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Abstract – The question of whether the Tsallis entropy is Lesche-stable is revisited. It is argued
that when physical averages are computed with the escort probabilities, the correct application of
the concept of Lesche-stability requires use of the escort probabilities. As a consequence, as shown
here, the Tsallis entropy is unstable but the thermodynamic averages are stable. We further
show that Lesche stability as well as thermodynamic stability can be obtained if the homogeneous
entropy is used as the basis of the formulation of non-extensive thermodynamics. In this approach,
the escort distribution arises naturally as a secondary structure.

Copyright c© EPLA, 2009

Introduction. – The concept of non-extensive thermo-
dynamics was introduced by Tsallis about 20 years ago [1]
and has generated a large literature. The original idea was
that for systems out of equilibrium where the Boltzmann
distribution no longer holds, the Boltzmann entropy
could be replaced by a more general function while main-
taining the formalism of thermodynamics. In particular,
maximization of the entropy under the usual constraints
(normalized probabilities, fixed internal energy) yields
the so-called q-exponential distribution that generalizes
the usual Boltzmann distribution of classical statistical
mechanics. While this seems straightforward now, it
did in fact require considerable effort to arrive at the
now-accepted form of the theory. A particular issue that
was historically important and that remains problematic
is the notion of thermodynamic stability since the Tsallis
entropy gives negative specific heats in certain circum-
stances [2–5]. Nevertheless, this was one of the issues
that motivated the advocation of nontrivial averaging
procedures in non-extensive thermodynamics [3].
A new controversy has arisen based on a recent paper

by Abe where it is shown that averages computed within
the non-extensive formalism are unstable in the sense that
a small change in the distribution function can lead to a
large change in the computed average [6]. This surprising
result should be understood in a broader context wherein
it was originally asked whether the Tsallis entropy is

(a)E-mail: jlutsko@ulb.ac.be

stable with respect to changes in the distribution. This
was shown to be true by Abe [7] so the result that
averages of observables are unstable while the entropy is
stable appears quite surprising. In this paper we question
whether either fact has actually been proven. In short,
our argument is that Lesche-stability is motivated by
making correspondence with an experimental procedure
and that this means it should be understood in terms
of the probabilities that govern the observation of a
given microstate. In the usual formulation of non-extensive
thermodynamics, those are the escort probabilities. When
understood in this way, it is easy to show that the Tsallis
entropy is not Lesche-stable.
This would appear to create an uncomfortable situation

in which the Tsallis formulation is not Lesche-stable and
in which thermodynamic stability is also problematic. We
contend that this can be resolved by a shift of viewpoint in
which the physical probabilities are taken as being funda-
mental. While the Tsallis entropy cannot be satisfactorily
formulated in this way [8], a closely related functional,
the homogeneous entropy, appears as a natural alterna-
tive. We show that the homogeneous entropy is in fact
Lesche stable, gives positive-definite specific heats, yields
the usual q-exponential distributions when maximized and
gives rise to a consistent thermodynamics.

Non-extensive thermodynamics. –

Tsallis formalism. The usual non-extensive formalism
can be illustrated as follows. Consider a system composed
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of some number, n, of microstates and let pi be the prob-
ability associated with the i-th microstate. The Tsallis
entropy is computed as

Sq =
1−
∑n
i=1 p

q
i

q− 1
, (1)

where q is the index characterizing the entropy functional.
The limit q→ 1 gives the usual Boltzmann entropy. One
subtlety in the theory of non-extensive thermodynamics is
that the average of an observable, O, that takes the value
Oi in the i -th state is evaluated using the so-called escort
distribution [9] giving

〈O〉=

n∑

i=1

pqi∑N
j=1 p

q
j

Oi. (2)

Let the energy observable be U and let it take on the value
ǫi in the i-th state. Then maximization of the entropy
under the constraints of fixed average energy, 〈U〉=U ,
and of normalization, 1 =

∑n
i=1 pi, gives the q-exponential

distribution,

pj =

(
1− (1− q)Zq−1q β (εj −U)

) 1
1−q

+

Zq
, (3)

with

Zq =

N∑

j=1

(
1− (1− q)Zq−1q β (εj −U)

) 1
1−q

+
. (4)

(Here, the notation (x)+ means x if x> 0 and zero
otherwise.) It is straightforward to show that if the energy
levels are functions of some parameter, εi = εi(λ), then

dU

dλ
= β−1

dS

dλ
+
dW

dλ
, (5)

where the work is defined as dW =
∑n
i=1 pidεi. This is

recognized as the first law of thermodynamics.
The peculiar nature of the average, based as it is on the

escort distribution, naturally suggests a reformulation of
the theory. If one defines the new quantity,

