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The hydrodynamics for a gas of hard spheres which sometimes experience inelastic collisions
resulting in the loss of a fixed, velocity-independent, amount of energy A is investigated with the
goal of understanding the coupling between hydrodynamics and endothermic chemistry. The
homogeneous cooling state of a uniform system and the modified Navier-Stokes equations are
discussed and explicit expressions given for the pressure, cooling rates, and all transport coefficients
for D dimensions. The Navier-Stokes equations are solved numerically for the case of a
two-dimensional gas subject to a circular piston so as to illustrate the effects of the enegy loss on
the structure of shocks found in cavitating bubbles. It is found that the maximal temperature
achieved is a sensitive function of A with a minimum occurring near the physically important value
of A~12000 K~ 1 eV. © 2006 American Institute of Physics. [DOI: 10.1063/1.2357150]

I. INTRODUCTION

Sonochemistry allows for the achievement of extreme
temperatures, pressures, and densities in simple, tabletop
experiments.l This is because ultrasound excites bubble cavi-
tation which in turn gives rise to these extreme conditions.
The results are important both because bubble cavitation oc-
curs naturally2 and because of the theoretical and technologi-
cal interest in both bubble cavitation and ultrasound
technology.l’3 One of the most well-known manifestations of
sonochemistry is sonoluminescence whereby, under certain
conditions, fluids irradiated with ultrasound are observed to
emit light.3 The conversion of mechanical energy into elec-
tromagnetic form occurs at the high temperatures and pres-
sures achieved during bubble cavitation, although many de-
tails such as the composition of the gases inside the bubbles
and the relative importance of various light-generating
mechanisms remain unclear. Many recent theoretical studies
have focused on modeling the behavior of a single gas
bubble embedded in a liquid and subjected to sound
waves.* The predicted temperatures achieved at the points
of maximum compression are typically of the order
10*~10° K and shocks are sometimes observed to form al-
though their presence depends on the exact conditions of the
gas and some details of the modeling. Under these extreme
conditions a variety of activated chemical reactions, see, e.g.,
Ref. 10 collision-induced emissions,”’12 ionization and
electron-ion recombination,13 and bremsstrahlung14 are all
expected to occur.

All of the studies cited above which take account of
chemistry rely on equilibrium chemical models. The dynam-
ics of the bubble boundary is described by the Rayleigh-
Plesset equation and the chemistry by equilibrium rate equa-
tions. The bubble is either assumed to have uniform
temperature, density, and pressure (called adiabatic models)
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or the dynamics of the gas inside the bubble is modeled by
the Navier-Stokes equations (in which case, the rate equa-
tions couple to the Navier-Stokes equations via a convective
term). In all cases, the rate constants and transport coeffi-
cients used are based on the assumption that only small de-
viations from local equilibrium occur. However, it is not at
all clear that the interior of the bubble can be adequately
described by a local equilibrium ensemble, particularly when
there is a significant conversion of mechanical energy (from
the sound) into other, nonmechanical, forms via endothermic
chemical reactions or radiation. Indeed, the experimental
work of Didenko and Suslick lead them to conclude that
“...the temperatures attained in single-bubble cavitation in
liquids with significant vapor pressures will be substantially
limited by endothermic chemical reactions of the polyatomic
species inside the collapsing bubble.”"® This issue has been
investigated by Yasui using an adiabatic model'® with a simi-
lar conclusion but that work was challenged by Toegel
et al."® who found that including excluded volume effects in
the equation of state of the gas in an adiabatic model elimi-
nated much of the effect. Aside from the fact that these stud-
ies ignore the gas dynamics within the bubble, there is reason
to question both of these calculations as experience with
granular systems has shown that even a small degree of in-
elasticity leads to a rich phenomenology of clustering insta-
bilities and nonintuitive behavior' " due to the inherently
nonequilibrium nature of the system. This naturally leads to
the question as to whether it makes any sense to ignore the
nonequilibrium effects undoubtedly present during bubble
cavitation.

