n with the numerical values of the freezing parameters

worsening with decreasing n. Worse yet, the SCELA and GELA failed to predict

freezing altogether for n � 6. De Kuijper, Vos, Barrat, Hansen, and Schouten

investigated the ability of these theories to predict freezing for many other

potentials including the Lennard-Jones and exponential-6 potentials often used

to model simple liquids [54]. They found that the SCELA fails to predict freezing

for the LJ potential while the MWDA fails at low temperatures but does predict

freezing into an FCC structure at higher temperatures. The simple second-order

perturbation theory predicts freezing but with poor values for the freezing

parameters. The conclusion is that none of these theories appears to be reliably

predictive as one moves away from the hard-sphere potential. Further details

including a discussion of freezing in binary systems can be found in Ref. (55).

There have been attempts to further modify these basic theories to give a better

description of freezing. For example, Wang and Gast suggested modifying the

MWDA prescription for the effective density so as to give the correct static-lattice

free energy in the large a limit [56]. While this and other attempts have yielded

significant improvements, the trend in recent years has been toward simpler

theories that separate the hard core and attractive contributions to the free energy

as discussed below.

2. Liquid–Solid Interface

These theories have also been used to study interfacial systems including

fluids near walls and liquid–solid interfaces. We note in particular the work by

Curtin [58],Ohensorge, L€owen, andWagner [59, 60] andMarr andGast [61] on the

liquid–solid interface in Lennard-Jones systems, as well as the work of Kyrlidis

andBrown [62] on the hard-sphere liquid–solid interface, all of which demonstrate

the utility of DFT even in describing very inhomogeneous systems. A good

summary of the work on wetting can be found in Evans [14]. Numerous applica-

tions of interest in chemical engineering can be found in Wu [17].
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3. Properties of the Bulk Liquid State

One interesting application of DFT is to model correlations in the liquid state.

The third- and higher-order DCFs can be calculated from any model DFT by

functional differentiation. For example, with the MWDA theory,

Fex½r� ¼ Ncexð�rMWDA½r�Þ
�rMWDA ¼ 1

N

Z
wðr23; �rMWDAÞrðr2Þrðr3Þdr2dr3 ð102Þ

one has that

c1ðr; �rÞ ¼ � lim
rðrÞ! �r

dbFex½r�
drðrÞ

¼ � limrðrÞ! �r bcexð�rMWDA r½ �Þ þN
d�rMWDA½r�

drðrÞ c0
exð�rMWDA r½ �Þ

0
@

1
A

ð103Þ

Implicit differentiation of the equation for the effective density gives

N
d

drðr1Þ �rMWDA ¼ 2
R
wðr12; �rMWDAÞrðr2Þdr2��rMWDA

1� 1
N

R
@

@�rMWDA
wðr23; �rMWDAÞrðr2Þrðr3Þdr2dr3

ð104Þ

so that in the thermodynamic limit, in which the 1=N term in the denominator is

negligible, the result is

c1ðr; �rÞ ¼ � lim
rðrÞ! �r

dbFex½r�
drðrÞ

¼ � bcexð�rÞþc0
exð�rÞ�rð Þ

ð105Þ

because the MWDAweight function is normalized,
R
wðr; �rÞdr ¼ 1. This is the

usual equilibrium result. In the uniform limit, the second functional derivative of

the MWDA (and WDA) functionals give, by construction, the bulk DCF used to

calculate the weighting function. The third-order DCF for hard spheres has been

evaluated and compared to simulation,with some success using both theWDA[63]

and the MWDA [64] models.

There is also a close connection betweenDFTand the hypernetted chain (HNC)

approximation to classical liquid-state theory because, as noted by Kim and

Jones [65] and separately by White and Evans [66], the MWDA implies the HNC

for a bulk fluid. This is easily seen by considering the DFT calculation of the

structure of the bulk fluid. As explained above, the PDF can be obtained by solving

for the density profile generated by a particle fixed at the origin which acts as the
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external field. In principle, the effective density is determined by the coupled

equations

Fex½r� ¼ Ncexð�rMWDA½r�Þ

�rMWDA ¼ 1

N

Z
wðr23; �rMWDAÞrðr2Þrðr3Þdr2dr3

rðr; ½v�Þ ¼ exp bm�bvðrÞ� dbFex½r�
drðr; ½v�Þ

0
@

1
A

ð106Þ

where vðrÞ is the pair potential. However, rewriting the equation for the effective
density as

�rMWDA ¼ �rþ 1

N

Z
wðr23; �rMWDAÞðrðr2Þ��rÞðrðr3Þ��rÞdr2dr3 ð107Þ

it is clear that the difference from the bulk density will be of order 1=N, provided
that the spatial density profile approaches the bulk density sufficiently quickly

as one moves away from the center of the external field. Assuming this is the case,

then in the thermodynamic limit �rMWDA ¼ �r, just as in the case of zero field.

To solve for the density profile, the functional derivative of theMWDA excess free

energy functional is also needed, and one finds using Eq. (104) that

d

drðrÞFex r½ � ¼ d

drðrÞNcexð�rMWDA r½ �Þ

¼ cexð�rMWDA r½ �ÞþN
d�rMWDA½r�

drðrÞ c0
exð�rMWDA r½ �Þ

¼ cexð�rMWDA r½ �Þþ 2c0
exð�rMWDA½r�Þ

R
wðr12; �rMWDAÞrðr2Þdr2��rMWDA

1� 1

N

Z
@

@�rMWDA

wðr23; �rMWDAÞrðr2Þrðr3Þdr2dr3

ð108Þ

In the thermodynamic limit, the term proportional to 1=N in the denominator of the

second term on the right does not contribute. Using the explicit form of theMWDA

weight function, Eq. (82) and a little algebra gives

d

drðrÞFex r½ � ¼ cexð�rÞ�
Z

b�1c2ðr12; �rÞrðr2Þdr2��r2c00ð�rÞ��rc0
exð�rÞ

¼ cexð�rÞþ �rc0
exð�rÞ�

Z
b�1c2ðr12; �rÞðrðr2Þ��rÞdr2 ð109Þ
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Noting that the bulk density is determined by the Euler–Lagrange equation which

reduces to ln �rþcexð�rÞþ �rc0
exð�rÞ ¼ m, the final result is

rðr; ½v�Þ ¼ �r exp bm�bvðrÞþ
Z

c2ðr12; �rÞðrðr2; ½v�Þ��rÞdr2
� �

ð110Þ

Thus, for the uniform system, one has

gðr1;mÞ ¼ exp �bvðr1Þþ �r

Z
c2ðr12; �rÞ gðr2;mÞ�1ð Þdr2

� �
ð111Þ

This is the HNC closure relation which, combined with the Ornstein–Zernike

equation gives a complete theory of the bulk liquid state [21].

White and Evans also show that the theories are equivalent for a fluid near a

wall, but not for other more confined geometries [66]. Denton and Ashcroft

reversed the logic and used DFT to give new closures for the Ornstein–Zernike

equation [67]. They also note [68] that Barrat, Hansen, and Pastore had previously

shown that the RY theory also implies the HNC for a uniform fluid [69].

IV. FUNDAMENTAL MEASURE THEORY FOR HARD SPHERES

Fundamental Measure Theory (FMT) has proven to be one of the most successful

methods of modeling the DFT of hard spheres in more than one dimension. It is

strongly motivated by Percus’ results for the one-dimensional hard-sphere fluid as

well as by the Scaled Particle Theory approach to liquid-state theory [10–12].

A. Motivation

1. Hard Rods

In many interesting circumstances, the statistical mechanics of hard spheres in one

dimension—usually called hard rods—can be solved exactly [70]. Beginning in

the 1970s, Percus cast the problem in the language of Density Functional Theory

and gave the solution for arbitrary external field. This result has served as a

touchstone in recent developments of DFT for hard spheres. Because it gives an

intrinsically interesting example of exact DFT, Percus’ solution is outlined in

Appendix Awhile the results are summarized here to provide motivation for the

discussion of FMT below.

The great simplification of hard rods is that they only interact with nearest

neighbors and they cannot move past one another. Thus, the grand partition

function for rods of length d is

Xðb;m; ½f�Þ ¼ 1þ
Z 1

�1
expð�b~fðq1ÞÞdq1

þ
X1
n¼2

Z 1

�1
exp �b

Xn
i¼1

~fðqiÞ
 !

Wðq1; . . . ; qnÞdq1 . . . dqn ð112Þ
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where fðxÞ is the external field, ~fðxÞ ¼ fðxÞ�m, and Wðq1; . . . ; qnÞ is one

provided that q1 < q2�d < q3�2d . . . and zero otherwise. Functional differenti-

ation with respect to the field gives an expression for the local density, rðxÞ.
As shown in Appendix A it is possible to eliminate the field in favor of the density

thus arriving at

lnXðb;m; ½r�Þ ¼
Z 1

�1

1
2
ðrðrþ d=2Þþ rðr�d=2ÞÞ
1� R d=2�d=2 rðrþ yÞdy

dr ð113Þ

This result is not directly useful for DFT because the density that appears in it is the

equilibrium density: The field has been eliminated so that this is the equivalent

of Eq. 23. However, as in the simple examples of exact DFT from the previous

section, the relation between the field and the density can be used together with the

the Euler–Lagrange equation to get

dbF½r�
drðrÞ ¼ �b~fðrÞ

¼ ln rðrÞ� 1

2
ln 1�

Z r

r�d

rðyÞdy
� �

dr� 1

2
ln 1�

Z rþ d

r

rðyÞdy
� �

þ 1

2

Z rþ d=2

�r�d=2

rðxþ d=2Þþ rðx�d=2Þ
1� R d=2�d=2 rðxþ yÞdy

0
@

1
Adr ð114Þ

Functional integration as described in the last section gives the final result

bF r½ � ¼ bFid r½ ��
Z

1

2
ðrðxþ d=2Þþ rðx�d=2ÞÞln 1�

Z d=2

�d=2

rðxþ yÞdy
 !

dx

ð115Þ

As shown below, this beautiful, exact result plays a fundamental role in the

construction of FMT.

2. Generalization to Higher Dimensions

In fact, Percus and co-workers speculated on how this might be generalized to

more than one dimension [71–73]. It has the form of an integral over a local

excess free energy that clearly depends on two quantities: the density evaluated at

the “surface” of a hard rod centered at position x, rðx� d=2Þ, and the density

averaged over the “volume” of a hard rod centered at position x; these concepts are

easily generalized tomore than one dimension as will be seen below. This suggests
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writing it in the form

bFex½r� ¼ �
Z 1

�1
sðrÞlnð1�hðrÞÞdr ð116Þ

where

hðrÞ ¼
Z 1

�1
whðr�yÞrðyÞdy

sðrÞ ¼
Z 1

�1
wsðr�yÞrðyÞdy

ð117Þ

and the weight functions are whðxÞ ¼ Q d
2
� xj j �

and wsðxÞ ¼ d d
2
� xj j �

, where

QðxÞ is the step function equal to 1 for x > 0 and zero otherwise. The first of these

weights restricts integration to the volume of one of the hard rods, while the

second restricts integration to its “surface.” In this form, the extrapolation to

higher dimensions is obvious. In the context of his work on SPT, Rosenfeld

realized that another important property of these “fundamental measures” is that

their convolution gives theMayer function for hard spheresQ d� xj jð Þ. To see why
this is important, let us denote these, and possibly other, linear density functionals

collectively as naðrÞ ¼
R1
�1 waðr�yÞrðyÞdy and imagine that the excess free

energy can be written, by analogy to Eq. (116), as

bFex½r� ¼
Z

FðfnaðrÞgÞdr ð118Þ

for some algebraic function of the measures, F. Then it follows that the DCF

should be

c2ðr1; r2; r½ �Þ ¼ � d2bFex½r�
drðr1Þdrðr2Þ ¼ �

X
ag

Z
@2F

@naðrÞ@ngðrÞwaðr�r1Þwgðr�r2Þdr

ð119Þ
and, at zero density, this must become the negative of the Mayer function. Thus,

if the free energy can be written in this form, the convolution of the weights

must give a step function.

B. Rosenfeld’s FMT

Rosenfeld begins by noting that in three dimensions, the step function can be

written as a convolution using three basic functions: w
ð3Þ
i ðrÞ ¼ Q di

2
�r

 �
,

w
ð2Þ
i ðrÞ ¼ d di

2
�r

 �
, and w

ð2Þ
i ðrÞ ¼ r̂d di

2
�r

 �
, where r̂ ¼ r=r is the unit vector

and the index i is to distinguish different species (i.e., particles with different hard-

sphere diameters). Note that the spatial integral of wð3Þ is the volume of a sphere

with diameter d, that of w 2ð Þ is its area. This suggests also defining

w
ð1Þ
i ðrÞ ¼ w

ð2Þ
i ðrÞ=4pðd=2Þ and w

ð0Þ
i ðrÞ ¼ wð2ÞðrÞ=4pðd=2Þ2, which integrate to
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give the radius of the sphere and unity, respectively. They therefore constitute

the set of “fundamental measures” of the sphere and are the origin of the name

of the theory. Denoting a convolution between two functions f ðrÞ and gðrÞ as

f› g �
Z

f ðr1�rÞgðr�r2Þdr ð120Þ

it is easy to confirm that

Q
di þ dj

2
�r12

� �
¼ wi

3›w
j
0 þwi

0›w
j
3 þwi

2› w
j
1 þwi

1› w
j
2�wi

2›w
j
1�wi

1›w
j
2

ð121Þ

where the scalar product is also taken in the final two terms on the right and

where w
ð1Þ
i ðrÞ ¼ w

ð2Þ
i ðrÞ=4pðd=2Þ. The reason for introducing the somewhat

redundant w
ð0Þ
i and w

ð0Þ
i is that in the uniform limit, the resulting density variables

correspond to variables occuring in SPT. If the density distribution of species i

is riðrÞ then the fundamental densities are defined as

naðrÞ ¼
X
i

Z
w
ðaÞ
i ðr�r1Þrðr1Þdr1 ð122Þ

Rosenfeld next makes the ansatz that the functional F½n� has the form given in

Eq. (118) above. Then, if the density satisfies the Euler–Lagrange equation for

some field, then from Eq. (123) we obtain

W ¼ Fex r½ ��
Z

kBTrðrÞþ dFex½r�
drðrÞ

0
@

1
Adr

¼ �kBT

Z
rðrÞ�FðfnaðrÞgÞþ

X
a

@F
@naðrÞ naðrÞ

0
@

1
Adr ð123Þ

Since the grand potential is just W ¼ �PV , in a uniform system with rðrÞ ¼ �r,
one has that

bP ¼ �r�Fð naf gÞþ
X
a;i

@F
@na

na ð124Þ

Another relation is obtained using the ideas of SPT. As explained in Roth

et al. [74], the chemical potential for inserting a single spherical particle is equal to

the work of insertion. This consists of work done against the fluid pressure, PV ,

work done due to surface tension, proportional to the area of the sphere,

and subdominant terms due to the dependence of surface tension on the radius

of curvature. Thus, in the limit that the sphere becomes infinitely large, the work
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done divided by the volume of the sphere is equal to the pressure, P. Thus, since

in the bulk we have

bmi
ex ¼

@F
@ri

¼ @F
@n0

þ @F
@n1

Ri þ @F
@n2

Si þ @F
@n3

Vi ð125Þ

this reasoning implies that

@F
@n3

¼ bP ð126Þ

Combining this and Eq. (124) gives

@F
@n3

¼ n0�Fð naf gÞþ
X
a

@F
@na

na ð127Þ

The final assumption made is that the dependence of F on the fundamental

densities can be determined by dimensional analysis. Specifically, it is assumed

that since F has units of inverse volume, it must be of the form

F ¼ f0ðn3Þn0 þ f1ðn3Þn1n2 þ f2ðn3Þn32 þ f3ðn3Þn1 	 n2 þ f4ðn3Þn2ðn2 	 n2Þ ð128Þ

In a single-component system, combinations such as n1n2=n0 could occur;

however, in a multicomponent system, such terms would not allow a virial

expansion in all of the partial densities and so are ruled out. Substituting into