Pi =
pqi∑n
j=1 p

q
j

, (6)

which is invertible,

pi =
P
1/q
i∑n

j=1 P
1/q
j

, (7)

then the Tsallis entropy becomes

S̃q =
1−
(∑n

i=1 P
1/q
i

)
−q

q− 1
(8)

and averages are computed as normal,

〈O〉=
n∑

i=1

PiOi. (9)

Extremizing this entropy subject to the usual constraints
again gives a q-exponential distribution, but with expo-
nent 2− 1/q rather than q. In the following, we refer to
the original, more familiar formulation of non-extensive
thermodynamics in terms of the Tsallis entropy as the
“little-p” picture and the reformulation given here as
the “big-P” picture. All of this has long been known
in the literature of non-extensive thermodynamics [10].
The little-p formulation is generally favored because of
one important difference: the Tsallis entropy is a concave
function of the probabilities whereas the same is not
true of the big-P entropy. (Concavity is assumed to be
required of a generalized entropy even though the connec-
tion between concavity and thermodynamic stability is
complicated by the non-additivity of the entropy [11].)
On the other hand, there is another important differ-

ence between the two pictures from a more physical point
of view: the escort probabilities have the interpretation of
being a measure of the likelihood of finding the system
in a given microstate. This is obvious if one considers an
ensemble of systems in which case the fact that the aver-
ages are computed via eq. (9) implies that the fraction of
systems in microstate i must be Pi. This is to say that
the usual ensemble interpretation of statistical averages
implies a frequentist interpretation of the escort proba-
bilities. Conversely no such ontology can be imposed on
the small-p probabilities. When using the small-p formu-

lation to express the average 〈O〉=
∑n
i=1

pq
i∑

N
j=1 p

q

j

Oi, it is

clear that pi does not appear to measure the frequency
of anything. Furthermore, experiments, which measure
averages, are always going to be determining the escort
(big-P) distribution and not the small-p distribution. The
fact that both are q-exponentials means that this distinc-
tion is not of practical importance, but the distinction
is real. The question then arises, is this distinction ever
of practical importance? We next show that it plays a
critical role in the discussion of stability of the entropy
functional.

Stability. – The discussion of stability is based
on ideas first introduced by Lesche while studying
the Renyi entropy [12]. Lesche-stability is defined in
terms of countable families of probability distributions,

Wn = (w
(n)
1 , . . . , w

(n)
n ). An entropy function, S(n)(Wn)

is said to be Lesche-stable if given any two probability

distributions, Wn and W
′

n = (w
(n)′

1 , . . . , w
(n)′

n ), for all
ǫ > 0, there exists δ > 0 such that

δ > |Wn−W
′

n| ≡
∑

i

∣∣∣w(n)i −w
(n)′
i

∣∣∣ (10)

implies that

ǫ >

∣∣∣∣
S(n) (Wn)−S

(n) (W ′n)

S
(n)
max

∣∣∣∣ , (11)

where S
(n)
max is the maximum value possible for the entropy

functional. The quantity |Wn−W
′

n| in eq. (10) is the
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L1 norm, and the implication (10) → (11) is required
to hold with fixed ǫ, δ for all n including the limit of
n→∞. This definition is technical, but the idea is simple:
when the the probabilities change, the change in the
entropy should be small if the change in the probabilities
is small. By formulating the definition in terms of a limit,
it covers both the case of probability assignments with
finite support (i.e. only some fixed number of elements
are nonzero) as well as assignments with infinite support.
Lesche proved that the Boltzmann entropy is stable, but
gave a simple example showing that the Renyi entropy
is not stable [12]. Abe has given a proof that the Tsallis
entropy in the small-p picture is stable [7].
One question that arises immediately is why use the

L1 norm in measuring the distance between two distrib-
utions? In his original paper [12], Lesche stated that this
measure can be related to the difficulty in experimentally
distinguishing two probability assignments. The full argu-
ment was given recently by Abe, Lesche and Mund [13]
and goes as follows. To tell whether W or W ′ is the
correct description of a given ensemble of systems, one
performs some number, Z, of experiments which, in each
instance, determine which microstate the system is in.
Of course, microstates are usually not directly observ-
able, but for example, one might measure the energy and
from this deduce the microstate (or a set of compati-
ble microstates). The result is a sequence of observed
microstates, S ≡ (s1, . . . , sZ). If the correct distribution
is W , the probability to observe this sequence is the
product of the probabilities of observing each microstate,
P (S;W ) =ws1ws2 . . . wsZ . Abe et al. define the test of
whether or not the distribution is W by requiring that,
prior to the experiment, the experimenter specify a collec-
tion of possible results, C = {S(j)}. The probability that
the observed S ∈C is α=