Indeed, one could go one step further and ask whether
the Navier-Stokes equations are even applicable in the pres-
ence of the large gradients predicted during cavitation. A
recent comparison between the Navier-Stokes equations for a
gas of hard spheres subject to a spherical compression and
computer simulations of the same system did indeed give
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support to the adequacy of the Navier-Stokes de:sc:ription.20
Given this support, one must ask whether the Navier-Stokes
equations plus rate equations are the correct hydrodynamic
description of such systems which is properly a question
which must be answered by recourse to kinetic theory. The
problem here is that the only tractable kinetic theory for
dense systems, and high density is an issue during bubble
cavitation,"'® is the Enskog theory for hard spheres.21 Fortu-
nately, hard spheres provide a good first approximation to the
properties of real, interacting systems in all important re-
spects including transport properties, fluid structure, and
phase behavior (see, e.g., Ref. 22). The kinetic theory for
chemically reactive hard spheres and the coupled hydrody-
namics and reaction equations have recently been formulated
and discussed® and at least three generic differences from
the “local-equilibrium” models noted. First, even for a single
species, the heat flux depends on density gradients as well as
temperature gradients and a new transport coefficient must
be introduced. Second, the reaction equations involve new
couplings to the velocity field. Third, the cooling term—
which one might introduce “by hand” into the heat equation
to account for endothermic reactions—also involves new
couplings to the velocity field. The first and last effects are
well known for granular fluids* but are not normally con-
sidered in the context of cavitation.

The purpose of the present work is to investigate, within
the context of a minimalist microscopic model, the role of
the coupling of energy loss to hydrodynamics self-
consistently, taking into account nonequilibrium effects. One
result will be a richer description of the role of energy loss
on the maximum temperature obtained at the center of a
cavitating bubble than given in previous work. %16

The detailed interaction model will be given in the next
section. It consists of hard spheres which lose a fixed quan-
tity of energy A upon collision, provided the rest-frame ki-
netic energy is sufficient. This is intended as a toy model
which resembles an activated chemical process and which
differs from granular fluids in the physically important sense
that the energy loss is (a) discrete and (b) bounded from
below—in granular fluids, a fixed fraction of the kinetic en-
ergy is lost in all collisions. This is not intended to model
any particular radiation or chemical mechanism although it
might be considered a crude model of collision-induced ex-
citations and emission. The goal is then to derive from the
kinetic theory a hydrodynamic description of the fluid using
the Chapman-Enksog method.”"*** Since the Chapman-
Enskog method of deriving the hydrodynamic equations is
basically a gradient expansion about the homogeneous fluid,
the first question which must be addressed is the nature of
the homogeneous state of the radiating gas. For an equilib-
rium hard-sphere fluid, the homogeneous system has con-
stant temperature and the atomic velocities obey a Maxwell
distribution. When inelastic collisions occur, the system loses
energy continuously and the homogeneous state is not so
simple: the density and temperature are spatially uniform and
the macroscopic velocity field vanishes but the temperature
is time dependent and the distribution of atomic velocities is
no longer Maxwellian. The calculation of the cooling rate
and the lowest-order corrections to the Maxwell distribution
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are the subject of Sec. II of this paper. In Sec. III, the trans-
port properties are calculated and it is shown that they be-
have anomalously for temperatures near the energy-loss
threshold. These include the shear and bulk viscosities, the
thermal conductivity, and a new transport coefficient describ-
ing the transport of heat due to density gradients. The latter is
typical of interactions which do not conserve energy and
plays an important role in the instabilities occurring in granu-
lar fluids. In Sec. IV, the resulting hydrodynamics is used to
study the effects of the energy loss on a two-dimensional gas
confined to a circular volume with contracting walls—a cir-
cular piston, which sets up shock waves within the gas. It is
found that the maximum temperature obtained lowers as the
energy threshold is lowered until a minimum is reached at
which point the maximum temperature increases with de-
creasing threshold. In the final section, it is argued that the
minimum may be of physical significance.

Il. THE HOMOGENEOUS COOLING STATE
A. Dynamical model

Consider a collection of N hard spheres in D dimensions
having diameter o and mass m. The position and velocity of
the ith particle will be denoted q; and v;, respectively. The
particles are confined to a box of volume V giving a number
density n=N/V. The boundary conditions are not important
here and could be, e.g., hard, elastic walls or periodic. The
only interactions are instantaneous collisions: between colli-
sions the particles stream freely. When two particles collide,
their positions are unchanged but they lose a quantity of
energy, A, which could be zero. In Ref. 23 it is shown that in
this case, the velocities after the collision, Vi’ and V;, will be
related to the precollisional velocities, v; and v;, by

1 ) i ) 4
v, =V;- Eqij(vif i+ sen(vi- ) \| (Vi 4i)” = ;Aa)’