Eq. (127) and treating the densities as independent variables gives

f 00ðn3Þ ¼ 1þ n3f
0
0ðn3Þ

f 01ðn3Þ ¼ f1ðn3Þþ n3f
0
1ðn3Þ

f 02ðn3Þ ¼ 2f2ðn3Þþ n3f
0
2ðn3Þ

f 03ðn3Þ ¼ f3ðn3Þþ n3f
0
3ðn3Þ

f 04ðn3Þ ¼ 2f4ðn3Þþ n3f
0
4ðn3Þ

ð129Þ

Solution of these equations with the resulting integration constants chosen to give

the correct low-density behavior results in the density functional model of

Rosenfeld [75, 76]:

F ¼ �n0 lnð1�n3Þþ n1n2�n1 	 n2
1�n3

þ 1

24p
n32�3n2ðn2 	 n2Þ

ð1�n3Þ2
ð130Þ

(Note that in fact, the vector density measures are zero in a uniform system so that

the last two terms in Eq. (128) should not be included [74]. Therefore the result

depends on assuming that Eq. (127) continues to hold in a slightly inhomogeneous

system.)
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For pure (single-species) systems, an alternative notation that is commonly

used in the literature emphasizes the basis functions rather than the fundamental

measures. One defines wðhÞðrÞ ¼ Q d
2
�r

 �
, wðsÞðrÞ ¼ d d

2
�r

 �
and wðvÞðrÞ ¼

r̂d d
2
�r

 �
and denotes the corresponding density measures as hðrÞ; sðrÞ and

vðrÞ, and the free energy density functional is written as

F ¼ F1 þF2 þF3 ð131Þ

with

F1 ¼ � 1

pd2
s lnð1�hÞ

F2 ¼ 1

2pd
s2�v2

ð1�hÞ

F3 ¼ 1

24p
s3�3sv2

ð1�hÞ2

ð132Þ

Rosenfeld’s model possesses several remarkable properties. The leading

term of the free energy density is proportional to the exact functional for one-

dimensional hard spheres, which is at least intuitively satisfying. In the bulk

liquid, the local density is a constant, �r, h ¼ p�rd3=6 is the usual packing fraction,
s ¼ p�rd2 ¼ 6h=d, and the vector density measures vanish. The resulting expres-

sion for the free energy density, which is then just the bulk free energy per unit

volume, becomes

fexðrÞ ¼ F ¼ �r �lnð1�hÞþ 3

2
h

2�h

ð1�hÞ2
 !

ð133Þ

which is recognized as the Percus–Yevick compressibility equation of state [21];

it is of course the same as Eq. (130) without the vector terms, which is the usual

result of the simplest form of SPT [10–12]. Finally, evaluating the DCF from

Eq. (119) gives

cðr; �rÞ ¼ �Qðd�rÞ ð1þ 2hÞ2
ðh�1Þ4 �6h

1þ h
2

 �2
ðh�1Þ4

r

d


 �
þ h

2

ð1þ 2hÞ2
ðh�1Þ4

r

d


 �3 !
ð134Þ

which again agrees with the Percus–Yevick result. Thus, the Rosenfeld FMT has

the property that, at least in the case of hard spheres, it is completely consistent

with the Percus–Yevick hard-sphere theory. In many ways, this was, and remains,

one of its most attractive features. In fact, an alternative derivation of this

functional was given by Kierlik and Rosinberg [77] who, rather than introduce
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the fundamental measureweights a priori, instead demanded that the SPTequation

of state hold (that is, Eq. (130) without the vector terms) and asked what weights

one would need in Eq. (122) to get the Percus–Yevick DCF. The resulting theory

was subsequently shown to be mathematically identical to Rosenfeld’s [78].

C. Refinement of FMT

Despite the early successes, it was also recognized that the Rosenfeld FMT did not

give an adequate description of hard-sphere statistical mechanics. The two most

important issues had to do with the seemingly independent problems of the

solid phase [75] and of the description of reduced dimension systems such as

quasi-one-dimensional pores [79].

The calculation of the free energy of the solid phase within the Gaussian

approximation requires knowledge of the local densities. From the explicit forms

of the weights, it is easy to see that the local densities are related by

sðr; dÞ ¼ 2
@

@d
hðr; dÞ

vðr; dÞ ¼ rhðr; dÞ
ð135Þ

so that once the local packing fraction is calculated, the other densities follow

easily. Using the Gaussian model for the densities, straightforward calculation

gives

hðrÞ ¼ ð�r=�rlattÞ
X1
j¼0

~h r�Rj

�� �� � ¼ �r
X1
j¼0

expð�iKj 	 rÞexpð�K2
j =2aÞ~~hðKjÞ

ð136Þ

where �r is the average density, �rlatt is the density of the lattice sites, the first

sum is over lattice vectors, Rj , and the second is over reciprocal lattice vectors,

Kj and

~hðrÞ ¼ 1

2

 
erf

 ffiffiffi
a

p
 
rþ d

2

!!
�erf

 ffiffiffi
a

p
 
r� d

2

!!!

� 1

2r

ffiffiffiffiffiffiffiffiffiffiffi
1

ad2p

s  
exp

 
�a

 
r� d

2

!2!
�exp

 
�a

 
rþ d

2

!2!!

~~hðKÞ ¼ 1

6
p�rd3

 
j0

 
Kd

2

!
þ j2

 
Kd

2

!!
ð137Þ
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The problem is that solids typically have rather large values of ad2 (e.g., on the

order of 100), and this causes the local packing fraction to be very close to one

since (with �rlatt ¼ �r)

~hð0Þ ¼ 1�ðad2Þ1=2ffiffiffi
p

p exp � 1

4
ad2

� �
þ 	 	 	 ð138Þ

leading to possibly large contributions to the free energy since F diverges for

h ¼ 1. However, at these points it is also the case that

~sð0Þ ¼ 1

d
ffiffiffi
p

p ðad2Þ3=2e�1
4
ad2 ð139Þ

so that the interplay between the various terms must be examined carefully. This

was done by Rosenfeld et al. [80], who noted that the F2 contribution to the free

energy density did not destabilize the solid because of a cancelation in the

numerator between the s2 and v2 terms. However, no such cancelation occurs in

the F3 term, so the model diverges for highly localized densities. This suggested

modifyingF3 in such a way that a similar cancelation occurred while at the same

time retaining the exact connection to the Percus–Yevick distribution function.

They proposed using an expression of the form

F3 ¼ 1

24p
s3

ð1�hÞ2 f ðjÞ ð140Þ

where j2 ¼ v2=s2. Setting f ðjÞ ¼ 1�3j2 corresponds to the original Rosenfeld

functional while f ðjÞ ¼ ð1�j2Þ3 has all of the desired properties. Another

possible choice is f ðjÞ ¼ 1�3j2 þ 2j3. The first modification will be referred

to as the RSLT theory, while the second will be called the RSLT2 theory. Both

of these modifications stabilize the solid without affecting the properties of the

bulk fluid.

D. Dimensional Reduction and the Tarazona Functional

The divergences that occur in the solid are due to the contributions of density

distributions that are highly localized at the lattice sites. This eventually led

Rosenfeld, Tarazona, and others to study in detail the description of quasi-zero-

dimensional systems. The end result was a new approach to the derivation of FMT

which points theway to eliminating the divergences that prevent application to the

solid phase.

Suppose a field is used which is infinite everywhere except for a cavity,

centered at the origin, that is infinitesimally larger than a hard sphere. The

average density distribution must therefore be rðrÞ ¼ NdðrÞ, where 0 < N < 1

is the average occupancy. Consider the first contribution to the Rosenfeld

40 JAMES F. LUTSKO



functional written as

F1 ¼ �
Z

dr c1ðhðrÞÞ
Z

ds rðrþ sÞwDðsÞ ð141Þ

where c1ðhÞ ¼ lnð1�hÞ, wDðsÞ ¼ S�1
D ðdÞ d d

2
�s

 �
, and SDðdÞ is the area of the

D-sphere with diameter d. Noting that

hðrÞ ¼
Z 1

�1
Q

d

2
� r�r0j j

� �
rðr0Þdr0 ¼ NQ

d

2
� r

� �
ð142Þ

and using dðd=2� xÞ ¼ 2 @
@d Qðd=2� xÞ, one finds

F1 ¼ �S�1
D

Z
dr c1ðhðrÞÞNd s� d

2

� �
¼ S�1

D

@

@ðd=2Þ
Z

F0ðhðrÞÞdr ð143Þ

where F0ðhÞ is the exact zero-d functional,

F0ðhÞ ¼ ð1� hÞlnð1� hÞ � ð1� hÞ ð144Þ

Notice that for r < d=2, we have h ¼ N, while for r > d=2 we have h ¼ 0, and so

F0ðhÞ ¼ 0. Thus, the integral gives

F1 ¼ S�1
D

@

@ðd=2ÞVDðdÞF0ðNÞ ¼ F0ðNÞ

which agrees with the exact result, Eq. (37).

Consider next the distribution for a cavity that is the union of two such quasi-

zero-dimensional cavities. If the centers are closer than the hard-sphere diameter

(so that the two cavities overlap), the combined cavity can still only hold one hard

sphere at a time and the exact result is again given by Eq. (37). If one of the cavities

is centered at the origin and the other is centered on R, then the density will be

rðrÞ ¼ N1dðrÞþN2dðr�RÞ and we again find

F1 ¼ �S�1
D

@

@ðd=2Þ
Z

F0ðhðrÞÞdr ð145Þ

Define the region V1 to be all points such that r < d=2 and V2 to be all points such

that r�Rj j < d=2. Let their intersection be V12 ¼ V1 \ V2 and let Vij j be the

volume of Vi. Then, hðrÞ is N1 in V1�V12 (i.e., in V1 but excluding V12) and N2 in

V2�V12 and N ¼ N1 þN2 in V12 soZ
F0ðhðrÞÞdr ¼ V1�V12j jF0ðN1Þþ V2�V12j jF0ðN2Þþ V12j jF0ðNÞ ð146Þ
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Now, specializing to three dimensions, V1j j ¼ V2j j ¼ 4p
3

d
2

 �3
while we note

for later use that the volume of intersection of two spheres with diameters d1
and d2 is

V12j j ¼ p
12

Rðd1 þ d2 þRÞ� 3

4
ðd1�d2Þ2

� � ðd1 þ d2�2RÞ2
4R

ð147Þ

so V12j j ¼ 1
12
pð2d þRÞðR�dÞ2. Hence

F1 ¼ F0ðNÞ�R

d
ðF0ðNÞ�F0ðN1Þ�F0ðN2ÞÞ ð148Þ

This differs from the exact result due to the term proportional to R. Tarazona and

Rosenfeld suggest that the natural way to correct the functional is to introduce

a correction toF1 involving two-body contributions. Generalizing the expression

for F1, they propose that the correction be written as

F2 ¼ �
Z

dr cðhðrÞÞ
Z

ds1ds2 rðrþ s1Þwðs1Þrðrþ s2Þwðs2ÞPðs1; s2Þ ð149Þ

A simple calculation, given in Appendix B, gives

F2 ¼ 4p
d

2

 
1

4pðd=2Þ2
!2 Z

dr c00
0ðhðrÞÞ

�
Z

ds1ds2 rðrþ s1Þwðs1Þrðrþ s2Þwðs2Þ
 
d2

4
�s1 	 s2

!

¼ 1

2pd

Z
dr c00

0ðhðrÞÞðs2ðrÞ�v2ðrÞÞ

ð150Þ

which is the same as the second contribution to the Rosenfeld functional.

So far, this exercise has just resulted in a somewhat different derivation of the

Rosenfeld functional. Tarazona and Rosenfeld went on to consider the contribu-

tions of cavities formed by the intersection of three spherical cavities. They showed

that the combination F1 þF2 does not give the correct result and thus motivates

the inclusion of a three-body term,F3. Theydiscussed its properties, but an explicit

form was only given later by Tarazona [83]. The result is expressed in terms of a

tensor density measure,

Tijðr1Þ ¼
Z

rðr2Þ r12;ir12;j
r212

d
d

2
�r12

� �
dr2 ð151Þ
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as

F3 ¼ 3

16pð1�hÞ2 ðv 	T 	 v�sv2�TrðT3Þþ s TrðT2ÞÞ ð152Þ

where TrðAÞ indicates the trace of the tensorA. Following Roth et al. [74], this can
also be written in a more revealing form by separating the tensor into its trace and

trace-less parts as

Tijðr1Þ ¼ 1

3
sðr1Þdij þUijðr1Þ

Uijðr1Þ ¼
Z

rðr2Þ
 
r12;ir12;j

r212
�dij

!
d

 
d

2
�r12

!
dr2

ð153Þ

in terms of which the functional becomes

F3 ¼ 1

24pð1�hÞ2 s3�3sv2 þ 9

2
ðv 	U 	 v�TrðU3ÞÞ

� �
ð154Þ

This is amore natural representation in the sense that in a uniform liquid, both v and

U vanish. It is also interesting because connections can be made to some of the

earlier models mentioned above. Obviously, taking U ¼ 0 gives the original

Rosenfeld functional. One might imagine trying to approximate the tensor using

the simpler densities as, for example,

Uij � A
vivj� 1

3
v2dij

s
ð155Þ

where the prefactor is undetermined and the constraint on forming the right-hand

side is that it must be a traceless tensor that scales linearly with the density. Putting

this into F3 gives

F3 � s3

24p 1�hð Þ2 ð1�3j2 þ 3Aj4�A3j6Þ ð156Þ

Taking A ¼ 1, the term in brackets becomes ð1�j2Þ3, which is the same as the

empirical model proposed by Rosenfeld et al. [80]. Tarazona has observed that

Eq. 152 could also be guessed by postulating the need for a tensor density,

constructing the lowest-order expression that vanishes in one dimension and that

agrees with the first two orders of the virial expansion of the DCF in three

dimensions, and guessing the prefactor ð1�hÞ�2
based on an analogy with the first

two parts of the free energy [82].

The Tarazona functional has several significant properties in regard to the solid

phase [83]. First, and perhaps most importantly, it stabilizes the solid phase

and makes a reasonable prediction for liquid–solid coexistence (see Table II).
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In fact, the description of the solid is rather good and it is the fact that the uniform

liquid is described by the Percus–Yevick equation of state that is responsible

for the difference from simulation. Tarazona also showed that the Lindemann

parameter (i.e., thewidth of theGaussians) is in good agreement with simulation at

all densities and, in particular, that it vanishes as the density of the solid approaches

close packing. Of the older, liquid-based DFTs, only the GELA had shown similar

behavior and then only for the FCC phase. One of the virtues of FMT is that it

contains enough geometrical information about hard spheres to show the expected

divergences at close-packing. Groh andMulder investigated the description of the

solid phase without making the Gaussian approximation [28]. Their results

confirm the improvement of the Tarazona model over earlier versions of FMT

and also support the accuracy of the Gaussian approximation.

In a subsequent investigation of hard-sphere mixtures, Cuesta et al. related the

ability of the FMT model to accurately describe these quasi-zero-dimensional

systems to the low-density expansion of the three-body direct correlation func-

tion [84]. They showed that to described mixtures, a third-order tensor density

measure must also be introduced. However, the theory is subject to instabilities

leading to the possibility of infinitely negative free energies thus leaving its status

in doubt. Their conclusion is that the natural extension of the Tarazona functional,

Eq. (152), is preferable even though it is not formally as accurate as the more

complex form.