∑
j P (Sj ;W ), while the proba-

bility β = 1−
∑
j P (Sj ;W

′) is the probability that, if the
true distribution is W ′, the observation will not be in the
set C. In order to be an effective test, the set C must be
constructed so that both α and β are large: i.e., so that
if W is correct, the observation is likely to be in C and
if W ′ is correct, the observation is likely to not be in C.
They show that for given Z, no such test is possible if the
L1 difference between W and W

′ is too small.
The key observation here is that the relevance of the

L1 metric is based on an estimation of probabilities of
observing certain outcomes, that is on the basis of a
frequentist measure. Therefore, within the framework of
non-extensive thermodynamics, these probabilities neces-
sarily correspond to the escort probabilities. Thus, to test
Lesche-stability in this formalism, the L1 metric must be
applied to the escort probabilities. This is because the
big-P probabilities, P , are the physical probabilities
measured in an experiment. Demonstrations based on
separation of the small-p distributions measured by the
L1 metric do not correspond to the concept of Lesche-
stability. An alternative statement, entirely within the
little-p picture, is that one must check stability of the

Tsallis entropy using the metric

|p− p′|=

n∑

i=1

∣∣∣∣∣
pqi∑N
j=1 p

q
j

−
p′qi∑N
j=1 p

′q
j

∣∣∣∣∣ . (12)

The Tsallis entropy is unstable. So, is the Tsallis
entropy Lesche-stable? The answer is that it is not.
Consider the case q < 1 and let P be the uniform distrib-
ution, Pi =

1
n for all i, and P

′ be given by P ′1 =
1
n +

δ
2 and

P ′i =
1
n −

δ
2(n−1) for n� i > 1. Then, it is obvious that

|P −P ′|L1 = δ (13)

and

S̃q (P ) =
1−n1−q

q− 1
. (14)

This happens to be equal to S̃q,max. The perturbed
distribution gives

S̃q(P
′) =

1−

((
1
n +

δ
2

)1/q
+(n− 1)

(
1
n −

δ
2(n−1)

)1/q)−q

q− 1
=

1−
(
δ
2

)−1
(
1+O

(
δ−1

n1−q

) 1
q

)

q− 1
. (15)

Hence,

lim
n→∞

∣∣∣∣∣
S̃q (P )−S̃q (P

′)

S̃q,max

∣∣∣∣∣= limn→∞

∣∣∣∣∣
n1−q−

(
δ
2

)−1

n1−q

∣∣∣∣∣= 1. (16)

So, no matter how close the distributions (i.e. no matter
how small δ), the difference between the entropies is finite.
There is no difference if the calculation is translated into
the small -p picture: the only substantive issue is whether
the difference in the small -p or the big-P quantities is
evaluated using the L1 metric.

The homogeneous entropy. – To summarize, our
arguments show that the Tsallis entropy with linear
averages is Lesche-stable (as proven by Abe) but with
the escort distribution it is Lesche-unstable. On the other
hand, it is known that both formalisms give negative
specific heats giving rise to questions of thermodynamic
stability [2,4,11]. In fact, this was one issue that led to
the search for an alternative to linear averages [3]. So, is
there a non-extensive formalism that is both Lesche-stable
and that gives positive specific heats? Given the intimate
connection between the concept of Lesche-stability and
the physical probabilities, one might wonder if it would
make more sense to use the big-P entropy, eq. (8) together
with the linear averages as a starting point. As it happens,
this is unsatisfactory because of the fact that the big-P
entropy functional is not concave [8]. There is, however, a
closely related function known in the information theory
literature as the homogeneous entropy [14] given by

SHq (P ) =

(∑n
i=1 P

1/q
i

)q
− 1

q− 1
, (17)
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which is concave for all positive q, is maximized by the
uniform distribution and is extensible [15]. Our proposal is
that this be used in conjunction with the linear averaging
procedure as a basis for the formulation of non-extensive
thermodynamics. When maximized under constraint of
normalization and fixed internal energy, the result is a
q-exponential,

Pj =Z
−1
q

(
1− (1− q)Z1−qq β (εj −U)