(1)
’ 1 A A A A 2 4
Vi=V;+ E%j Vi Gij+sgn(vi - i)\ (Vij - i)~ = ;Aa )

where §;;=(q;,—q;)/|q,—q;| is the unit vector pointing from
the center of the ith particle to the center of the jth particle.
This collision rule preserves the total momentum m(v;+v;)
as well as the total angular momentum of the colliding par-
ticles but allows for an energy loss as can be seen by com-
puting

_Mmao Mo
: —2vi+zvj—Aa, (2)

so that A, characterizes the energy loss which may in general
be any function of the normal component of the relative
momentum of the colliding atoms [i.e., A,=A,(v;;-G;;)]. The
subscript allows for the possibility that different types of
collisions are possible and each collision realizes the ath
collision type with probability K,. To be specific, we will
consider the simplest model of a sudden energy loss wherein
for collisions with enough energy in the normal component
of the momenta, i.e., m/4(v; j-c},»j)2> A, an inelastic collision,
removing energy A occurs with fixed probability p and oth-
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erwise the collision is elastic. In terms of the step function
O(x) which is 0 for x<<1 and 1 for x> 1, this may be written
as

m
Ky= ®<A - Z(Vij ) @ij)z)

m A
+(1 —P)<Z(Vij -Gy - A), A,=0,
(3)
m
K1:p®<z(vij'éij)2—A>, AI:A

where the a=0 collisions are elastic and the a=1 collisions
inelastic. For p=0 the collisions are purely elastic and for
p=1 the collisions are always inelastic if enough energy is
available.

B. General description of the homogeneous
cooling state

Given this model, for p >0 the system will always cool
since even for very low temperatures, there will be some
population of sufficiently energetic atoms which undergo in-
elastic collisions. Thus, the simplest state the system can
experience is one which is spatially homogeneous but under-
going continual cooling, the so-called homogeneous cooling
state (HCS) which is the analog of the equilibrium state for
this intrinsically nonequilibrium system. In this case, the ve-
locity distribution will not be strictly Gaussian. In fact, it has
been shown® that the nonequilibrium velocity distribution
can be written as an expansion about a simple Gaussian dis-
tribution so that

8 T0) = i) S (T 2)/2(%:;@ 2)
@

where the Maxwellian distribution for a fluid with uniform
number density n and temperature 7 is

-D/2
(5)

and the associated Laguerre polynomials are

TR+ (=x)"

(D-2)12/ .\ _
Le (x)‘mE:O T(D/2 +m)(k—m)'m!" (©)

The temperature cools according to

&0 (7)

d
—T(1) =
dt Dn kB

since the heating rate given by

g =- TE Iy 0y (8)

Dl’lkB

will generally be negative. The first two coefficients in the
expansion of the distribution are cy=1 and ¢;=0 which fol-
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low from the definition of the density and temperature.23 The
higher-order coefficients obey

5(0)> [T_Ck + k(ck Ck—l):| = 2 Ik,rscrcw (9)

<anB

where the coefficients /; ,, appearing in these equations can
be calculated from a generating function,” details of which
can be found in Appendix A. It is convenient to use dimen-
sionless variables A“=A/kpT, n*=nao”,

- * Sp A\

t =2p(D+2)n X2D(D+2)\"7FT(E) t (10)
and

S kT \12 .

lis=n m<mi)2> Liyss (11)

where the area of the unit D sphere is
27"
Sp= m (12)

The quantity y occurring in these expressions is the pair
distribution function at contact which occurs in the Enskog
theory to take account of the enhancement of the collision
rate due to the finite size of the atoms. In the low-density
(Boltzmann) limit, it goes to one. It is solely a function of
density, and at finite densities, it is usually approximated as
that of a local equilibrium fluid of hard spheres. When per-
forming numerical calculations, the value used for two-
dimensional disks will be that of the approximation by Hend-
ersen (see, e.g., Ref. 26),

1= 7y/16
(1-y)?

with y:wn0'2/4, while for three-dimensional spheres the
Carnahan-Starling expression®®

1—y/2
(1-y)’

with y=mno?/6 will be used.
The evolution of the temperature is then given by

X= (13)

X= (14)

s, (kBT>”2 .
- y——2 (22 1S ce, (15
() 2D(D+2)V mo’ E s (15)
or
d . AF)12
A= @) E I} . c/Cq (16)