E. The White-Bear Functional

One of the nice features of the various forms of FMT so far described is that the

second functional derivative of the free energy functional with respect to density

gives the Percus–Yevick DCF. However, this necessarily implies that the equation

TABLE II

Comparison of the Predictions of Various FMT DFTs for the Freezing of Hard Spheres to Data from

Simulationa

Theory EOS �hliq �hsol P* L

RSLTb PY 0.491 0.540 12.3 1.06

Tarazonac PY 0.467 0.516 9.93 0.145

White Bearc,d CS 0.489 0.536 11.3 0.132

MCe — 0.494 0.545 11.7 0.126

aGiven are the liquid, �hliq, and solid, �hsol, packing fractions, the reduced pressure P* ¼ bPd3 and the

Lindemann parameter, L, at bulk coexistence. For each theory, the equation of state used for the fluid,

Percus–Yevick(PY) or Carnahan–Starling (CS), is indicated. The Lindemann ratio for all three

theories, calculated in the Gaussian approximation, is taken from Ref. 81.
bFrom Rosenfeld et al. [80].
cFrom Tarazona [82].
dFrom Roth et al. [74].
eFrom Hoover and Ree [57].
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of state for the uniform fluid is the Percus–Yevick equation of statewhich is known

to be inaccurate at moderate to high densities. There have therefore been several

attempts to build in a more accurate equation of state. Roth, Evans, Lang, and

Kahl proposed what is known as the “white-bear” functional based on a modified

version of Rosenfeld’s original derivation of FMT for mixtures [74] and a similar

proposal for the monotonic system was made by Tarazona [82]. Recall that

Eq. (124) above relates the pressure to the FMT ansatz and that Rosenfeld then

goes on to eliminate the pressure using relations from SPT. Roth et al instead

simply insert an empirical expression for the pressure written in terms of the

density measures. The particular expression they use is the Mansoori–Carnahan–-

Starling–Leland (MCSL) expression which is a generalization of the Carnahan–-

Starling equation of state to mixtures [85]. The result is

F3 ¼ s3�3sv2

36ph2ð1�hÞ2 hþð1�hÞ2lnð1�hÞ

 �

ð157Þ

They go on to propose that the factor s3�3sv2 be replaced by the expression

occuring in Tarazona’s functional to give the final white-bear functional,

F3 ¼
s3�3sv2 þ 9

2
ðv 	U 	 v�TrðU3ÞÞ

36ph2ð1�hÞ2 ðhþð1�hÞ2lnð1�hÞÞ ð158Þ

Just as the uniform fluid is now described by the MCSL equation of state, this

functional does not reproduce the Percus–Yevick DCF. A simple calculation gives

the Percus–Yevick form,

cðr; dÞ ¼ a0 þ a1
r

d
þ a3

r

d


 �3� �
Qðd�rÞ ð159Þ

but with coefficients,

a0 ¼ � 1þ 4hþ 3h2�2h3

ð1�hÞ4

a1 ¼ 2�hþ 14h2�6h3

ð1�hÞ4 þ 2 lnð1�hÞ
h

a3 ¼ �3þ 10h�15h2 þ 5h3

ð1�hÞ4 � 3 lnð1�hÞ
h

ð160Þ

When compared to computer simulation, this expression is shown to be more

accurate, compared to simulations, than the Percus–Yevick approoximation [74].

Roth et al also show some small improvement over the Rosenfeld functional in the

description of a fluid near a wall. A notable success is in giving much better values
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for liquid–solid coexistence than in the original theory of Tarazona (see Table II)

due to the improved equation of state for the uniform liquid.

F. Calculating the Densities

In applications, one often needs to evaluate the density measures for particular

parameterizations of the density (e.g., the Gaussian model of the solid) and/or for

densities with particular symmetries (planar, spherical, . . .). The tensor density

measures in particular appear complex, but their evaluation is not difficult when

performed using a generating function. Consider in particular the functional

tðr1Þ ¼ 1

2

Z
dr2 rðr2Þ d

2

� �2

�r212

 !
Q

d

2
�r12

� �
ð161Þ

It is easy to see that from this single scalar, all of the density measures up to the

second-rank tensor follow:

hðrÞ ¼ 4

d

@

@d
tðrÞ

sðrÞ ¼ 2
@

@d
hðrÞ

viðrÞ ¼ �@ihðrÞ
TijðrÞ ¼ 2

d
hðrÞdij þ 2

d
@i@jtðrÞ

ð162Þ

Generating functionals that give all of these as well as even higher-order densities

can be constructed by including additional factors of d
2

 ��r12 in the integral. In a

planar geometry for which rðrÞ ¼ rðzÞ, one has

tðzÞ ¼ p
64

Z d=2

�d=2

rðz1 þ zÞðd�2z1Þ2ðd þ 2z1Þ2dz1 ð163Þ

while in a spherical geometry, rðrÞ ¼ rðrÞ and

t rð Þ ¼ p
4
Q

 
r�d

2

!
1

r

Z d=2

�d=2

rðr1þrÞ
  

d

2

!2

�r21

!2

ðr1þrÞdr1

þ p
4
Q

 
d

2
�r

!
1

r

Z d=2

d=2�2r

rðr1þrÞ
  

d

2

!2

�r21

!2

ðr1þrÞdr1

þ2pQ

 
d

2
�r

!Z d=2�r

0

r

 
r1

!  
d

2

!2

�r21�r2

!
r21dr1

ð164Þ
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Finally, the Gaussian parameterization of the solid phase gives

tðr1Þ ¼ x
X
n

t̂ðr1�RnÞ ð165Þ

with

t̂ðr1Þ ¼ 1

2

 
a

p

!3=2 Z
dr2 expð�ar22Þ

  
d

2

!2

�r212

!
Q
�
d

2
�r12

�

¼ � x

16
ffiffiffi
p

p
a3=2r1

2ð2�ar1d þ 2ar21Þexp
�
�a

�
r1 þ d

2

�2�

�2ð2þar1d þ 2ar21Þexp
�
�a

�
r1� d

2

�2�

þ ffiffiffi
a

p
r1ð6�ad2 þ 4ar21Þ

ffiffiffi
p

p �
erf

� ffiffiffi
a

p �
r1 þ d

2

��

�erf

� ffiffiffi
a

p �
r1� d

2

��
Þ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð166Þ

The representation in reciprocal space is much simpler:

tðrÞ ¼ x�r
X
n

expðiKn 	 rÞexpð�K2
n=4aÞ~tðKnÞ ð167Þ

with

~tðKÞ ¼ �p

d2K2sin
1

2
Kd�12sin

1

2
Kd þ 6Kdcos

1

2
Kd

K5

¼
�
d

2

�5
4p
105

�
7j0

�
Kd

2

�
þ 10j2

�
Kd

2

�
þ 3j4

�
Kd

2

�� ð168Þ

where jnðxÞ is the nth-order spherical Bessel function.

G. Further Developments and Open Questions

The main virtues of FMTare (a) its internal consistency in that it does not require

one DCF as input and imply another via the functional derivative of the model free

energy functional and (b) its agreement with exact results in one and quasi-zero
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dimensions. The first property is shared by the MWDA and WDA effective liquid

theories, but the second is particular to FMT.

Fundamental Measure Theory has been successfully used in a number of

problems. In his original paper, Rosenfeld showed that it makes reasonable

predictions for the three-body DCF [75]. Kierlik and Rosinberg found good

results using the theory, together with a mean-field treatment of the long-ranged

part of the potential, to describe adsorption of Lennard-Jones atoms at a wall [77,

79]. As discussed by Roth et al. [74], Rosenfeld’s original FMTalso gives a good

description of hard spheres near a hard wall, and the white-bear functional is even

better. Warshavsky and Song performed a remarkably difficult calculation of the

free energy of the hard-sphere liquid–solid interface using FMT and found good

results for the surface tension [86]. Similar results were found by Lutsko using a

gradient theory constructed from FMT [87]. As discussed in the following section,

FMT is widely used to model the short-ranged repulsion typical of simple fluids.

Despite its successes, there are still obstacles in the description of the solid

phase in FMT. One problem is the development of multiple metastable solid

states. Recall that in the Gaussian approximation, the value of the width of the

Gaussians is determined by minimizing the free energy. Normally, one expects to

find two minima: one at infinite width corresponding to the uniform liquid and

one a some finite width corresponding to the solid. As shown by Lutsko [81], at

high densities, the RSLT theory gives two nonzero minima for the FCC solid

which, if taken seriously, would mean that there was a metastable solid phase.

More seriously, the RSLT, Tarazona, and white-bear functionals all show two

BCC solids for some density ranges, with the anomaly affecting the smallest

range of densities in the case of the white-bear functional. Furthermore, while in

all three theories one of the branches does show the correct vanishing of the

Lindemann parameter at high densities, its behavior at intermediate densities is

not monotonic, which is unphysical and not so different from what is found with

the liquid-based theories. In fact, the only one of the three theories for which the

stable branch of the free energy curve shows a vanishing Lindemann parameter is

the Tarazona theory. The result is that the theory giving the best description of

FCC melting (the white-bear) gives an unphysical picture of the BCC solid while

the one giving the best description of the BCC phase (the Tarazona theory) gives a

poor description of FCC melting and unphysical behavior for the BCC phase at

intermediate densities.

Finally, it should be noted that various attempts have been made to extend

FMT to other hard-core objects. Rosenfeld [88] has attempted to generalize the

theory to hard, convex but nonspherical bodies while Cuesta and co-workers

have constructed FMTs for parallel hard cubes [89, 90], hard-core lattice

gases [91] and parallel hard cylinders [92]. Because these cases are all either

very technical or somewhat artificial, the reader is referred to the literature for

further details.
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V. BEYOND HARD SPHERES

Fundamental Measure Theory gives a reasonable approximation to the DFT for

hard spheres. Especially satisfying is the fact that it is constructed to agreewith the

exact DFT in several limiting cases and that it is closely related to the well-known

Percus–Yevick theory (and SPT) in three dimensions. It is therefore natural to

wonder whether the approach can be extended beyond hard objects. Rosenfeld’s

original development of FMT was closely tied to the geometry of hard spheres,

and the later developments were intimately related to low-dimensional exact

solutions that do not exist for long-ranged potentials. Thus the attempts that have

been made are necessarily somewhat heuristic and, in fact, have met with mixed

success [93, 94]. It is therefore the case thatmost applications to realistic potentials

have relied on a separation of the contributions to the free energy into a hard-core

contribution, modeled by FMT or one of the earlier DFTs for hard spheres, and

a contribution due to the long-ranged interaction which is usually handled in a

mean-field approximation. In this section, I discuss the basic construction of these

models and give several illustrative examples of their application in practice.

It is important to specify what type of material is to be modeled. The primary

distinction is between entities that interact via a potential with a strong short-

ranged repulsion (such as simple liquids, colloids, proteins, . . .) and soft matter,

for which the interaction involves a weak short-ranged repulsion (such as some

polymers). Indeed, in the extreme case that interparticle interaction is very softly

repulsive (i.e., not divergent as r! 0) and decays to zero at large distances, Likos

et al. have shown that the Random Phase Approximation, cðrÞ � �bvðrÞ, is nearly
exact at high densities [95]. A good quality, density-independent DCF allows for

the construction of the free energy functional without further approximation. Thus,

attention here will be focused on the first case of a strong repulsion for which such

useful results are not available.

The underlying idea is that the DFT free energy functional is written as

F½r� ¼ Fid ½r� þFHSð½r�; dÞþFl ½r� ð169Þ
where the first term on the right is the (exact) ideal-gas contribution, the second is

the hard-sphere contribution (which depends on some hard-sphere diameter, d,

which must be specified) and the last contribution accounts for the long-ranged

interactions. This is motivated by the fact that the Mayer function for potentials

with a strong short-ranged potential is quite similar to that for hard spheres, thus

suggesting that the statistical mechanics of the latter might be viewed as “hard-

spheres plus a correction.” Furthermore, the analogy to thermodynamic perturba-

tion theory is obvious. Since the basic physical intuition of separating the

contributions into one modeled as a hard-core and a mean-field treatment of the

attractive part is the same as that underlying the van der Waals equation of state, I

will refer to these as van der Waals models (VdW) models. They are also often
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referred to in the literature as “mean-field models,” although this is somewhat

misleading because the different terms are actually treated at different levels

of approximation. The two elements that remain to be specified are the hard-sphere

diameter and the form of the long-ranged (or “tail”) contribution.

An important concept is the division of the pair interaction potential, vðrÞ,
into a short-ranged repulsive part, v0ðrÞ, and a long-ranged, attractive tail, wðrÞ.
Taking the Lennard-Jones potential as an illustrative example,

vLJðrÞ ¼ 4«

��
s

r

�12

�
�
s

r

�6�
ð170Þ

there are two widely used choices which are taken form thermodynamic pertur-

bation theory. The first is the Barker–Henderson (BH) division [21, 96],

v
ðBHÞ
0 ðrÞ ¼ vLJðrÞQðr0�rÞ
wðBHÞðrÞ ¼ vLJðrÞQðr�r0Þ

ð171Þ

where the division is made at the point at which the potential is equal to zero,

vLJðr0Þ ¼ 0, giving r0 ¼ s. The second is that used in the Weeks–Chandler–An-

derson (WCA) theory [27, 97–99]

v
ðWCAÞ
0 ðrÞ ¼ ðvLJðrÞ�vLJðrmÞÞQðrm�rÞ
wðWCAÞðrÞ ¼ vLJðrmÞQðrm�rÞþ vLJðrÞQðr�rmÞ

ð172Þ

where the division is made at the minimum of the potential, v0LJðrmÞ ¼ 0; giving
rm ¼ 21=6s. The effective hard-sphere diameter is calculated using the v0ðrÞ
contribution. In the BH theory, it is given as

dBHðTÞ ¼
Z r0

0

ð1�expð�bv0ðrÞÞÞdr ð173Þ

which is chosen so as to optimize the representation of the short-ranged part of the

potential by a hard-sphere interaction (see, e.g., the discussion in Ref. 21). Many

other definitions occur in the literature on thermodynamic perturbation theory

including that of the WCA theory [21, 97–99], the Lado theory [100] and the

Mansoori–Canfield–Rasaiah–Stell theory [85]. While superior for use in thermo-

dynamic perturbation theory in some situations (particularly at high density), these

give density-dependent diameters and involve the PDF for hard spheres, both of

which are problematic for DFT. A density-dependent diameter complicates the

DFTbecause it adds an additional density dependence to the (already complicated)

functionals. The need for the PDF is not too burdensome for liquids, but is more

problematic for the solid phase (although there are available empirical [35, 101]

and DFT-based [102–104] models) and is very difficult for interfacial problems
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involving, for example, transitions from liquid to solid. For these reasons,

it is simpler to use the density-independent BH hard-sphere diameter or to use

a diameter calculated for the bulk liquid. Other viable options would be the

density-independent diameter obtained by matching the second virial coefficient

of the hard-sphere and short-ranged interactions as used by Paricaud [105].

A. Treatment of the Tail Contribution: Perturbative Theories

Returning to the exact formalism described in Section II.C, it is clear that the

excess free energy functional is linear in the DCF. An exact separation into “short-

ranged” and “long-ranged” contributions can therefore be made starting with the

exact DCF by writing

c2ðr1; r2; ½r�Þ ¼ cHS2 ðr1; r2; d; ½r�Þ þDc2ðr1; r2; d; ½r�Þ ð174Þ

where the first term on the right is the exact DCF for hard spheres and the second

term is defined by this expression. The excess free energy functional given

in Eq. (44) will then also be a sum of a hard-sphere contribution and a part

primarily related to long-ranged interactions,

1

V
bF r½ � ¼ bFHSðd; r½ �Þ þDbfexð�r0; dÞþ

@Dbfexð�r0; dÞ
@�r0

�
�r��r0

�

� 1

V

Z 1

0

dl
Z l

0

dl0
Z

dr1dr2Dc2ðr1; r2; d; ½ð1�l0Þr0 þ l0r�Þ

�ðrðr1Þ��rÞðrðr2Þ��rÞ ð175Þ
where “D” always refers to the difference between the exact quantity and the

corresponding hard-sphere quantity. The hard-sphere and long-ranged contribu-

tions can be handled differently. For the hard-sphere part, it is natural to use the

FMT functional. For the remainder, all of the liquid-based theories discussed above

remain viable options. However, since models like the MWDA, SCELA, and

GELAwork best for hard spheres and become less reliable as one moves to softer

potentials, there is little incentive to use them for the long-ranged contribution.