) q

1−q , (18)

with

Zq =

(
n∑

i=1

P
1/q
i

)
−

q

1−q

=

∑

i

(
1− (1− q)

β (εj −U)

Zq−1q

) q

1−q

=

n∑

i=1

(
1− (1− q)

β (εj −U)

Zq−1q

) 1
1−q

. (19)

The equality of the second and third lines follows from the
constraint on the average energy. From this expression, it
is straightforward to show that

∂SHq
∂U

= β, (20)

so that the Lagrange multiplier β corresponds to the
inverse of the thermodynamic temperature. Furthermore,
the specific heat is

CV =
∂U

∂T
= qZ

−
(q−1)2

q

q

∑

i

(β (εj −U))
2
P
2q−1
q

i , (21)

which is positive definite. It is also easy to show that if
the energies εi are a function of some external parameter,
λ, then

∂U

∂λ
= β−1

∂SHq
∂λ
+

n∑

i=1

pj
∂εj
∂λ
, (22)

which confirms the second law of thermodynamics for this
model.
Lesche-stability is also easy to show. Let δi = P

′

i −Pi,∑
|P ′i −Pi|= δ < 1 and assume without loss of general-

ity that S(P ′)>S(P ) where S(P )≡ (q− 1)(SHq (P )+ 1).
Then, for q < 1, one has that

S (P ′) =

(
n∑

i=1

(Pi+ δi)
1/q

)q
=

(
n∑

i=1

|Pi+ δi|
1/q

)q
�

(
n∑

i=1

P
1/q
i

)q
+

(
n∑

i=1

|δi|
1/q

)q
. (23)

The last line follows from the Minkowski inequality
(a generalization of the triangle inequality) [16]. For q < 1
and |δi|� δ < 1, one has |δi|

1/q < |δi| so

S (P ′)�

(
n∑

i=1

P
1/q
i

)q
+

(
n∑

i=1

|δi|

)q
= S (P )+ δq. (24)

Lesche-stability follows immediately. For q > 1 the proof is
slightly more complicated. Note that if x� y > 0 and q > 1,
then q(x− y)xq−1 � xq − yq, which follows from the fact
that q(x− y)xq−1−xq + yq is monotonically decreasing as
a function of y. Making all the same assumptions as above,
this implies that

(
n∑

i=1

P
′1/q
i

)q
−

(
n∑

i=1

P
1/q
i

)q
�

q

(
n∑

i=1

(
P
′1/q
i −P

1/q
i

))( n∑

i=1

P
′1/q
i

)q−1
. (25)

Next, note that for q > 1 and x> y > 0, x1/q − y1/q �
(x− y)1/q as follows from the fact that (x− y)1/q −x1/q +
y1/q is convex as a function of y. Thus

(
n∑

i=1

P
′1/q
i

)q
−

(
n∑

i=1

P
1/q
i

)q
�

q

(
n∑

i=1

|δi|
1/q

)(
n∑

i=1

P
′1/q
i

)q−1
. (26)

The two sums on the right can be bounded by maximiz-

ing
∑n
i=1 x

1/q
i subject to

∑n
i=1 xi = γ using a Lagrange

multiplier. The result is that xi = γ/n and the sum is
γ1/qn(q−1)/q giving

(
n∑

i=1

P
′1/q
i

)q
−

(
n∑

i=1

P
1/q
i

)q
�

qδ1/q
(
n(q−1)/q

)q
= qδ1/qnq−1, (27)

which, after normalization, implies Lesche-stability.
Finally, we can make contact with the Tsallis entropy

as follows. The normalization condition can be enforced
by eliminating one of the degrees of freedom, i.e. by using

Pn = 1−

n−1∑

i=1

Pi. (28)

However, this is awkward as it treats one degree of freedom
differently from the others. A more symmetrical way to
impose it would be to introduce auxiliary quantities, ui,
and to write

Pi =
ui∑n
j=1 uj

. (29)

This is completely general. Note that it is degenerate as
{ui} and {λui} give the same {Pi}. Since Pi > 0, all of the
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ui must be either positive or negative. Again, without loss
of generality, we can take them all to be positive. In terms
of these, the entropy becomes

SHq (p) =

(∑n
i=1 u

1/q
i

)q (∑n
j=1 uj

)
−1

− 1

q− 1
. (30)

We can simplify this by using the freedom mentioned
above to impose the single constraint,

1 =
n∑

i=1

u
1/q
i , (31)

which is equivalent to choosing a particular scaling of the
u’s. Note that since all the ui > 0, this implies that they
are all also less than one. Then, it appears to be more

convenient to introduce vi = u
1/q
i ∈ [0, 1] giving

Pi =
vqi∑n
j=1 v

q
j

,

SHq (v) =

(∑n
j=1 v

q
j

)
−1

− 1

q− 1
=
1−
∑n
j=1 v

q
j

(q− 1)
∑n
j=1 v

q
j

,

1 =

n∑

i=1

vi,

〈O〉 =

n∑

i=1

vqi∑n
j=1 v

q
j

Oi.