" T 2p(D+2)<

and the coefficients of the expansion of the distribution func-
tion are

a 1
di'* T 2p(D+2)(AN) 2

X |:E I;,,SC,,CS + (E IT,rscrcs>k(ck - Ck—l):| 5 (17)

rs rs

here Eq. (16) has been used to replace (d/dA™)c, by
(d/dt")c;. All of these expressions are exact consequences of
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the Enskog kinetic theory.25 Generally, three approximations
are made in order to solve these equations: (1) one sets ¢,
=0 for k> k, for some integer k,, (2) only the first k, equa-
tions of the coupled hierarchy given in Eq. (9) are retained,
and (3) one also neglects quadratic terms c,c, for r+s> kg
and cubic terms c,c ¢, for r+s+k>k,. The first two approxi-
mations are necessary in order to make solution of the equa-
tions possible, while the third is more a matter of conve-
nience which generally introduces no significant errors.

In the following subsections, the lowest two orders of
approximation will be evaluated. In order to judge the accu-
racy of these approximations, the results will be compared to
the numerical solution of the Enskog equation by means of
the direct simulation Monte Carlo (DSMC) method formu-
lated by Bird”’ for the Boltzmann equation and extended to
the Enskog equation by Montanero and Santos.” The results
given below were obtained from runs in three dimensions
using 10° points in a cubic volume of o with periodic
boundaries. The time step used was 0.0117 mean free times
and the length of the run was 2000 mean free times.

C. The local equilibrium approximation

The simplest approximation is to take ky=1 which thus
ignores all nonequilibrium corrections to the distribution.
Then, as discussed in Appendix A, one has that

I} go=2p(D +2)A"e™, (18)

and Eq. (7) becomes

d * * *
FA =A"2eA (19)

Thus, at this level of approximation, all details of the prob-
ability of an inelastic collision, the density and the dimen-
sionality, can be scaled out of the expression for the tempera-
ture so that the temperature follows a universal curve. As
expected, Eq. (19) gives a nonzero cooling rate for all values
of the temperature. Note that the right hand side goes to zero
in the two limits A"—0 and A" —cc. This reflects the fact
that at very low temperatures, A*— o, very few collisions
occur with enough energy to be inelastic while at very high
temperature, A" — 0, the loss of energy during inelastic col-
lisions is of no physical importance since it represents a van-
ishing fraction of the total energy of each atom. Both of these
limits can therefore be viewed, in some sense, as “elastic”
limits although in neither case can one say that only elastic
collisions occur and it is to be expected that in both of these
elastic limits, all thermodynamic and transport properties
will be those of an elastic gas since the energy dissipation
plays no role. The source term in Eq. (19) also exhibits a
maximum at A"=3/2 which is not surprising and, in fact,
must be true of the exact cooling rate: since A” goes to zero
in the elastic limits it must either be constant or it must have
at least one extremum. Nevertheless, when written in terms
of dimensional quantities, the cooling equation becomes
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FIG. 1. The temperature as a function of time as predicted by Eq. (19) (line)
and as determined from four different DSMC simulations (circles, squares,
diamonds, and triangles). The theory and simulation results are indistin-
guishable. Note the very rapid, algebraic, decrease in the temperature at
early times when the dimensionless temperature is large and the very slow,
logarithmic, decay at long times when the dimensionless temperature is less
than one. The dashed line in the main figure is the approximation given in
Eq. (21). The dashed, dotted, and dashed-dotted lines in the inset correspond
to keeping the first term, first two terms, and all three terms in the
asymptotic approximation of Eq. (22).

e 2D
a - r

Sp

D y—————
XoD(D + 27

A 12
( 7) \JrAkBTe—A/kBT’
m

(20)

showing that the physical cooling rate is a monotonically
increasing function of the temperature. For high tempera-
tures, A"=BA <1 and has the approximate behavior

A'(0)

1—)2’
1—_*"A*O*
( 5\ (0)t

A (1) = (21)

so that the temperature decays algebraically. When the tem-
perature is low, A“=8A> 1 and it can be shown (see Appen-
dix B) that the cooling becomes very slow

91In(In 1)

o 22
4 Int (22)

A" =Int +Eln(lnt )+
The full behavior is shown in Fig. 1 where the crossover
between these two asymptotic forms is evident. As the figure
shows, the theory is in good agreement with the simulations.
In this approximation, the pressure is given by