That leaves something like the simple perturbative theory of Ramakrishnan and

Yussouff, Eq. (72), as the only viable option. Taking the reference state to be the

uniform liquid and truncating at lowest order gives

1

V
bF r½ � ¼ bFHSðd; r½ �ÞþDbfexð�r0; dÞþ

@Dbfexð�r0; dÞ
@�r0

�r��r0ð Þ

� 1

2V

Z
dr1dr2Dc2ðr12; �r0; dÞðrðr1Þ��r0Þðrðr2Þ��r0Þ ð176Þ

which is an expression employed by Rosenfeld [106] using a DCF calculated from

the MHNC and by Tang [107] using his first order mean spherical approximation.
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For the case of a uniform solid or for a fluid near a wall, an obvious choice for the

reference state exists (the average density of the solid and the bulk density of the

fluid, respectively). However, this cannot be a “universal” functional because it

obviously fails if the target state, rðr1Þ, is a uniform liquid with a different density

than the reference state. This problem could be fixed if one kept the integration over

density space and used, for example,

1

V
bF r½ � ¼ bFHSðd; r½ �Þ þDbfexð�r0; dÞþ

@Dbfexð�r0; dÞ
@r0

ð�r��r0Þ

� 1

V

Z 1

0

dl
Z l

0

dl0
Z

dr1dr2Dc2ðr12; d; ð1�l0Þr0 þ l0�rÞ

�ðrðr1Þ��r0Þðrðr2Þ��r0Þ ð177Þ

which now gives the correct result when rðrÞ ¼ �r for all values of the reference

state. I am not aware of this having been used in practice. In fact, despite solving

the problem of the uniform-liquid limit, this expression is still not satisfactory.

Using the average bulk density for the reference density is reasonable in the

examples given above, but for a problem such as the planar liquid–vapor interface,

it makes little sense.

All of this suggest the use of a position-dependent reference density. The

various models discussed in Section III.B.2 a can be used to construct local

density approximations to the tail contribution. Some of these have been discussed

in Ref. [42], where they were shown to give reasonable results for the description

of liquid–vapor interfaces. However, the complexity of these models together

with the fact that they are inconsistent in the sense discussed in Section III.B.1. e

has led to other approaches being adopted.

B. Approaches Based on PDF

Once the free energy is broken into a hard-sphere contribution and the contribution

due to the attractive part of the potential, it is natural to note the similarity to liquid-

state perturbation theory where one has, at first order,

Fðr; TÞ ¼ Fhsðrd3; TÞþ 1

2

Z
wðr12Þghsðr12; d; T; rÞdr1dr2 ð178Þ

The idea is to use the last term on the right as a model for the treatment of the

tail. Just as in the case of the DCF-based models, the problem is how to generalize

this for an inhomogeneous system. Various proposals have been made such as that

of Sokolowski and Fischer [108],

DF r½ � ¼ 1

2

Z
wðr12ÞrðrÞ1rðrÞ2ghsðr12; d; T ; ~rðr1; r2ÞÞdr1dr2: ð179Þ
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with

~rðr1; r2Þ ¼ 1

2
ð~rðr1Þþ ~rðr2ÞÞ

~rðr1Þ ¼ 3

4pR3

Z
QðR�rÞrðrÞdr

ð180Þ

whereR is chosen to be some physically reasonable value on the order of the length

scale of the potential. Sokolowski and Fischer found this to give good results for

liquid–vapor coexistence and for the qualitative behavior of the liquid–wall

interface. Wadewitz and Winkelmann applied a variant of the model to the

calculation of Lennard-Jones surface tension and found reasonable results with

the quality deteriorating with decreasing range of the potential [109]. A similar

theory was also studied by Tang, Scriven, and Davis [110].

The advantage of these approximations is that one makes use of the well-

developedmachinery of thermodynamic perturbation theory and thereby assures a

reasonable equation of state, at least for the bulk liquid. The drawback is that there

is little relation to the DCF-based formalism of exact DFT. Furthermore, the

dominant contribution to the DCF implied by Eq. (179) is likely to be

wðr12Þghsðr12; d; T; ~rðr1; r2ÞÞ, which, in a dense fluid, will exhibit strong oscilla-

tions coming from the hard-sphere PDF whereas such oscillations are not seen in

simulation (see, e.g., Fig. 2 below).

C. Mean-Field Theories

Some of the inconsistencies of the effective-liquid approach to the tail contribution

are avoided if Dc2 is independent of density. The low-density limit of the DCF for

any system (no matter what the density distribution) is

lim
�r! 0

Dc2ðr1; r2; d; ½r�Þ ¼ �ð1�expð�bvðrÞÞÞþQðd�rÞ ð181Þ

which can be used as the desired approximation. It is more common, though, to

break up the potential into a short-ranged repulsion and a long ranged attraction.

Then, noting that the hard-sphere part of the DCF is supposed to model the short-

ranged attraction, one has that expð�b v0ðrÞÞ � Qðr�dÞ so that

lim�r!0Dc2ðr1;r2;d; ½r�Þ ¼ �ð1�expð�bv0ðrÞÞexpð�bwðrÞÞÞþQðd�rÞ
’ Qðr�dÞðexpð�bwðrÞÞ�1Þ

ð182Þ

At high temperatures, this gives the so-called Mean Spherical Approximation

lim
b!0

lim
�r!0

Dc2ðr1;r2;d; ½r�Þ’�Qðr�dÞbwðr12Þ ð183Þ
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Figure 1. The phase diagram for the Lennard-Jones vapor (V), liquid (L), and FCC solid (S)

calculated using different approximations. In all cases, the hard-sphere contribution is calculated

using thewhite-bear FMT functional. (a) The tail contribution is calculated using Eq. 184 with both the

BH (full line) and WCA (broken line) expressions for the long-ranged part of the potential.

[Equation (173) was used to calculate the hard-sphere diameter in both cases.] The simulation data

of Verlet and Levesque [113] and of Hansen and Verlet [114] are shown as symbols. (b) The result

of using Eq. (186) with w ¼ 0 and the effective hard-sphere diameter and perturbation theory of

Ree et al. [115, 116].

For reasons discussed below, the preceding step function is often dropped and the

approximation Dc2 ’ �bwðr12Þ is used instead. It is interesting that besides being
the expected result in the low-density, high-temperature limit, there is also

evidence that this approximation becomes exact at high densities, at least in two

dimensions [111]. This gives the mean-field result

Fl r½ � ¼ 1

2

Z
rðr1Þrðr2Þwðr12Þdr1dr2 ð184Þ

which has been used since the 1970’s. Figure 1 shows the coexistence curves

calculated using this model for the two choices of the tail function and the data

from simulations. The liquid–vapor coexistence curve calculated using wBHðrÞ
is significantly below the data while that calculated using wWCAðrÞ is above it.

The difference is primarily due to the extension of the tail function into the core in

the WCA model [compare Eq. (171) to Eq. (172)]. For the uniform fluid, one has

that

1

V
F
ðWCAÞ
l ð�rÞ ¼ 2p�r2

Z 1

0

wðWCAÞðrÞdr ¼ 2p
3
�r2vLJðrmÞd3 þ 2p�r2

Z 1

d

wWCAðrÞdr
ð185Þ
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The first term on the right is due to the extension of the “tail” into the core,

while the second term is not very different from the full contribution of the BH tail.

This is the reason for extending the tail contribution into the core: At least for a

Lennard-Jones fluid, it appears to move the bulk liquid–vapor part of the

phase diagram in the direction of the simulation results. Because the contribution

of the tail function inside the core is of little importance in thermodynamic

perturbation theory, the importance of this contribution to the VdW model is

somewhat disturbing. In fact, this effect has been exploited by Curtin and

Ashcroft [112] to give a better model for the LJ phase diagram by replacing

w WCAð ÞðrÞ by wðCAÞðrÞ ¼ wðWCAÞðrÞQðr�rÞ with r chosen to be half the FCC

nearest-neighbor distance. The rationale behind this choice is unclear except that it

improves agreement of the phase diagram with the data. This model was

subsequently used by Ohensorge, L€owen, and Wagner [59, 60] in an investigation

of the liquid–solid interface near the triple point.

It is clear from Fig. 1 that the simple mean-field treatment of the tail is not very

accurate, even for the liquid–vapor coexistence curve. Because the equation of state

for the fluid can be relatively accurately calculated by other means

(e.g., thermodynamic perturbation theory), this suggests introducing a correction

based on this knowledge. For example, Lu, Evans, and Telo da Gamma [117]

usedamean-fieldmodelbut adjusted thehard-spherediameter so as to reproduce the

empirical liquid–vapor coexistence curve. For solids, a particularly simple

model can be formulated in the context of the Gaussian density parameterization

[Eq. (1.54)] where, for an inhomogeneous system, one allows the parameters, the

average density �r ¼ x�rlatt, and thewidth of the Gaussians,a, to depend on position.
Then, a very simple model giving the desired equation of state for the liquid is

Fl r½ � ¼ 1

2

Z
rðr1Þrðr2Þwðr12Þdr1dr2 þ

Z
Df ð�rðrÞÞdr ð186Þ

where Df ðrÞ is the correction to the VdW model needed to give the known

equation of state for the bulk liquid. An even simpler approximation drops the

first term on the right altogether and models the tail solely through the effective

liquid term. Both Curtin [58] and Lutsko andNicolis [118] used this approximation

to calculate the bulk equation of state for both the liquid and the solid. The

phase diagram for the Lennard-Jones system is shown in Fig. 1. As is typical of all

mean-field approaches, the equation of state (calculated using thermodynamic

perturbation theory) is not accurate near the critical point. Otherwise, the predicted

phase diagram is quantitatively very good. Similar results were obtained for the

ten Wolde–Frenkel potential model for globular proteins [118]. The reason this

works sowell for the FCC solid is that the coordination in the solid and in the dense

liquid is very similar so that the local environment of the atoms is not too different in

the two systems. This approximationwould not be expected towork for aBCCsolid

where something like the first term on the right in Eq. (186) would be necessary to

account for the different structure.
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A more elaborate modification of the VdW model which is closer to the spirit

of FMT has recently been proposed [42] based on the observation that the simple

VdW model implies a DCF in the uniform fluid of the form

cVdW2 ðr12; �rÞ ¼ cFMT
2 ðr12; �r; dÞ�bwðr12Þ ð187Þ

provided that the hard-sphere diameter does not depend on the density. Compari-

son of this model to the DCF as determined by computer simulation shows that,

at least in the dense fluid, most of the difference lies in the core region and, in fact,

that the difference between the observed correlation function and the hard-sphere

contribution is roughly linear in r. Motivated by the work of Tang [119], which

primarily involves a complicated estimate of the DCF in the core region, this

suggested that one might correct the correlations in the core by adding a linear

contribution,

cVdW2 ðr12; �rÞ ¼ cFMT
2 ðr12; �r; dÞþQðd�rÞ a0ð�rÞþ a1ð�rÞ r

d


 �
�bwðr12Þ ð188Þ

with intercept and slope chosen so that the resulting DCF is continuous and

gives some known equation of state via the compressibility equation [120],

�bwðdþ Þ ¼ cFMT
2 ðd�; �r; dÞþ ða0ð�rÞþ a1ð�rÞÞ�bwðd�Þ

fexð�rÞ ¼ fHSex ð�rÞ�4pd3

Z 1

0

ð1�lÞ 1

3
a0ðl�rÞþ 1

4
a1ðl�rÞ

0
@

1
Aþ 2p�r2

Z 1

0

wðrÞdr

ð189Þ
where fexð�rÞ is the (excess part of the) desired equation of state for the uniform

liquid andwhere the notation d� indicates the quantity evaluated at the hard-sphere

diameter as it is approached from r greater than (þ ) or less than (�) d. In the spirit

of the older liquid-based theories that often required the DCF of the uniform

liquid as input, the equation of state is an input of the present theory and so must

be determined, for example, from thermodynamic perturbation theory, the First-

Order Mean Spherical Approximation of Tang [119], simulation, liquid-state

integral equations, or some other source. As shown in Fig. 2, the improvement

in the description of the DCF can be significant.

The second ingredient of the improved VdW model is to modify the free

energy functional so as to be consistent with the modified DCF using the ideas of

FMT. Following the approach of Kierlik and Rosinberg [77], who started

with Rosenfeld’s ansatz and demanded that it reproduce the Percus–Yevick DCF,

one can do the same but demand that the desired core correction be obtained.

The details are given in Ref. 42 and are straightforward, leading to

F½r� ¼ Fid½r� þFHSð½r�; dÞþFcoreð½r�; dÞþFl ½r� ð190Þ
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with

Fcoreð½r�; dÞ ¼
Z

Fcoreðr; ½r�; dÞdr

Fcoreðr; ½r�; dÞ ¼ 1

pd2
j1ðhðrÞÞsðrÞþ 1

pd
j2ðhðrÞÞðs2ðrÞ�v2ðrÞÞ

þ 1

p
j3ðhðrÞÞsðrÞðs2ðrÞ�3v2ðrÞÞ

ð191Þ

The quantities hðrÞ, and so on, are the density measures from FMT. Defining

bfcoreð�rÞ ¼
1

�r
fexð�rÞ�fHSð�rÞ� 1

V
Flð�rÞ

� �
ð192Þ

the functions jnðhÞ are given by

j1ðhÞ ¼ bfcoreð�rÞþ 3hða0ð�rÞþ a1ð�rÞÞþ 72h2j3ðhÞ

j2ðhÞ ¼ � 1

2
ða0ð�rÞþ a1ð�rÞÞ�18hj3ðhÞ

j3ðhÞ ¼ 1

36h2

�
1

2

�
bfcoreð�rÞ��p

@

@�p
bfð�rÞ�bfcoreð0Þ

�

þ 3

Z h

0

h
d

dh
cHSðd�; �r; dÞdh

	
ð193Þ

where �r ¼ �rðhÞ ¼ 6h=ðpd3Þ.
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Figure 2. The DCF for a Lennard-Jones fluid at T ¼ 0:72 and rs3 ¼ 0:85 as determined from

the model with the linear core correction, lower line, and the simulation data of Llano-Restrepo and

Chapman [121]. The hard-sphere contribution to the DCF is shown as the upper line. From Ref. [120],

where further details can be found.
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Figure 3 shows the excess free energy per unit area (the surface tension) for the

planar Lennard-Jones vapor–fluid interface calculated using this model for

different values of the cutoff of the potential and as determined by simulation [42].

The surface tension is very sensitive to the range of the potential, and this property

can be used to test the robustness of a theory. The results are in good agreement

with simulation, with most of the difference being due to inaccuracies in the

equation of state at the small cutoff. For DFT to be useful, it must be transferable

which is to say a given model must give reasonable results for a variety of

potentials. The variation of surface tension with cutoff is one such test. As another

illustration, the surface tension for the potential

vðrÞ ¼ vHSðr; dÞþ 4«

a2

r

s


 �2
�d2

� ��6

�a
r

s


 �2
�d2

� ��3
 !

ð194Þ

has also been calculated and compared to simulation. For d ¼ 0 and a ¼ 1, this

reduces to the Lennard-Jones potential; while for d ¼ s and a ¼ 50, it is the

interaction used by ten Wolde and Frenkel to model globular proteins [123].

Figure 4 shows the surface tension for various parameters, all with a cutoff of 2:8s.
In this case, the required equation of state is calculated using first-order thermo-

dynamic perturbation theory, and the results are again seen to be in good agreement

with the theory.

