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Iwamatsu has written a comment [1] on my recent paper
concerning bubble nucleation in a superheated fluid [2]
in which he concludes that my analysis of a simple
Density Functional Theory (DFT) model is mistaken due
to mathematical errors. The point of the model was to
analyze different methods of studying noncritical bubbles.
In this response, I show that his analysis is incorrect and
that the results given in ref. [2] stand without correction.
The problem concerns the nucleation of a vapor bubble

in a superheated fluid. The part of my analysis questioned
in ref. [1] is based on a simple toy model DFT in which
the density profile of a bubble is spherically symmetric
with constant density ρ0 for radial coordinate r <R and
constant value ρ∞ for r >R. It is therefore characterized
by the three scalars ρ0, ρ∞, andR. This profile is combined
with a simple square-gradient free energy model to arrive
at an expression for the free energy in the grand canonical
ensemble which is to say at constant temperature, T ,
and constant chemical potential, µ. This corresponds
to the calculation of Uline and Corti (UC) [3] using
a more realistic free energy model as well as my own
calculations [2,4]. Then, it was shown that the resulting
toy free energy function takes the form

βΩ =
4π

3
R3 {f (ρ0)−µρ0}+4πγR

2 (ρ∞− ρ0)
2

+

(

V −
4π

3
R3
)

(f (ρ∞)−µρ∞) , (1)

where β = 1/kBT is the inverse temperature, f(ρ) is the
free energy per unit volume in the liquid state, γ is related
to the surface tension [2], and V is the volume which
is assumed to be very large (so as to approximate the
thermodynamic limit). Metastable states are identified by
minimizing this function with respect to the parameters
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ρ0, ρ∞, and R under conditions of fixed T and µ. The
result of doing this is the identification of three states:
the uniform liquid and gas (corresponding to ρ0 = ρ∞ = ρ̄
with d

dρ̄f(ρ̄)≡ f
′(ρ̄) = µ) and a nontrivial maximum corre-

sponding to the critical nucleus.
To explore noncritical bubbles, UC proposed to

minimize the free energy under the constraint that
the total number of atoms with radius λ is some fixed
number, N [3]. Given the assumed density profile,
this can be expressed as an equation of the form
g(ρ0, ρ∞, R; T, µ, λ,N) = 0, where the notation indicates
that the quantities after the colon are parameters that
are held fixed. A simple way to implement this is to
introduce a Lagrange multiplier, α, and to minimize
the Lagrangian function βΩ−αg resulting in the three
equations 0 = ∂βΩ

∂xi
−α ∂g

∂xi
for xi =R, ρ0, ρ∞ and the

constraint equation 0 = g. The explicit form of the
Lagrangian is

βΩ [ρ]−αgUC ([ρ] ,Γ) =

4π

3
R3 {f (ρ0)−µρ0}+4πγR

2 (ρ∞− ρ0)
2

+

(

V −
4π

3
R3
)

(f (ρ∞)−µρ∞)

−α

{
(

4π
3 λ
3ρ0−N

)

Θ(R−λ)

+
(

4π
3 R

3ρ0+
4π
3

(

λ3−R3
)

ρ∞−N
)

Θ(λ−R)

}

.

(2)

Before proceeding, it is worthwhile to clarify one possible
source of confusion. The constraint term involves step
functions and one might worry that when differentiating
with respect to the radius, these give rise to singu-
larities. To show that this is not the case note that
(∂/∂R)Θ (R−λ) = δ(R−λ) =−(∂/∂R)Θ (λ−R) and
after a simple calculation one finds that the contribution
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of these terms is of the form (R−λ)δ(R−λ) which can
be safely neglected.
The minimization of eq. (2) can be divided into two

cases: the result assuming R<λ and that assuming R>λ.
In his comment on my paper, Iwamatsu claims that I
have treated the case R<λ incorrectly and hence, most of
this response focusses on that case. Assuming, then, that
R<λ, the Lagrangian must be differentiated with respect
to the four parameters R, ρ0, ρ∞, and α and the result
in each case set equal to zero. This gives, after dividing
through by some constants,

0 = R2 {f (ρ0)−µρ0}+2γR (ρ∞− ρ0)
2

−R2 (f (ρ∞)−µρ∞)−αR
2 (ρ0− ρ∞) ,

0 = R3 {f ′ (ρ0)−µ}− 6γR
2 (ρ∞− ρ0)−αR

3,

0 = 6γR2 (ρ∞− ρ0)+

(

3

4π
V −R3

)