. Sp .. S A"\ -
=1l+n )(—D+n X—Dp<(1—2 —)e‘A
nkgT 2D 4D ™

+ (erf(VA®) - 1)). (23)

The first two terms on the right are the usual equilibrium
expression and the third term represents the nonequilibrium
correction. The effect of the nonequilibrium term is shown in
Fig. 2 where it is seen that a minimum occurs in p/nkT near
A/kgT=1. The effect is small, the minimum being about 8%
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FIG. 2. The ratio of the pressure of the dissipative gas to that of an equi-
librium A=0 gas as a function of A” for a dense (n"=0.5) gas in three
dimensions with p=1. Different symbols correspond to results from separate
simulations.

below the equilibrium value. Again, the theory and simula-
tion are seen to be in good agreement.

D. First non-Gaussian correction

The simplest non-Gaussian correction consists of taking
ko=2. The required coefficients are, in addition to IT,oo given
above,

Lo==2pA"e™ (A7 1),

]1,02"‘11,20=PTA'€_A (4A™2 —4A" - 1),

(24)
* # 1 * N By
Lo+ 1y0==8D~1)- gpe_A (4A™ - 8A™

+(75+ 16D)A™ + (69 — 24D)A”
® * 1 *
+32(1=D))=2p(D - 1)A"e" /22 KI(EA )

where K,(x) is the modified Bessel function of the second
kind. Equations (16) and (17) can be solved simultaneously

0.04 T I i T

! | L 1 L | ! | !
0y 20 40 60 80 100

FIG. 3. The coefficient of the first non-Gaussian correction, ¢,, as predicted
by Eq. (17) (line) and as determined from four different DSMC simulations
(different symbols). The inset shows the rapid convergence of the numerical
solution for three different initial conditions.
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given an initial temperature A*(0) and a value for c,(t=0)
=c,(A"=A"(0)). Figure 3 shows c,(¢") for n"=0.5 in three
dimensions as well as the results obtained from the simula-
tion. The behavior of ¢, is seen to be highly nontrivial with a
sharp change of sign at A"=1 and, for longer times, a decay
to zero. The inset shows that the initial condition for ¢, is
irrelevant except at very short times. Overall, the agreement
between the calculation and the simulation is very good. The
small magnitude of ¢, indicates that the distribution can be
well approximated by a Gaussian and the agreement of the
pressure to the simulations support the view that the homo-
geneous state is well described by a local-equilibrium distri-
bution.

lll. TRANSPORT COEFFICIENTS

The Navier-Stokes equations for a dissipative system
take the form®

d
—n+V. =0,
&tn (un)

d 1
—u+u-Vu+—-V .P=0,
ot p

(Grs)rem
—+u-V|T+
ot D

nkB

(25)
[F:Vu+V-q]=§0+§1V -u,

with pressure tensor
2
Pij=p(0)5ij - 7](‘91'”]'"‘ dju; = Béij(v : 11)) - Y@j(v -u)

(26)
and heat-flux vector
q(r,t)=—=uVp-«VT. (27)

There are two differences between these equations and the
Navier-Stokes equations for an elastic fluid. First, the tem-
perature equation contains source terms that account for the
collisional cooling. Second, the heat-flux vector depends on
gradients in density as well as temperature. Both of these
contributions are well known from the study of granular me-
dia. In this section, the expressions for the various transport
coefficients and source terms are discussed for the dissipative
interaction model.

For equilibrium fluids, the transport coefficients are al-
gebraic functions of the temperature and density. This is no
longer true in the present case and the transport coefficients
must be determined by solving ordinary differential equa-
tions as was also the case with ¢, above. In the following, we
evaluate the expressions for the transport coefficients given
in Ref. 25 in the approximation that ¢,=0. Then, from the
previous section, one has that

DnkgT Sp (kBT)”z .
- o == I A 28
2 "Xopmea\me?) (28)

It is convenient to express the transport coefficients in terms
of dimensionless functions by writing