Figures 5 and 6 show the predicted density distribution for a Lennard-Jones

fluid near a hard wall, along with the results of Grand Canonical Monte Carlo

0.5 0.6 10.90.80.7

T/Tc

0

0.5

1

γ*

Figure 3. The surface tension for a Lennard-Jones fluid with a cutoff of 6s (upper curve), and

2:5s (lower curve). The solid lines are the result of the DFT calculations [42] and the data are from

Grosfils and Lutsko [122]. The temperatures are scaled to the critical temperature while the dimen-

sionless surface tension is g ¼ gs2=«.
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Figure 5. Structure of the Lennard-Jones fluid near a hard wall as determined from simulation

(symbols) and the theory (lines). The simulations come from two runs each using cells with aspect ratio

1� 1� 2 (circles), and 1� 1� 4 (squares). The upper curve and data are for a chemical potential

corresponding to bulk density r ¼ rs3 ¼ 0:65 and the lower curve for density r ¼ 0:50. From

Lutsko [42].
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Figure 4. The surface tension for the potential given in Eq. (94) with a cutoff of 2:8s, for different

values of the hard-core diameter and for two different values of a. The points are from simulation with

d ¼ 0.0 (circles), 0.2(squares), 0.4 (diamonds), 0.6 (triangles), 0.8 (triangles down), and 1.0 (triangles

right). The lines are from the DFT calculations [124].

RECENT DEVELOPMENTS IN CLASSICAL DENSITY FUNCTIONAL THEORY 59



simulations as reported in Ref. 42. Again, the quantitative agreement is very good.

Furthermore, it is significant that, because of its self-consistent structure, this

relatively simple theory satisfies the exact sum rule that the density at the wall,

rð0Þ, is the pressure in the bulk liquid, far from thewall, divided by the temperature

(see Refs. 125, 126 and Appendix C). Physically, this is just a manifestation

of the fact that the pressure in an equilibrium system must be uniform together

with the fact that, when interacting with the wall, the particles behave like an
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Figure 7. Comparison of the density distribution of a Lennard-Jones fluid within slit pores of size

H* ¼ 3 andH* ¼ 4 as calculated from the theory (lines) and as determined from simulation (symbols).

From Lutsko [42].
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Figure 6. Same as Fig. 5 except that the bulk density is r* ¼ 0:85. From Lutsko [42].
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ideal gas. A final illustration is given in Figs. 7 and 8, which illustrate the predicted

and observed density distribution of a Lennard-Jones fluid in a slit pore. A slit pore

consists of two walls separated by some distance, H. The interaction between the

fluid atoms and the walls was based on Steele’s model [127, 128] of the average

interaction of an atom with a 100 plane of an FCC solid, in which the potential felt

by an atom a perpendicular distance z from the wall is

VwallðzÞ ¼ 2p«
2

5

s

z


 �10
� s

z


 �4
�

ffiffiffi
2

p

3 z
s þ 0:61=

ffiffiffi
2

p �3
 !

ð195Þ

The chemical potential was set to a value that corresponds to the bulk density

0:5925=s3, the temperaturewas kBT ¼ 1:2e, and the intermolecular potential was

cut off at a distance of 6s. Again, the predicted density distribution is in good

agreement with the simulations.

There have been many other applications of the general idea of writing the free

energy as a sum of a hard-sphere contribution and of a mean-field treatment of the

long-ranged part of the interaction. As just one example, Archer, Pini, Evans, and

Reatto [129] have recently made an interesting study of colloidal fluids with

competing interactions. In their work, DFT is compared to a sophisticated form of

liquid-state theory and is found to predict interesting behavior (banding) in regions

where the liquid-state theory has no solution.
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Figure 8. Comparison of the density distribution of a Lennard-Jones fluid within slit pores of size

H* ¼ 5 andH* ¼ 6 as calculated from the theory (lines) and as determined from simulation (symbols).

From Lutsko [42].
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VI. EXTENSIONS AWAY FROM EQUILIBRIUM

It seems intuitively obvious that if the local density of a system is perturbed, by

applying some field, and then released, by removing the field, its relaxation will

somehow be governed by the free energy surface F½r�. This idea, in less general

forms, is quite old and obviously related to early work by Cahn as well as to the

time-dependent Ginzburg–Landau model. In recent years, the idea has been

developed into a set of techniques that combine the detailed free energy models

developed in equilibrium DFT with methods of non-equilibrium statistical me-

chanics so as to allow for the description of dynamical transitions in complex

systems. In the following, attentionwillmostly be given to the developments called

Dynamical Density Functional Theory, with some discussion given also to the

recent introduction of energy-surface methods for mapping out transition

pathways.

A. Dynamical DFT

Density Functional Theory as described so far is a theory concerning equilibrium

systems; and, as such, dynamics plays no role. Dynamical Density Functional

Theory (DDFT), is an attempt to extend the ideas of DFT to dynamical properties.

Intuitively, one expects that the free energy functionals used in DFT would

play some role in determining the dynamics for systems out of equilibrium.

For example, consider diffusion where number is conserved and so the density

must obey a conservation law of the form

@rðr; tÞ
@t

¼ $ 	 Jðr; tÞ ð196Þ

where J is the number current. Assuming linear response and local equilibrium,

the theory of non-equilibrium thermodynamics tells us that the thermodynamic

force driving diffusion is the gradient in the local chemical potential [130] so,

near equilibrium, one expects the current to have the form J ¼ L 	$mðr; tÞ where
the tensorL is a transport coefficient related to the diffusion constant. If the system

is in local equilibrium, the local chemical potential should be given by the

Euler–Lagrange equation at each point so that the diffusion law becomes, in the

simplest case of an isotropic system,

@rðr; tÞ
@t

¼ $ 	 ðL$mðr; tÞÞ ¼ $ 	 L$
dF½r�
drðr; tÞ

� �
ð197Þ

Practical calculations based on nontrivial free energy models go back at least to

Cahn [131]. A similar development for nonconserved variables, and including

a fluctuating force, is called the Time-Dependent Ginzburg–Landau Theory and

is a standard tool in the investigation of dynamical critical phenomena [132].
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Notice that for a low-density system, F½r� � Fid ½r� giving
@rðr; tÞ

@t
� $ 	 ðLrðr; tÞ�1$rðr; tÞÞ ð198Þ

which is the diffusion equationwith a diffusion coefficientD ¼ L=r. The diffusion
coefficient diverges as the density goes to zero because the motion of each atom

becomes ballistic—not diffusive—in the zero density limit. For mixtures, the limit

of the density of one component going to zero does not produce ballistic motion

since the finite component—the bath—still produces diffusive behavior. For the

case of two components, with the tracer component, rt, at vanishing low density

and the bath component at low, spatially uniform, finite density rb, where one has
rðr; tÞ�1 ¼ ðrtðr; tÞþ rbÞ�1 � r�1

b , the transport law becomes

@rtðr; tÞ
@t

� $ 	 ðLr�1
b $rtðr; tÞÞ ð199Þ

Now, if one supposes that the bath can be treated as a passive background, serving

only to damp the dynamics of the tracers, and that the tracers can be treated as being

in local equilibrium, then one might expect that for finite tracer density, Eq. (197)

could be applicable with F½r� being an effective free energy for the tracers.

However, to be consistent with Eq. (199) in the low-density limit, onemust assume

that the transport coefficient is replaced by L!Grðr; tÞ, for some constant G,
giving

@r

@t
¼ $ 	 Grðr; tÞ$ dF½r�

drðr; tÞ
� �

ð200Þ

which is generally referred to as DDFT in the literature. This equation is assumed

to describe the evolution of the density of a system subject to damping such as a

colloidal fluid. Other systems for which the assumption of the passivity of the

background is perhaps less plausiblewould includemixtures of similar species and

the extreme case of self-diffusion.

The general form has a long history in the theory of non-equilibrium statistical

mechanics. It is related to “Model B” in Hohenberg and Halperin’s review of the

theory of dynamical critical phenomena [132]. Some of the earliest uses of this and

similar models, aside from that of Cahn, are Munakata [133, 134], Bagchi [135]

andDieterich [136]. The standard statistical mechanical approach to the derivation

of equations such as Eq. (200) is by means of projection operators. For DDFT, the

most complete analysis is probably that of Kawasaki [137]. An interesting

derivation for granular systems was recently given by Tarazona and Marconi

based on a multiscale expansion of the Enksog equation [138]. A very clear

discussion of the relation between DDFT, the “extended” DDFT (i.e., DDFT

including the local velocity), and conventional kinetic theory in the context of the
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glass transition can be found in Das [139]. Kirkpatrick andWolynes [140] discuss

the relation between equilibrium DFTand “extended” DDFT in the context of the

glass transition. Chan and Finken discuss the formulation of an axiomatic DDFT in

analogy to equilibrium DDFT [141]. Here, by way of illustration of the physical

ideas involved, an intermediate route, based on recent work of Evans and Archer

and of Marconi and Tarazona, will be followed wherein the introduction of the

assumption of local equilibrium in otherwise exact balance laws leads to DDFT.

1. Some ideas from Kinetic Theory

In order to discuss DDFT, it is first useful to review some basic ideas of kinetic

theory. Consider a system ofN particles (atoms,molecules, colloidal particles, . . .)
evolving under Newtonian dynamics. For simplicity, attention will be restricted

here to entities having no internal structure so that they are fully described by

their positions qi and momenta pi, which together constitute the particle’s phase

xi ¼ qi; pi. The collection of all phases will be denoted GN ¼ fxigNi¼1. The time-

dependent N-body distribution f ðGN ; tÞ gives the probability to find the first

particle with phase x1, the second with phase x2, and so on. It satisfies the

Liouville equation,

@

@t
f ðGN ; tÞþ

XN
i¼1

pi
m

	 @

@qi
f ðGN ; tÞþ

XN
i¼1

@

@pi
	Fif ðGN ; tÞ ¼ 0 ð201Þ

where Fi is the total force acting on particle i. It will be the sum of any external

forces, such as that due to an external field, and the internal forces due to the

interparticle interaction potential so that for pair potentials it is

Fi ¼ Fext
i �

X
j 6¼ i

@

@qi
vðqijÞ ð202Þ

Notice that the evolution of the phase function is deterministic and that stochas-

ticity enters through the distribution of initial conditions. Defining the reduced

distributions as

rmðx1; . . . ; xmÞ ¼
N!

ðN�mÞ!
Z

f ðGN ; tÞdxmþ 1; . . . ; dxN ð203Þ

and integrating the Liouville equation over particles mþ 1; . . . ;N gives an

equation for the m-body distribution containing a contribution due to the

(mþ 1)-body distribution. This set of equations is known as the BBGKY hierar-

chy [142]. The first equation of the hierarchy is

@

@t
r1ðx1;tÞþ

p1
m
	 @

@q1
r1ðx1;tÞþ

@

@p1
	Fext

1 r1ðx1;tÞ¼
@

@p1
	
Z

@vðq12Þ
@q1

r2ðx1;x2;tÞdx2
ð204Þ
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In equilibrium, the distributions are time-independent and the velocities are always

distributed as Maxwellians so that

r1ðx1; tÞ ! rðq1Þwðp1; u; TÞ
r2ðx1; x2; tÞ ! rðq1; q2Þwðp1; u; TÞwðp2; u; TÞ ð205Þ

where rðq1Þ is the usual one-body density, rðq1; q2Þ is the two-particle reduced
distribution, which is related to the PDF as discussed in Section II, and the

Maxwellian velocity distribution is

wðp; u; TÞ ¼ 1

2pmkBT

� �D=2

exp

�
�ðp�uÞ2

2mkBT

�
ð206Þ

(The center of mass velocity u plays no role here, but we include it for the sake

of a later discussion.) Substituting this into the equation for the one-body equation,

multiplying through by p1 and integrating over p1 gives

�kBT
@

@q1
rðq1ÞþFext

1 rðq1Þ ¼
Z

@vðq12Þ
@q1

rðq1; q2Þdx2 ð207Þ

In equilibrium, the density satisfies the Euler–Lagrange equation, Eq. (31),

and using it in the left-hand side gives

�rðq1Þ
@

@q1

dFex½r�
dr q1ð Þ ¼

Z
@bvðq12Þ

@q1
rðq1; q2Þdx2 ð208Þ

which is the well-known first member of the Yvon–Born–Green hierarchy

equation [21]. This exact, equilibrium relation plays a central role in several

recent derivations of DDFT as described below.

2. A Simple Kinetic-Theory Approach

In general, the one-body density r1ðx1; tÞ depends on both position and velocity in
nontrivial ways which are hard to calculate due to the coupled nature of the

BBGKY hierarchy. However, integrating it over momenta gives the local density,

rðr; tÞ ¼
Z

dðr�q1Þr1ðx1; tÞdx1 ð209Þ

and this satisfies a simple continuity equation. Multiplying the first BBGKY

equation by dðr�q1Þ and integrating over momentum gives

@

@t
rðr; tÞþ$rðr; tÞvðr; tÞ ¼ 0

where the local velocity is defined as

rðr; tÞvðr; tÞ ¼
Z

1

m
p1dðr�q1Þr1ðx1; tÞdx1 ð210Þ
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The equation for the density has the expected form with the number current

Jðr; tÞ ¼ rðr; tÞvðr; tÞ. A balance equation for the local velocity can be obtained

in a similar way, by multiplying the first BBGKY equation by
p1
m
dðr�q1Þ and

integrating to get

m
@

@t
rðr; tÞvðr; tÞþr 	

Z
p1p1
m

dðr�q1Þr1ðx1; tÞdx1�Fextðr; tÞrðr; tÞ

¼ � 1

m

Z
dðr�q1Þ

@vðq12Þ
@q1

r2 x1; x2; tð Þdx1dx2 ð211Þ

Changing integration variables from pi to p0i ¼ pi�mvðqi; tÞ and rearranging

gives the exact balance equation

@

@t
rðr; tÞvðr; tÞþr 	 rðr; tÞvðr; tÞvðr; tÞ

þ$ 	
Z

p01p01
m2

dðr�q1Þr1ðx01; tÞdx01 þ
1

m

Z
dðr�q1Þ

@vðq12Þ
@q1

r2ðx1; x2; tÞdx1dx2

� 1

m
Fextðr; tÞrðr; tÞ ¼ 0 ð212Þ

Separating out the trace and traceless part of the p01p01 term, noting that

the potential term does not involve momenta, and using the continuity equation

gives

rðr; tÞ @
@t

vðr; tÞþ rðr; tÞvðr; tÞ 	rvðr; tÞþr 	 1
m
rðr; tÞkBTðr; tÞ

þ 1

m

Z
dðr�q1Þ

@vðq12Þ
@q1

r2ðx1; x2; tÞdx1dx2 þr 	PK� 1

m
Fextðr; tÞrðr; tÞ ¼ 0

ð213Þ

with the local temperature defined as

D

2
rðr; tÞkBTðr; tÞ ¼

Z ðp1�mvðq1; tÞÞ2
2m

dðr�q1Þr1ðx1; tÞdx1 ð214Þ

and where the kinetic part of the dissipative stress is

PK
ij ¼

Z
p01ip

0
1j� 1

D
p021 dij

m2
dðr�q1Þr1ðx01; tÞdx01 ð215Þ
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Similarly, a balance equation for the temperature is obtained by multiplying

the first BBGKY equation by 1
2m

p21dðr�q1Þ and integrating over momenta.

After some manipulations, the result is

D

2
r
@

@t
kBTþ D

2
rv 	rkBTþP :rv

¼�r	 R p01
m

1

2m
p021dðr�q1Þr1ðx1; tÞdx1�

Z
p01
m

dðr�q1Þ 	
@vðq12Þ
@q1

r2ðx1;x2; tÞdx2

ð216Þ

So far, these equations are exact and therefore quite formal, requiring the one and

two body distributions for closure. However, for an isothermal system, the

equations for the density and velocity decouple from the temperature equation.