(f ′ (ρ∞)−µ)

−α
(

λ3−R3
)

,

0 =
4π

3
R3ρ0+

4π

3

(

λ3−R3
)

ρ∞−N. (3)

In ref. [1], Iwamatsu claims that I have neglected the terms
proportional to α, but that is clearly not the case as they
appear in all of the first three minimization equations.
The fourth line is just the imposed constraint for the case
R<λ.
It is easiest to begin with the third equation which may

be written as

µ= f ′ (ρ∞)+ 6γ
R2

(

3
4πV −R

3
) (ρ∞− ρ0)− α

(

λ3−R3
)

(

3
4πV −R

3
) .

(4)

For fixed λ, and given the a priori assumption R<λ,
the second term on the right is negligible in the large-
volume (i.e., thermodynamic) limit. The third term will
also be negligible provided that α(λ3−R3) is bounded.
Assuming this is true (an assumption that must be
checked a posteriori) implies that µ= f ′(ρ∞). Hence, the
outer density, ρ∞, is that of a bulk liquid or gas at
the applied chemical potential. It is henceforth taken to
be the density of the liquid, ρ∞ = ρl, in order to describe
bubble nucleation.
Next, the second line of eq. (3) is solved for α giving

α= f ′ (ρ0)−µ− 6γR
−1 (ρl− ρ0) , (5)

and this is substituted into the first line of eq. (3) giving

0 = R2 {f (ρ0)− f (ρl)− f
′ (ρ0) (ρ0− ρl)}

− 4γR (ρl− ρ0)
2

(6)

or

R=
4γ (ρl− ρ0)

2

f (ρ0)− f (ρl)− f ′ (ρ0) (ρ0− ρl)
. (7)

This is eq. (12) of ref. [2]. Contrary to the claims made by
Iwamatsu in ref. [1], this was not obtained by neglecting

the Lagrange multiplier α but, rather, by solving for the
only value of α that extremizes the Lagrangian. Hence,
Iwamatsu’s criticism of this result is incorrect and the
arguments given in ref. [2] stand without alteration.
The analysis is completed by invoking the fourth, so far

unused, line of eq. (3) to get the inner density

ρ0 =
3

4πR3

(

N −
4π

3

(

λ3−R3
)

ρl

)

. (8)

The fact that this density must be greater than zero
implies that as λ becomes large, it must be the case that
R remains close to λ or else the second term on the right
could drive the density negative. However, R<λ implies
that ρ0 <

3
4πR3N so that R being close to λ implies that ρ0

tends to zero as λ increases. It is then easy to see that this
is inconsistent with eq. (7) as discussed in detail in ref. [2].
It is also easy to show that α(λ3−R3)∼ ρ0

ρ∞
lnρ0 so that

the assumption made earlier (that this combination of
terms is well behaved) is shown to be true. The conclusion
reached in ref. [2], that there is no solution to these
equations in the large λ limit, is therefore confirmed.
For the case R>λ, Iwamatsu agrees with the math-

ematical result given in ref. [2], but claims that the
pressure in the liquid surrounding the bubble should be
negative, which would negate the contradiction in that
case. However, this is clearly not correct as the density of
the liquid is determined, as above, by minimizing the free
energy functional and it is again found, in the large volume
limit, to be that of the bulk liquid at chemical potential
µ and this will certainly have positive pressure. The point
again is that the various quantities are not chosen but,
rather, are determined by the minimization of the assumed
free energy functional under the applied constraint.
In conclusion, the calculations presented in ref. [2] have

been confirmed and the criticism of Iwamatsu [1], that
the Lagrange parameter α was neglected and that the
equations were solved incorrectly, has been shown to be
false. None of this is surprising as the results simply
confirm what was observed by Uline and Corti [3] using a
more complex, and realistic, DFT model. However, in the
present case, it is clear that the underlying Classical Nucle-
ation Theory model has no singularities or discontinuities
and that the lack of solution of the minimization equa-
tions is solely a reflection of the artificial constraint that
is introduced. In ref. [2], it was shown that such problems
do not arise when another, equally plausible, constraint
is used thus raising the question of the robustness of the
constraint method as a description of nucleation.
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