&=
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I FIG. 4. The dimensionless transport
1.2 ‘:' \‘ . coefficients as functions of the re-
r ) 5 duced temperature for a three-
P I\ dimensional gas with p=1 and for (a)
B 3 7 g a low-density, n"=0.01, gas and (b) a
: 1-3 24 \\ — n/m, — high-density, n*=0.5, gas.
1.1 3.& ] !’ \ e K/KO
-33 : A —— 1-w/u(k,T/n)
L - I L — ¥,
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s BT AT R ~
1 J/[‘FT___? 1 1 S~ 2l 1
0 5 10 15 0 5 10 15
(@) A/kBT (b) A/kBT
n= N7, As shown in Appendix C, the kinematic contributions to
the transport coefficients satisfy the equations
Y=Y -
N N
* # % D *
29) LA W"‘(SD% o0 00)77K—_ mﬂn’
T_
M= KoM,
n
3 s _ [~
B Il OOA 'yK+ S(D 511’00 ')’K: 16\“’770.},,
K= KoK,

where the Boltzmann transport coefficients for an elastic gas
are

(D + Z)V'WU_I_D
4Sp ’

[kyTDD+2)N7 |,
Ko=kg\|——————o .
m 8Sp(D—1)

Then, the transport coefficients can be written in terms of
their kinematic contributions as

a1+ 23] 2

0= NmkpT

(30)

yl?
y=Y+7.
(31)
p=(1+0uk,
_ D-
K= 1+0EK+—_,
K ( ) D+271

where the auxiliary functions %,(n",A") and 6(n",A") are
given in Appendix C.

(32)

11 00A " (8(D = DI = (1+ AN} 40K

D=1 12(D-1) . .

+ Sy,
Y | D(D+2)" P«
. 07,& 3
Il,OOA A" (8(D ) 21100>MK
N &ln)(()) X N
+1 1+ k=0,
1,00( n on K w

where explicit expressions for the Boltzmann integrals, I
and the sources, QZ, are given in Appendix C. For both an
elastic hard-sphere gas as well as a simple granular fluid, the
dimensionless transport coefficients are only functions of the
density so that the derivative terms vanish and these reduce
to a system of simple algebraic equations. Here, the presence
of an additional energy scale leads to a more complex depen-
dence on temperature.

Figure 4 shows the transport coefficients for a low den-
sity, n°=0.01, and a moderately dense density gas, n"=0.5,
with p=1 in three dimensions as a function of temperature as
obtained by solving these equations with the initial condition
that the scaled transport coefficients take on their equilibrium

values at A"=0. The behavior of the transport coefficients is
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FIG. 5. The dimensionless kinetic
contributions to the transport coeffi-
cients as functions of the reduced tem-
perature. The broken lines are from the
adiabatic approximation. The upper
lines are the thermal conductivity, the
middle lines are the shear viscosity,
and the bottom lines are —pu.

10 0 5
kgT/A (b)

(@)

nonmonotonic with a “resonance” occurring in the vicinity
of A"=1. For the thermal conductivity and the shear viscos-
ity, the effect is a reduction of about 20% compared to the
equilibrium transport coefficients while the effect on the bulk
viscosity is minimal. The new transport coefficient w is sur-
prisingly large, being of order 1 up to 3=A"=0.05 and is of
order 0.1 for 5=A"=0.01.

Since in both the elastic and the simple granular fluids,”
the scaled transport coefficients do not depend on tempera-
ture, a simpler and more practical approximation suggests
itself is to drop the derivatives in Egs. (32) giving

* 1 * — SD * SD ®
<8DI,7—511’00)77K= 7+8n D+2Q”’

* 3 * _ *
<S(D ~ I - 511,00) ¥ =16V,

(33)
1 120-1) . .

S0
"D+ P

K

(8(D = D= (1 + A"} ) ¥ = SD;

s 3 . _ % &lnX _ I
(8(D_I)IM_Ell,()())MK*'Il,oo(l+” p O)KK=Q ,

n M

which will be termed the adiabatic approximation. Figure 5
shows that Eq. (33) provides a reasonable approximation to
the full results obtained by integrating Eqs. (32). The reason
for the resonance in the transport coefficients is now easier to
see: the Boltzmann integrals I;,.... are scaled so as to go to
one in the elastic limits A" —0 and A" — c when the energy
loss is negligible and necessarily exhibits at least one extre-
mum in between. The interaction of these functions with the

10 15 20
k, T/A

cooling term 1?,00’ which behaves similarly with a maximum
at A"=1, gives rise to the resonances in the transport coeffi-
cients reflecting the fact that the effect of the dissipation is at
its maximum somewhere in between those limits.