Following Archer and Rauscher [143] and introducing the local equilibrium

hypothesis for the two-body term, Eq. (208), in the velocity equation then gives

@

@t
rðr; tÞþ$ 	 rðr; tÞvðr; tÞ ¼ 0

@

@t
vðr; tÞþ vðr; tÞ 	$vðr; tÞþ 1

m
r dF½r�
drðr; tÞ þ rðr; tÞ�1$ 	P� 1

m
Fextðr; tÞ ¼ 0

ð217Þ

To proceed further requires some sort of approximation for the dissipative stress.

Most practical methods involve expressing it as an expansion in gradients of the

density and velocity. One route is to use an approximate kinetic theory, such as the

Boltzmann or Enskog equation, and the Chapman–Enskog expansion to obtain an

analytic approximation to the gradient expansion of P [142]. Alternatively,

one can treat the term phenomenologically. In both cases, one could in principle

keep the equation for the temperature aswell, treating all difficult terms in the same

way as P. In all cases, the resulting equations have the interpretation of being the

usual Navier–Stokes equations with a position-dependent pressure given by

mrðr; tÞ�1$p ¼ r dF½r�
drðr; tÞ ð218Þ

which suggests another interpretation. The Gibbs–Duhem equation for a multi-

component system is X
i

Nidmi ¼ �SdT þVdp ð219Þ

where Ni is the number of particles of species i and mi is the chemical potential

for species i. Assuming local equilibrium, one finds for an isothermal,
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single-component system

rðr; tÞdmðr; tÞ ¼ dpðr; tÞ ) rðr; tÞ$mðr; tÞ ¼ $pðr; tÞ

) rðr; tÞ$ dF½r�
drðr; tÞ ¼ $pðr; tÞ ð220Þ

where the last line comes from the Euler–Lagrange equation and the assumption

of local equilibrium.Thus, this generalized formof theNavier–Stokes equations can

again be understood as the result of the use of an assumption of local equilibrium.

To make a connection to DDFT, which involves only the density, requires the

additional approximation that the velocity responds much more quickly than does

the density—that is, that the system is overdamped. In this case, for a given

configuration of the density, the velocity quickly reaches a steady state driven by

the gradient in the “pressure”. In this state, one imagines that the velocity will be

proportional to the driving force,

vðr; tÞ ¼ �G r dF½r�
drðr; tÞ þFextðr; tÞ

� �
ð221Þ

where G is a constant. [This is equivalent to looking neglecting the convective term

in the second line of Eq. (217) and assuming that $ 	P � G�1v, the same

assumptions leading to Darcy’s law. For example, this condition occurs naturally

if the environment exerts a global friction as is the case in, e.g. Brownian dynamics

[154]]. Then, the continuity equation gives

@

@t
rðr; tÞ ¼ G$ 	 rðr; tÞ r dF½r�

drðr; tÞ þFextðr; tÞ
� �

ð222Þ

which is the expected result.

Just as in the case of DDFT, a more systematic approach to the derivation of this

“extendedDDFT” is based on the projection operator techniques of Zwanzig [144]

and Mori and co-workers [145, 146]. However, this more general model is much

older thanDDFTand iswidely used inKinetic Theory today (see, e.g., Ref. 47). For

a one-component liquid, the result is a generalized Langevin equation of the form

of Eq. (217) with the addition of fluctuating forces. The construction of this and

related models is outlined in Ref. 148 and the case of the pure fluid is given

explicitly in Refs. 149 and 150. In this mesoscopic picture, Eq. (217) is understood

as the result of averaging over the noise, yielding the same dynamics but with

renormalized transport coefficients, as discussed more fully below.

3. Brownian Dynamics

One case in which the velocities of the particles may often be ignored is when the

particles are in some sort of solution. In the event thatmotion is damped by the bath,

the dynamics can be approximated as that of a collection of particlesmoving under

the effect of their mutual interactions as well as a friction proportional to their
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velocities. Many derivations have been based on the ideas of Marconi and

Tarazona [151] in which the starting point is a system described by this Brownian

dynamics. The particles move according to the stochastic equations

m
d2qi
dt2

þG�1 dqi
dt

¼ � @

@qi

�X
j 6¼ i

vðqijÞþfðqiÞ
	
þhiðtÞ ð223Þ

where the first term on the right is the sum of the interparticle force and the force

due to interactionwith a one-body potential whilehiðtÞ is white noise representing
interaction with the bath [152],

hiðtÞh i ¼ 0

hiðtÞhjðt0Þ
D E

¼ 2kBTdijdðt�t0Þ ð224Þ

The constant G is a measure of the friction due to the bath. In the limit of strong

friction, G�1 � 1, the second-order time derivative can be ignored, giving a first-

order equation of motion usually referred to as Brownian dynamics. Let

Pðq1; . . . ; qN ; tÞ be the probability to find particle 1 at position q1, and so on at

time t. Then, the corresponding Fokker–Planck equation is [151, 152]

@

@t
Pðq1; . . . ; qN ; tÞ ¼ G

XN
i¼1

@

@qi
	 kBT

@

@qi
þ
X
j 6¼ i

@vðqijÞ
@qi

( )
Pðq1; . . . ; qN ; tÞ

ð225Þ
Following Evans and Archer [153], we proceed as in the derivation of the BBGKY

hierarchy above. The one-body density is

rðr1; tÞ ¼
X
i

dðr1�qiÞ; t
* +

¼
Z X

i

dðr1�qiÞPðq1; . . . ; qN ; tÞdq1 . . . dqN

¼ N

Z
Pðr1; q2 . . . ;qN ; tÞdq2 . . . dqN ð226Þ

So that an equation for its time evolution can be obtained by integrating the

Fokker–Planck equation to get

@

@t
rðr1; tÞ ¼ G

@

@r1
kBT

@

@r1
rðr1; tÞþ

Z
@vðr12Þ
@r1

rðr1; r2; tÞdr2
� �

ð227Þ

where

rðr1; r2; tÞ ¼ NðN�1Þ
Z

Pðr1; r2; q3 . . . ; qN ; tÞdq3 . . . dqN ð228Þ

Assuming that the equilibrium configuration of the colloidal particles under the

influence of a field will be the same as that of the particles in the absence of a bath,
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Eq. (208) holds for the equilibrium one-body distribution. Introducing this here as

an assumption of local equilibrium gives

@

@t
rðr; tÞ ¼ G$ 	 kBT$rðr; tÞþ rðr; tÞ$ dFex½r�

drðr; tÞ

8<
:

9=
;

¼ G$ 	 rðr; tÞ$ dF½r�
drðr; tÞ

8<
:

9=
;

ð229Þ

which is the expected result.

4. A Note on Interpretation

There has been some discussion in the literature on whether or not a fluctuating

force should be included in the DDFT equation [143, 151, 153, 155]. In fact, a

careful examination of the derivations should give the answer in any particular

case. The confusion is due to the fact that the same symbol is used by different

workers for different objects leading, for example, to claims that some resultsmake

no sense [151]. The most fundamental level of description concerns the time

evolution of the microscopic density, r̂ðr; tÞ ¼Pidðr�qiðtÞÞ. This is just the

Liouville equation. At a mesoscopic level, one projects out all except the slow

variables associated with the local values of the conserved densities of number,

momentum, and energy [142]. This results in the generalized Langevin equation,

an exact equation, which certainly contains a noise term. Note that the density that

occurs in this (exact) equation need not be the microscopic density r̂ðr; tÞ but is
more commonly some coarse-grained mesoscopic density ~rðr; tÞ. The presence of
the noise term means that not all of the averaging has been done and so the local

density appearing in the equations is not the fully ensemble-averaged quantity,

r r; tð Þ. The “free energy” appearing in these equations is also not, strictly

speaking, the free energy functional of DFT. Typically, the “free energy

functional” is actually a quantity of the form

expð�bFð½~r�; ½f�; tÞÞ ¼
Z

dð~rðrÞ�r̂ðrÞÞfeqðq1 . . . xN ;fÞdx1 . . . dxN ð230Þ

where r̂ is the microscopic density function, feqðq1 . . . xN ;fÞ is the equilibrium

distribution and the external field is f. (Note that the equilibrium distribution

appears here, rather than the non-equilibriumdistribution, because of the definition

of projection operators for which one chooses the equilibrium distribution as the

measure in phase space. This is therefore not the result of a local equilibrium

approximation.) The definition of the delta function is actually delicate and is

perhaps best thought of in a course-grained sense. For example, space could be

divided into (arbitrarily) small cells,CðmÞ, of volumeV ðmÞwith centers at the points
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rðmÞ form ¼ 1; . . .M, and themesoscopic variables can be taken to be the densities

in each cell,

r̂ðmÞ ¼ 1

V ðmÞ

Z
CðmÞ

r̂ðrÞdr: ð231Þ

In this case, the precise meaning of the delta function is that it fixes the density

in the mth cell to be some specified value, ~rðmÞ,

dð~rðrÞ�r̂ðrÞÞ )
YM
m¼1

dðr̂ðmÞ�~rðmÞÞ ð232Þ

Thus, the collection of values f~rðmÞg constitutes the “function” ~rðrÞ. Then,
the actual free energy would be obtained by means of a further average,

expð�bF½f�Þ ¼
Z 1

0

d~rð1Þ . . .
Z 1

0

d~rðmÞexpð�bFð½~r�; ½f�ÞÞd N�
XM
m¼1

~rðmÞV ðmÞ
 !

ð233Þ
and it is the quantity F½f� with which contact is made with DFT. (Note that in this

expression, it is assumed that the number of particles is fixed; the same

arguments could be made in the grand canonical ensemble.) The constrained

“free energy”Fð½~r�; ½f�Þ is the one that is discussed in field-theoretic approaches to
statistical mechanics and is well-approximated via a mean-field model [156]. The

true free energy F½f� is a result of averaging over the coarse-grained density and

includes renormalization effects as discussed by Reguerra and Reiss [157].

In terms of DDFT, the dynamical equations for the mesoscopic density ~rðr; tÞ
would include a noise term,

@

@t
~rðr; tÞ ¼ G0$ 	 ~rðr; tÞ$ dFð½~r�; ½f�Þ

d~rðr; tÞ
� �

þhðr; tÞ ð234Þ

The ensemble-averaged density is then the result of averaging this over the noise

(i.e., the remaining degrees of freedom)

@

@t
~rðr; tÞh ih ¼ G0$ 	 ~rðr; tÞ$ dFð½~r�; ½f�Þ

d~rðr; tÞ
� �

h

( )
ð235Þ

or

@

@t
rðr; tÞ ’ G$ 	 rðr; tÞ$ dFð½r�Þ

drðr; tÞ
� �

ð236Þ

where it is noted that typically, transport coefficients like G0 are renormalized by

the evaluated. (This supposes that the cells used in the coarse graining are
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sufficiently small that the noise-averaged coarse grained density and ensemble

averaged density are the same.)

In the case of Brownian dynamics, the situation is completely analogous. In the

derivation given above, the starting point—the Brownian dynamical equations—

are the result of projecting out the degrees of freedom of a bath and so are already

(an approximation to) the generalized Langevin equation. Statistical averages are

then evaluated with respect to the noise and the one-body distribution is in fact

rðr; tÞ, the noise-averaged one-body density ~rðr; tÞh ih. Thus, one derives the

equivalent of Eq. (235) and not Eq. (234). It might seem that there is some

advantage in this approach, rather than the projection operator derivation, because

one avoids coarse-graining. However, this ignores the fact that the concept of local

equilibrium is itself based on the idea that the system can be divided into small

volumes, each of which is in an equilibrium state, but with thermodynamic

variables varying from volume to volume [130, 158]. The main advantage of the

systematic approach, such as that of Kawasaki [137], over the heuristic invocation

of local equilibrium is to make such assumptions explicit. However, in practical

applications, the use of local equilibrium, particularly Eq. (208), may be the

shortest route to a DDFT-like description.

5. Applications of DDFT

There have been many interesting uses of DDFT and here a sampling of the

literature is given to illustrate the range of applications. Evans andArcher used it to

study the kinetics of spinodal decomposition [153]. Archer, Hopkins, and

Schmidt [159] used DDFT to calculate the van Hove dynamic correlation function

for a simple fluid (the generalization of the static PDF giving the probability to find

a particle at time t at position r, given that there is a particle at the origin at time 0).

The results compared well with simulations of Brownian dynamics. Fraaiije has

performed a number of studies using DDFT to model the dynamics of block

copolymer melts [160–162]. Dzubiella and Likos have used DDFT to study

squeezing and relaxation of soft, Brownian particles in a time-dependent external

field [163]. Their comparisons to Brownian dynamical simulations are very good.

Van Teefelen, Likos, and L€owen used DDFT to study 2-D solid nucleation

of particles interacting with an inverse cube potential [164]. Rex and L€owen
have extended the theory for Brownian dynamics to include hydrodynamic

interactions between the colloidal particles [165].

B. Energy Surface Methods and the Problem of Nucleation

One problem not easily treated with DDFT is that of systems crossing large energy

barriers. The prototypical example of such a problem is the nucleation of one phase

from another. For example, consider the problem of the nucleation of a vapor

bubble in a superheated liquid. The superheated liquid is metastable, and random
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thermal fluctuations cause the formation of bubbles. These will either shrink

and die if they are too small, or will grow without bound if they are large enough,

thus converting the system from one phase to another. Such transitions are of

interest in many important circumstances, and the question of nucleation has

gained renewed interest due to the discovery of multistep processes involved in the

nucleation of crystals from solution in the case of proteins [166]. However, even

the physical picture just described for the nucleation of vapor bubbles has recently

been called into question [167–169], thus contributing to the renewed interest in

this subject. In the remainder of this subsection, a simple DFT for bubble

nucleation will be presented and the classical nucleation theory will be reviewed.

Various approaches to the description of nucleation within DFTwill be described,

concluding with a discussion of the current status of the subject.

As discussed previously, from any DFT—including exact DFT —a gradient

expansion can be constructed. Let us parameterize the local density for the problem

of bubble nucleation as a spherically symmetric, piecewise continuous function,

rðrÞ ¼ �r0QðR�w�rÞ
þ
�
�r0 þ

�r1��r0
2w

ðr�RþwÞ
�
QðRþw�rÞQðr�RþwÞ

þ �r1Qðr�RÞ

ð237Þ

which simply says that the density is r0 for r < R�w and r1 for r > Rþw and

that it varies linearly in the intermediate region. The gradient model free energy

will have the form

W r½ � ¼
Z

f ðrðrÞÞþ gðrðrÞÞ @rðrÞ
@r

� �2

�mrðrÞ
 !

dr ð238Þ

where f ðrÞ is the (Helmholtz) free energy per unit volume in the bulk fluid.