(32)

The “escort probabilities” therefore arise naturally as a
way of encoding the normalization constraint. However, it
is clear in this interpretation that the {vi} are not physical
probabilities but just quantities that happen to be positive
and to sum to one. The form of the homogeneous entropy
written in terms of the {vi} is known in the literature and
is called the “normalized Tsallis entropy” [17]. However,
note that the normalized Tsallis entropy is only concave
for q� 1 so the homogeneous entropy is a more general
starting point.

Concluding comments. – Our conclusion is that
when the concept of Lesche stability is properly applied
within the usual formalism of non-extensive thermody-
namics, the Tsallis entropy is just as unstable as the Renyi
entropy originally considered by Lesche. Whether or not
this conclusion, based on particular admittedly artificial
examples, is physically relevant and would have practical
implications is a question of on-going debate [18] just as
was the question of the stability of the Renyi entropy [19].
However, arguments such as those given in [18] should be
reconsidered in light of the correct application of the L1
measure.
A further consequence which follows from the big-P

formulation concerns the stability of the averages of
observables. In a recent demonstration they were shown

to be unstable in the non-extensive formalism [6]. This
result was obtained using the small-p picture where
the interpretation of the probabilities is problematic,
while it was shown that in the classical formulation of
statistical mechanics with linear averages, stability was
guaranteed. This is precisely in accordance with our
arguments: since the L1 measure should be applied to the
escort probabilities (i.e. the big P ’s), it follows that the
averages are stable.
In summary, the use of the L1 norm in framing the

concept of Lesche-stability is justified by considering
an experimental test designed to distinguish different
hypothesized probability distributions. As such, it is a
property not only of the form of the entropy but also of the
means used to relate the “probabilities” occurring in the
entropy to experiment. Our conclusion is that the result
of Abe [7] should be interpreted as demonstrating that
the combination of Tsallis entropy and linear averages
is stable while the combination of Tsallis entropy with
the escort distribution averages is unstable (as shown
by our example above). This being the case, the further
observations concerning the stability of the averages [6]
only reinforces these conclusions.
On the other hand, we have shown that the homoge-

neous entropy with the usual linear averaging procedure
provides a satisfactory starting point for the development
of non-extensive thermodynamics. We note that this is not
the first time the homogeneous entropy has occurred in the
context of non-extensive thermodynamics. For example,
Lavenda and Dunning-Davies have used it as an exam-
ple illustrating that certain features of the Tsallis entropy
are not unique [20]. In the form of the normalized Tsal-
lis distribution, it appears to have first been discussed by
Rajagopal and Abe [17] where it was noted that it is only
concave for q ∈ [0, 1]. Abe subsequently concluded that it
is not Lesche-stable, but by our interpretation, this argu-
ment shows instability when the linear averaging proce-
dure is used [7]. We also note that Lenzi et al. had already
demonstrated that the normalized Tsallis entropy gives
positive specific heats [21]. Our main contribution has
been to note that the homogeneous entropy is more general
than the normalized Tsallis entropy (because it is concave
for all values of q) and to show it is Lesche-stable. Together
with other properties, such as the positivity of the specific
heats, we suggest this makes it a preferred starting point
for the development of non-extensive thermodynamics.
Finally, this approach also sheds light on the under-

lying ontology of the formalism. The concept of the
escort distribution has become an accepted part of the
non-extensive formalism but, as we have discussed, it is
hard to understand in what sense the small-p quantities
are “probabilities” as opposed to a set of quantities that
happen to be positive and normalized. Nevertheless,
various arguments have also been given for using the
escort distribution rather than the linear averaging proce-
dure [22,23]. In our formulation, this ambiguity is clar-
ified: the only probabilities are the physical probabilities
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used to compute averages. These are what we have called
the big-P probabilities, P , and they are what is measured
in experiment. The escort distribution arises as a natural
way to simplify the form of the entropy, but the equivalent
of the small-p variables are clearly quantities to which no
physical significance attaches.
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