Substituting the parameterization into this expression gives a function,

Fð�r0; �r1;R;wÞ. However, this is still rather complicated so two simplifications

are made. The first is to take the coefficient of the gradient to be independent of

density, gðrðrÞÞ ¼ g. The second is to take the capillary approximation in which

the width of the interface goes to zero, w! 0, while keeping the combination

g ¼ g= 2wð Þ2 constant. This then gives

W ¼ VðRÞðf ð�r0Þ�m�r0Þþ ðV�VðRÞÞðf ð�r1Þ�m�r1Þþ gð�r1��r0Þ2SðRÞ ð239Þ

where VðRÞ ¼ 4p
3
R3, SðRÞ ¼ 4pR2 and V0 is the overall volume of the system

(assumed eventually to be infinite). The first two terms on the right are the free

energy contributions of the bulk phases, and the third term is the contribution due to

surface tension. For a given chemical potential, it is assumed that there is an
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equilibrium bulk vapor with density determined from f 0ð�rvÞ ¼ m and an equilib-

rium liquid with density satisfying f 0ð�rlÞ ¼ m. [We will use the notation �rvðmÞ
and �rlðmÞ to denote the solutions to these equations.] The Classical Nucleation

Theory (CNT) uses this free energy function with �r0 ¼ �rvðmÞ and �r1 ¼ �rlðmÞ,
so that the free energy is a function of a single parameter, R, the radius of

the bubble. The function is cubic in the radius and has minima at zero radius

(the metastable fluid), at some finite radius (the critical bubble) and at infinite

radius (the uniform vapor). A slightly more general theory is to treat these

densities as unknowns and to note that DFT tells us that the free energy function

should be a minimized with respect to its parameters, giving

0 ¼ ðV�VðRÞÞðf 0ð�r1Þ�mÞþ 2gð�r1��r0ÞSðRÞ
0 ¼ VðRÞðf 0ð�r0Þ��r0Þ�2gð�r1��r0ÞSðRÞ
0 ¼ R2 ðf ð�r0Þ�m�r0Þ�ðf ð�r1Þ�m�r1Þð Þþ 2gð�r1��r0Þ2R

ð240Þ

For a very large system, V � VðRÞ, the first equation implies that 0 ¼ f 0ð�r1Þ�m,
so that the outer density must be either �rvðmÞ or �rlðmÞ: One chooses the former to

describe bubble nucleation. The second and third equations then determine the

values of the inner density and the radius. Note that one solution is R ¼ 0, in

which case the inner density is irrelevant and the system is bulk liquid. The solution

for finite R corresponds to the critical radius. So long as ðf ð�r0Þ�m�r0Þ
< ðf ð�r1Þ�m�r1Þ and with V large, there will also be an extremum at

VðRÞ ¼ V corresponding to the bulk vapor.

One aspect of nucleation that has long been treated with DFT is the determina-

tion of the height of the barrier to nucleation. This is because the barrier is defined

by the critical nucleus— themetastable state the corresponds to amaximum of the

free energy functional. The determination of this state from something like DFT

goes back to Cahn and Hilliard [170], and calculations using more sophisticated

DFT include the early work by Oxtoby and Evans [171] and Teng and

Oxtoby [172]. (It is worth noting, however, that even in this case one is stretching

DFT beyond its theoretical foundations. As shown in Section II, the only density to

which unambiguous physical meaning can be attached is one that minimizes the

free energy functional. Since the critical cluster maximizes the free energy

functional, one is assuming, analogously to DDFT, that the free energy functional

governs the dynamics of the transition and does not just define the equilibrium

states.)

The question is how one might describe the transition from the liquid to the

vapor—that is, all the points on the path that are not extrema of the free energy.

In terms of the density, one notes that a system with a small bubble has more

atoms, on average, than does a system with a large bubble since the gas density is

lower than the liquid density. One might therefore try to stabilize a noncritical

system by “minimizing the free energy for a fixed number of atoms.” This means
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minimizing the free energy subject to the constraintZ
rðrÞdr ¼ N ð241Þ

for some specified value of N. The natural way to do this is through the method

of Lagrange multipliers. One forms the Lagrangian,

Lða; ½r�Þ ¼ W½r��a

Z
rðrÞdr�N

� �
ð242Þ

and then solves for the constrained minimum via

dLða; ½r�Þ
drðrÞ ¼ 0;

@Lða; ½r�Þ
@a

¼ 0 ð243Þ

giving
dF½r�
drðrÞ�m�a ¼ 0Z

rðr;m;aÞdr ¼ N

ð244Þ

Thus, the effect of this procedure is first to shift the chemical potential from m to

mþa, then to solve for the extremum for the shifted chemical potential, and then to

adjust a until the system has the desired number of atoms. The result of this

calculation is simply the critical cluster for the shifted chemical potential

m0 ¼ mþa. Note in particular that for the example of bubble nucleation, the

density far from the bubble will not be �rlðmÞ but, rather, �rlðm0Þ. Away from the

critical point, the vapor density is quite small, so that the difference between �rvðmÞ
and �rvðmþaÞ is quite small. Thus, for the problem of liquid droplet nucleation

in a vapor, this shift of the background is probably not too important. However, for

the problem of bubble nucleation in a fluid, the shift from �rlðmÞ to �rlðmþaÞ can be
quite substantial, potentially affecting the physics. For this reason, other methods

have been developed.

One variation of the constraint approach is to fix the number of atoms within

some volume V0 which is smaller than the system volume V ,Z
V0

rðrÞdr ¼ N ð245Þ

In this case, there are two parameters, the radius of the constrained volume,R0, and

the number N. The Euler–Lagrange equation now takes the form

dF½r�
drðrÞ�m�aQðR0�rÞ ¼ 0 ð246Þ
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so that in effect one has a discontinuous chemical potential. This necessarily leads

to discontinuous density profiles unless a ¼ 0, which only happens for the critical

cluster for the chemical potential m: All subcritical and supercritical clusters will
exhibit discontinuous profiles. Talanquer and Oxtoby [173] used this method to

study droplet nucleation. However, rather than solve the Euler–Lagrange equation,

Eq. (246), for r > R0, they took V0 to be much larger than the droplet and

approximated the outer density as a constant that was adjusted so as to give a

continuous density profile. This would appear to essentially be the same as the

calculation described above with a shifted chemical potential everywhere. Uline

and Corti used Eq. (246) as it stands, thereby obtaining discontinuous pro-

files [167]. Their results are particularly interesting because they report that

supercritical bubbles become unstable so that no solution to the equations exists

above some critical size. Their conclusion is that the assumption that the outer

density is �rlðmÞ is no longer true, thus indicating something like a spinodal

breakdown of the fluid. However, it is hard to see, physically, how a bubble of finite

size can destabilize the fluid far away from the bubble. In fact, it was subsequently

shown that using this constraint with the toy DFT given above, similar instabilities

occur [168, 169]. This is disturbing because Eq. (239) is a smooth, continuous

function of its arguments, so any such instability must be due to the constraint.

Furthermore, another physically reasonable constraint was shown not to give such

instabilities, so that the robustness of the constraint method must be questioned.

An alternativemethod has recently been proposed which appears to circumvent

such problems [168, 169]. Just as classical DFT was inspired by methods

developed in the context of ab initio quantum mechanical calculations, so the

new technique is borrowed from the quantum chemistry community. In quantum

chemistry, a subject of great interest is the determination of reaction pathways—

that is, a description of how a complicated, many-body system transforms

from one metastable configuration into another. What is known is the free energy

surface governing the transition. Many methods have been developed, primarily

within the last 20 years, for finding the most probable path for such transitions

(see, e.g., Wales [174] and references therein). The problem of nucleation in

classical systems is quite similar in that it is formulated as the desire to trace the

path in density space by which the system transforms from a metastable uniform

state to another, stable, uniform state. If one accepts the functional W½r� as
governing the dynamics of the transition—as is done, for example, in DDFT—

then the same energy surface methods can be used.

One approach is to consider a collection of Mþ 1 density functions,

frðmÞðrÞgMm¼0, where rð0ÞðrÞ is the initial metastable state, rðMÞðrÞ is the final

stable state, and the remaining states define a path between these two. For example,

in the bubble nucleation problem, one has that rð0ÞðrÞ ¼ �rlðmÞ and

rðMÞðrÞ ¼ �rvðmÞ. In between, in the toy model, one can choose the parameters

76 JAMES F. LUTSKO



for the mth density, �r
ðmÞ
0 and RðmÞ, in a convenient way, say as �r

ðmÞ
0 ¼ �rvðmÞ and

RðmÞ ¼ m
M
RV where RV is the radius of the overall volume V . The goal is to adjust

this chain of images, as they are called, so as to map out the most likely path

between the endpoints in density space. As discussed in Wales [174], there are

several ways to do this and here, a particularly simple one called the Nudged

Elastic Band (NEB) [175] method is described.

Clearly, if one tried to minimize the total energy of the path,

E ¼PM�1
m¼1 W½rðmÞ�, the densities would all end up in one of the metastable states

because these are, by definition, local minima. To map out the desired path, it is is

necessary to force the densities to remain evenly spaced, in some sense, along the

path. In the NEB, this is done by adding fictitious elastic forces between

neighboring images. However, simply adding the couplings is too crude because

the elastic forces alter the effective free energy landscape. Instead, one wants to

apply the elastic forces only along the path and to minimize the total energy in

directions perpendicular to the path, with no elastic forces. The key then is to

define, for each image, the direction in density space of the tangent to the current

path. First, one defines an inner product and distance in density space,

rðmÞ; rðm
0Þ� � ¼

Z
rðmÞðrÞrðm0ÞðrÞdr

d½rðmÞ; rðm
0Þ� ¼ rðmÞ�rðm

0Þ; rðmÞ�rðm
0Þ� �1=2

¼
Z

ðrðmÞðrÞ�rðm
0ÞðrÞÞ2dr

� �1=2

ð247Þ

The tangent at imagem is defined in terms of its neighbors, imagesm�1 andmþ 1,

based on the local energy landscape. For example, if the energy is monotonically

increasing, W½rðm�1Þ� < W½rðmÞ� < W½rðmþ 1Þ�, then the tangent at the image rm,
called tm, is

tðmÞðrÞ ¼ rðmþ 1ÞðrÞ�rðmÞðrÞ ð248Þ
and the normalized tangent, t̂

ðmÞðrÞ ¼ tðmÞðrÞ= tðmÞ; tðmÞ� �
. If the energy is mono-

tonically decreasing, the tangent is based on rðmÞ�rðm�1Þ. For nonmonotonic

neighbors, the heuristic is given in Ref. 175. The NEB method then consists of

finding a configuration that gives zero NEB force. Let the “force” due to the actual

free-energy surface be FðmÞðrÞ ¼ � @bW½rmðiÞ�
@rðrÞ . Then the NEB method consists of

solving

0 ¼ F?ðmÞðrÞþ kt̂
ðmÞðrÞðd½rðmþ 1Þ; rðmÞ��d½rðmÞ; rðm�1Þ�Þ ð249Þ

where F?ðmÞðrÞ ¼ FðmÞðrÞ�t̂
ðmÞðrÞð̂tðmÞ  F ðmÞÞ is the component of the thermo-

dynamic force orthogonal to the tangent vector and k is the spring constant. Further

details can be found in Refs. 168 and 169, where the NEBmethod is applied to the

problems of bubble and droplet nucleation. For droplet nucleation, where a
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significant amount of detailed simulation data is available, themethod proves to be

very accurate in locating and describing the critical cluster as well as in computing

the shape of nucleation barrier. No sign of instabilities is found in these calcula-

tions. As shown in Fig. 9, the picture of bubble formation that emerges from these

calculations is very different than that of CNT. Rather than forming as a gas-

containing void with initially small radius that slowly grows, the bubble forms as a

finite-sized region in which the density gradually decreases until it reaches

something approaching the gas density. Only then does it begin to grow in radius;

in the example shown, the growth occurs only long after the bubble has passed

criticality. Very recently, a similar technique (but based on the String method

[176], rather than the NEB) has been applied to the problem of capillary

condensation [177].

VII. CONCLUSIONS

The main points to be drawn from the survey of the current state of DFT are as

follows:

1. Classical DFT is based on a collection of exact theorems regarding the

behavior of systems in the grand canonical ensemble. In some cases, such as

the ideal gas, the quasi-zero-dimensional system, and one-dimensional hard

rods, the exact excess free energy functional can be constructed.
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Figure 9. The process of bubble formation as calculated using the NEB and DFT for a Lennard-

Jones fluid with kBT ¼ 0:8« and supersaturation
m�mcoex

mcoex
¼ �0:20, where mcoex is the value of the

chemical potential at coexistence. The potential is truncated and shifted at a distance rc ¼ 4s. Thefigure

shows the density profile, rðrÞ, for the various images along the optimal path between the uniform liquid

and the uniformgas. The size, in terms of the number ofmissing atoms relative to the background liquid,

is given for several profiles and the critical profile is marked with an asterisk. From Lutsko [169].
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2. Effective liquid theories and liquid-state-based perturbation theory continue

to be used in many calculations because of their simplicity.

3. For realistic, three-dimensional, inhomogeneous systems, the best theory

currently available is probably the Fundamental Measure Theory for hard

spheres.

4. Most calculations for potentials other than hard spheres are performed using

a sum of the hard-sphere excess free energy and a perturbative and/or mean-

field treatment of the attractive part of the potential.

5. DFT is increasingly used to study non-equilibrium systems. Many models

dating back to the 1970s include something like a local pressure expressed

as a functional derivative of the free energy. More recently, Dynamic DFT,

a generalization of the diffusion equation, is used to model overdamped

systems. Other methods for exploring the energy surface are also being used

to study problems involving large barriers such as homogeneous nucleation.
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APPENDIX A: DFT FOR HARD RODS

The statistical mechanics of hard rods can be completely solved as discussed, for

example, in Ref. 70. Surprisingly, it was only in 1976 that Percus first explicitly

worked out the structure ofDFT for hard rods [9]. The presentation here follows his

work closely.

The great simplification of hard spheres in one dimension is that (a) they only

interact with there two nearest neighbors and (b) they cannot move past one

another. The second property means that we can, without loss of generality, label

a finite collection of hard rods such that q1 < q2 < . . . < qn. Hence, if the system

is subject to a one-body potential, fðrÞ, the grand partition function is

Xðb;m; ½f�Þ ¼ 1þ
Z 1

�1
expð�b~fðq1ÞÞdq1

þ
X1
n¼2

Z 1

�1
exp �b

Xn
i¼1

~fðqiÞ
 !

Wðq1; . . . ; qnÞdq1; . . . ; dqn
ðA1Þ

where ~fðrÞ � fðrÞ�m and

Wðq1; . . . ; qnÞ � Qðq2�q1�dÞ . . .Qðqn�qn�1�dÞ ðA2Þ
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The one-body density is

rðrÞ ¼ r̂ðrÞh i ¼ �kBT
d lnX
dfðrÞ

¼ X�1expð�b~fðrÞÞ
ðA3Þ

þX�1
X1
n¼2

Xn
k¼1

Z 1

�1
exp �b

Xk�1

i¼1

~fðqiÞ
 !(

�W q1; . . . ;qk�1;rð Þdq1; . . . ;dqk�1gðk¼1Þ ðA4Þ

� expð�b~fðrÞÞ
Z 1

�1
exp �b

Xn
i¼kþ1

~fðqiÞ
 !(

�Wðr;qkþ1; . . . ;qnÞdqkþ1; . . . ;dqngðk¼nÞ ðA5Þ

where the notation f. . .gðk¼rÞ
means that the bracket should be set equal to 1 if

k¼ r. Relabeling the dummy integration variables qkþ1; . . . ;qn allows the last term
in brackets to be written asZ 1

�1
exp �b

Xn
i¼kþ1

~fðqiÞ
 !

Wðr;qkþ1; . . . ;qnÞdqkþ1; . . . ;dqn

¼
Z 1

�1
exp �b

Xn�k

i¼1

~fðqiÞ
 !

Wðr;q1; . . . ;qn�kÞdq1 . . .dqn�k ðA6Þ

Then, noting that

X1
n¼1

Xn
k¼1

Xðk;nÞ¼
X1
k¼1

X1
n¼k

Xðk;nÞ¼
X1
k¼1

X1
m¼1

Xðk;mþk�1Þ ðA7Þ

allows this to be written as

rðrÞ ¼ X�1
X1
k¼1

X1
m¼1

expð�bmðmþk�1ÞÞ

�
Z 1

�1
exp �b

Xk�1

i¼1

~fðqiÞ
 !

Wðq1; . . . ;qk�1;rÞdq1 . . .dqk�1

( )ðk¼1Þ

�expð�bfðrÞÞ
Z 1

�1
exp �b

Xm�1

i¼1

~fðqiÞ
 !(

�Wðr;q1; . . . ;qm�1Þdq1 . . .dqm�1gðm¼1Þ ðA8Þ

80 JAMES F. LUTSKO



which clearly factorizes into the product of terms that resemble the grand partition

function. It is convenient to define a more general function of two variables as

Xðx;y;b;m; ½f�Þ

¼Qðy�ðxþdÞÞ
X1
n¼1

Z 1

�1
exp �b

Xn�1

i¼1

~fðqiÞ
 !(

�Wðx;q1; . . . ;qn�1;yÞdq1; . . . ;dqn�1gðn¼1Þ

¼Qðy�ðxþdÞÞþQðy�ðxþdÞÞ
X1
k¼1

Z 1

�1
exp �b

Xk
i¼1

~f qið Þ
 !

�W x;q1; . . . ;qk;yð Þdq1 . . .dqk ðA9Þ
so that X b;m; f½ �ð Þ ¼ X �1;1;b;m; f½ �ð Þ. Then, one has that

r rð Þ ¼ exp �b~f rð Þ �
X �1; r;b;m; f½ �ð ÞX r;1;b;m; f½ �ð ÞX�1 �1;1;b;m; f½ �ð Þ

ðA10Þ

Now, simple differentiation gives

@

@x
X x; yð Þ ¼ �d y� xþ dð Þð Þ�exp �b~f xþ dð Þ �

X xþ d; yð Þ

@

@y
X x; yð Þ ¼ d y� xþ dð Þð Þþ exp �b~f y�dð Þ �

X x; y�dð Þ
ðA11Þ

and, in particular,

@

@r
Xðr;1Þ ¼ �exp �b~f rþ dð Þ �

X rþ d;1ð Þ

¼ �r rþ dð ÞX �1;1ð Þ=X �1; rþ dð Þ
@

@r
Xð�1; rÞ¼ exp �b~f r�dð Þ �

X �1; r�dð Þ

¼ r r�dð ÞX �1;1ð Þ=X r�d;1ð Þ

ðA12Þ

Note that the second equation implies

@

@r
Xð�1; rþ dÞ ¼ rðrÞXð�1;1Þ=Xðr;1Þ ðA13Þ

Combined with the first line of Eq. (A13), one has that

@

@r
Xðr;1ÞXð�1; rþ dÞ ¼ ðr rð Þ�rðrþ dÞÞXð�1;1Þ ðA14Þ
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so

Xðx;1ÞXð�1; xþ dÞ ¼ Xð�1;1Þ�Xð�1;1Þ
Z xþ d

x

rðrÞdr ðA15Þ

where the integration constant is fixed by assuming that the density

vanishes sufficiently fast as r!1, the limit x!1. With this result,

Eq. (A13) can now be written as

@

@r
Xðr;1Þ ¼ �r rþ dð ÞX r;1ð Þ

1� R rþ d

r
r yð Þdy

@

@r
Xð�1; rÞ ¼ r r�dð ÞX �1; rð Þ

1� R r
r�d

r yð Þdr

ðA16Þ

giving

ln Xðx;1Þ ¼ ln Xð�1;1Þ�
Z x

�1

r rþ dð Þ
1� R rþ d

r
r yð Þdy

dr

ln Xð�1; xÞ ¼ ln Xð�1;1Þ�
Z 1

x

r r�dð Þ
1� R r

r�d
r yð Þdy dr

ðA17Þ

where, again, the integration constants are fixed by taking the limit x! �1. The

opposite limits, x! �1, then give

lnXð�1;1Þ ¼
Z 1

�1

r rþ dð Þ
1� R rþ d

r
r yð Þdy

dr ¼
Z 1

�1

r rþ d=2ð Þ
1� R d=2�d=2 r rþ yð Þdy

dr

lnXð�1;1Þ ¼
Z 1

�1

r r�dð Þ
1� R r

r�d
r yð Þdy dr ¼

Z 1

�1

r r�d=2ð Þ
1� R d=2�d=2 r rþ yð Þdy

dr

ðA18Þ

These can be combined to give the symmetric form:

lnXð�1;1Þ ¼
Z 1

�1

1
2
r rþ d=2ð Þþ r r�d=2ð Þð Þ
1� R d=2�d=2 r rþ yð Þdy

dr ðA19Þ

Extensions to sticky hard spheres and to mixtures of hard spheres have also been

given [71, 178].

To make contact with the density functional formalism, note that the field does

not occur in this expression: It is the equivalent of Eq. (23) giving the grand

potential at equilibrium, after the field has been eliminated. To get F½n�, we use
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Eq. (A15) in Eq. (A10) and take the log to get

dbF½r�
drðrÞ ¼ �b~f rð Þ ¼ ln r rð Þ�lnX �1; rð Þ�lnX r;1ð Þþ lnX �1;1ð Þ

¼ ln r rð Þþ
Z r

�1

�
� r x�dð Þ
1� R x

x�d
r yð Þdy þ r xþ dð Þ

1� R xþ d

x
r yð Þdy

�
dr

¼ ln r rð Þ�
Z r�d=2

�1

�
r x�d=2ð Þ

1� R d=2�d=2 r xþ yð Þdy

�
dr

þ
Z rþ d=2

�1

�
r xþ d=2ð Þ

1� R d=2�d=2 r xþ yð Þdy

�
dr

¼ ln r rð Þ� 1

2
ln 1�

Z r

r�d

r yð Þdy
� �

dr� 1

2
ln 1�

Z rþ d

r

r yð Þdy
� �

þ 1

2

Z rþ d=2

�r�d=2

�
r xþ d=2ð Þþ r x�d=2ð Þ
1� R d=2�d=2 r xþ yð Þdy

�
dr ðA20Þ

Performing the functional integration gives

bF r½ � ¼ bFid r½ ��
Z

1

2
ðrðxþ d=2Þþ rðx�d=2ÞÞ ln 1�

Z d=2

�d=2

rðxþ yÞdy
 !

dr

ðA21Þ
In principle, there could be a density-independent integration constant,

but this is of no relevance.

APPENDIX B: FMT TWO-BODY TERM

The FMT two-body contribution is

F2 ¼ �
Z

dr cðhðrÞÞ
Z

ds1ds2 rðrþ s1Þwðs1Þrðrþ s2Þwðs2ÞPðs1; s2Þ ðB1Þ

The effect of the kernel Pðs1; s2Þ is to couple what would otherwise be two factors
of sðrÞ. To see what kind of contribution this gives when the density is a sum of

delta functions, consider the integralZ
ds1ds2 d rþ s1ð Þw s1ð Þd rþ s2 �Rð Þw s2ð ÞP s1; s2ð Þ

¼
�

1

4p d=2ð Þ2
�2

d

�
r� d

2

�
d

�
R�rj j � d

2

�
P � r;R� rð Þ

ðB2Þ
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Since the kernel is a scalar, assume it is a function of the scalar product of its

arguments, Pðs1; s2Þ ¼ Pðs1 	 s2Þ. Let R define the z-direction in the r integral so

thatR 	 r ¼ Rrxwhere x is the azimuthal variable. Using the fact that the first delta

function fixes the value of r and using the usual rules for change of variable in the

second delta function givesZ
ds1ds2 d rþ s1ð Þw s1ð Þd rþ s2�Rð Þw s2ð ÞP s1; s2ð Þ

¼
�

1

4p d=2ð Þ2
�2

d

�
r� d

2

�
d x�R=dð Þ

R
P

��
d

2

�2

�
�
R2

2

� ðB3Þ

Assuming that limR! 0P
d
2

 �2� R2

2


 �
 �
=R ¼ 0, one immediately finds

F2 ¼�2N1N2

�
1

4p d=2ð Þ2
�2

R�1P

��
d

2

�2

�
�
R2

2

��

�
Z

drc h rð Þð Þd
�
r�d

2

�
d x�R=dð Þ

¼ �2N1N2

�
1

4p d=2ð Þ2
�2

P

��
d

2

�2

�
�
R2

2

��

�
Z

drc h rð Þð Þd
�
r�d

2

�
d

�
R�rj j�d

2

�
ðB4Þ

This integral is easily evaluated as a limit of the case that the cavities have different

diameters, d1 and d2. Writing cðhÞ ¼ @2

@h2 c0ðhÞ gives

F2 ¼ �2

�
1

4p d=2ð Þ2
�2

P

��
d

2

�2

�
�
R2

2

��

� lim
d1;d2 ! d

@2

@ d1=2ð Þ@ d2=2ð Þ
Z

dr c0 h rð Þð Þ

¼ �2

�
1

4p d=2ð Þ2
�2

P

��
d

2

�2

�
�
R2

2

��

� lim
d1;d2 ! d

4
@2

@d1@d2
V1�V12j jc0 N1ð Þþ V2�V12j jc0 N2ð Þþ V12j jc0 Nð Þð Þ

¼ �2

�
1

4p d=2ð Þ2
�2

P

��
d

2

�2

�
�
R2

2

��
pd2

2R
c0 Nð Þ�c0 N1ð Þ�c0 N2ð Þð Þ

ðB5Þ
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The sum gives the exact result, provided that c0ðhÞ ¼ F0ðhÞ and

�2
1

4p d=2ð Þ2
 !2

P
d

2

� �2

�R2

2

 !
pd2

2R
¼ R

d
ðB6Þ

Simplification gives

P
d2

4
�R2

2

� �
¼ �pdR2 ðB7Þ

or

PðyÞ ¼ �pd
d2

2
�2y

� �
¼ �4p

d

2

d2

4
�y

� �
ðB8Þ

Putting this together gives the two-body contribution

F2 ¼ 4p
d

2

1

4p d=2ð Þ2

0
@

1
A
2 Z

dr c00
0 h rð Þð Þ

�
Z

ds1ds2 r rþ s1ð Þw s1ð Þr rþ s2ð Þw s2ð Þ d2

4
�s1 	 s2

0
@

1
A

¼ 1

2pd

Z
dr c00

0 h rð Þð Þ s2 rð Þ�v2 rð Þ �
ðB9Þ

which is the same as the second contribution to the Rosenfeld functional.

APPENDIX C: PROOF OF THE WALL THEOREM

FOR THE VDW MODEL

Here, the proof of the wall theorem is given for VdW models such as given in

Eqs. (190)–(193). The location of the wall is taken to be z ¼ 0, and the system is

uniform in the other directions. It therefore follows that the potential and the FMT

weights can be integrated over the directions parallel to the wall and all quantities

become one-dimensional functions of z [see, e.g., Eq. (163)]. Restricting attention

to the region z > 0, the Euler–Lagrange equation is

0 ¼ ln rðz1Þþ
Z

dz2
@Fðz2; ½r�Þ
@naðz2Þ waðz21Þ�mþ

Z 1

�1
wðz12Þrðz2Þdz2 ðC1Þ
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Differentiating with respect to z1 and multiplying through by r z1ð Þ gives

0 ¼ dr z1ð Þ
dz1

þ
Z 1

�1
dz2

@F z2; r½ �ð Þ
@na z2ð Þ r z1ð Þ d

dz1
wa z21ð Þ

þ
Z 1

�1
r z1ð Þ

�
d

dz1
w z12ð Þ

�
r z2ð Þdz2

ðC2Þ

Now, we make two important assumptions. First is that there is some point zB > 0

such that for z > zB, the density is indistinguishable from the bulk: rðzÞ ¼ rlðmÞ,
where the bulk density is determined by the imposed chemical potential. Second,

we assume that the potential tail has a finite range rc. We now integrate Eq. (C2)

from an initial point at the wall, 0þ , to a point zb that is sufficiently far in the bulk
region that zb > zB þ zc and zb > zB þ d. This gives

0 ¼ r zbð Þ�r 0þð Þþ
Z 1

�1
dz2

@F z2; r½ �ð Þ
@na z2ð Þ

Z zb

0þ
r z1ð Þ d

dz1
wa z21ð Þdz1

þ
Z zb

0þ
dz1

Z 1

0

r z1ð Þ
�

d

dz1
w z12ð Þ

�
r z2ð Þdz2

ðC3Þ

where the fact that rðzÞ ¼ 0 for z < 0 has been used. Now, by assumption,

rðzbÞ ¼ rlðmÞ, so this can be rearranged to give

rð0þ Þ ¼ rlðmÞþ IFMT þ IMF ðC4Þ

The mean field contribution is

IMF ¼
Z zb

0þ
dz1

Z 1

0þ
r z1ð Þ

�
d

dz1
w z12ð Þ

�
r z2ð Þdz2

¼
Z zb

0þ
dz1

Z zb

0þ
r z1ð Þ

�
d

dz1
w z12ð Þ

�
r z2ð Þdz2

þ
Z zb

0þ
dz1

Z 1

zb

r z1ð Þ
�

d

dz1
w z12ð Þ

�
r z2ð Þdz2

ðC5Þ

The first term on the right vanishes since it is odd under a relabeling z1 $ z2. Thus

IMF ¼
Z zb

0þ
dz1

Z 1

zb

r z1ð Þ
�

d

dz1
w z12ð Þ

�
r z2ð Þdz2

¼ rl mð Þ
Z zb

0þ
dz1

Z 1

zb

r z1ð Þ
�

d

dz1
w z12ð Þ

�
dz2

¼ rl mð Þ
Z zb

0þ
r z1ð Þw z1�zbð Þdz1 ðC6Þ
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Making use of the finite range of the potential

IMF ¼ rlðmÞ
Z zb

zb�rc

rðz1Þwðz1�zbÞdz1 ðC7Þ

and since, by hypothesis, zb�rc is still in the bulk region, this gives

IMF ¼ rl mð Þ2
Z zb

zb�rc

w z1�zbð Þdz1

¼ rl mð Þ2
Z rc

0

w z1ð Þdz1
ðC8Þ

The FMT contribution is

IFMT ¼
Z 1

�1
dz2

@F z2; r½ �ð Þ
@na z2ð Þ

Z zb

0þ
r z1ð Þ d

dz1
wa z21ð Þdz1

¼ �
Z 1

�1
dz2

@F z2; r½ �ð Þ
@na z2ð Þ

Z 1

0þ
r z1ð Þ d

dz2
wa z21ð Þdz1

þ
Z 1

�1
dz2

@F z2; r½ �ð Þ
@na z2ð Þ

Z 1

zb

r z1ð Þ d

dz2
wa z21ð Þdz1

¼ �
Z 1

�1
dz2

@F z2; r½ �ð Þ
@na z2ð Þ

dna z2ð Þ
dz2

þ rl mð Þ
Z 1

�1
dz2

@F z2; r½ �ð Þ
@na z2ð Þ

Z 1

zb

d

dz2
wa z21ð Þdz1

ðC9Þ

The first term is an exact differentialZ 1

�1
dz2

@F z2; r½ �ð Þ
@na z2ð Þ

Z 1

0þ
r z1ð Þ d

dz2
wa z21ð Þdz1 ¼ fHSex r1d3

 ��fHSex r�1d3
 �

ðC10Þ

where fHSex ðrd3Þ is the excess free energy per unit volume in the hard-sphere fluid.

The second term is

rl mð Þ
Z 1

�1
dz2

@F z2; r½ �ð Þ
@na z2ð Þ

Z 1

zb

d

dz2
wa z21ð Þdz1

¼ rl mð Þ
Z 1

�1
dz2

@F z2; r½ �ð Þ
@na z2ð Þ wa z2�zbð Þ

ðC11Þ
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Now, the function wa z21ð Þ is only nonzero in the range �d=2 < z21 < d=2; so as
long as zb�d=2 is in the bulk region, one has that

rl mð Þ
Z 1

�1
dz2

@F z2; r½ �ð Þ
@na z2ð Þ

Z 1

zb

d

dz2
wa z21ð Þdz1 ¼ rl mð Þ @fHS rbd

3ð Þ
@rb

ðC12Þ

Thus

IFMT ¼ �fHSex rl mð Þd3
 �þ rl mð Þ @f

HS
ex rl mð Þd3ð Þ
@rl mð Þ ¼ bPHS

ex rl mð Þd3
 � ðC13Þ

The final result is

rð0þ Þ ¼ rlðmÞþbPHS
ex ðrlðmÞd3Þþ rlðmÞ2

Z rc

0

wðz1Þdz1 ¼ bPðrlðmÞÞ ðC14Þ
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