IV. APPLICATION: THE CIRCULAR PISTON

In this section, to illustrate the importance of the cou-
pling of energy loss and hydrodynamics, the behavior of a
gas confined to a contracting circular piston, described in
Ref. 20, is reexamined for the case of the model gas consid-
ered here. To this end, the modified Navier-Stokes equations,
Egs. (25)—(27), have been solved numerically with a hard
circular boundary moving at constant speed ¢ under the as-
sumption of circular symmetry. The gas is initially in a uni-
form state at temperature 7(0) and here the focus will be on
the particular case examined in Ref. 20 that the wall moves
with speed ¢=-5kzT(0)/m and initial number density
n"(0)=0.1. The energy gap parameter will be reported scaled
to the initial temperature as A"=A/kzT(0). Time will be re-
ported in units 7=1\/mo?/2kzT(0) and all calculations are
performed with p=1 and using the pressure given in Eq. (23)
and the transport coefficients evaluated using the adiabatic
approximation introduced above.

Figure 6(a) shows a comparison of the resulting shock
waves for the two cases: A“=0, an elastic gas, and A*=20, a
highly inelastic gas, after the same elapsed time. It is clear
that the inelasticity leads to a substantial slowing of the
shock waves as well as a dramatic change in the shape of the
temperature profile. Shown in Fig. 6(b) is a comparison of
the same profiles for the elastic case to the profiles for the
inelastic gas at a later time when the shock waves are at
approximately the same position. From this comparison, it is
clear that the pressure and velocity profiles are, in fact, quite
similar for the two cases and that most difference lies in the
temperature profile where that of the inelastic gas appears
more like a localized pulse than a shock. A similar compari-
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Equal time
i Temperature, A=0 t=14.28 ]
| Veloci =
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L - A=20
0 —
B L I L | - | . ]
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20 T | T T T —
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o
0 —
L . | . . ]
0 50 200

1/c
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FIG. 6. Snapshots of the temperature, pressure, and velocity profiles as
functions of distance from the center of the circle, r, for the elastic (full
lines) and inelastic (broken lines) gases. The upper lines are the temperature,
the middle lines the pressure and the lower lines the velocities. (a) shows
profiles at equal times, 7=14.287, while in (b) the inelastic profile was taken
at 1=17.797 so as to show the shocks at approximately equal positions.

son is made in Fig. 7 for a time just before the shocks are
focused at the center of the bubble. The same qualitative
features appear: the shock in the inelastic gas is significantly
retarded compared to the elastic gas and all profiles are simi-
lar, when compared at equal shock position, except for the
temperature profile. The fact that the pressure profiles are
similar even though the temperature profiles are dramatically
different is due to a compensation in the density profiles, as
shown in Fig. 8. Since the shocks in the inelastic gas travel
much more slowly than those in the elastic gas, the density in
the high-density region is necessarily higher in the inelastic
case since mass must be conserved. At the high densities that

I l Equalll time_|

—— Temperature, A=0 t=22.3
— Velocity
— Pressure
---- A=251=22.0
s | . I
150 200

Equal shock location_|

]
F . I . I . | .
200 50 100 150 200
/G
(b)

FIG. 7. The same as Fig. 6 except for times when the shocks have nearly
reached the center of the bubbles. The times shown are r=22.37 in (a) and
for the elastic profile in (b) and r=28.967 for the inelastic profile in (b).

1 ‘ ' 1 | |
0 05 T
025+ |
0 : ' ' [ | ‘
@ O 35 100 150
1 A ' 1 | |
0.75 - |
o 0.5 ]
0.25 f ]
0 : ' ' I | I
! 5 100 150
(b) o

FIG. 8. Density profiles for the early (a) and later (b) times of Figs. 6(b) and
7(b), respectively. The full lines are for the elastic gas and the broken lines
for the inelastic gas.

occur as the shocks are focused, the excluded volume effects
become significant and lead to large contributions to the
pressure. In fact, the densities are so high, close to random
close packing, that the model used for the pair distribution
function at contact, x(n), is inaccurate and the pressure ef-
fects are undoubtedly underestimated.

The maximum temperature achieved in the center of the
bubble, T}, is shown in Fig. 9 as a function of A", Recall
that since A is both the energy threshold for inelastic colli-
sions and the amount of energy lost during an inelastic col-
lision, there are two elastic limits: A — o, corresponding to
an infinite threshold so that no inelastic collisions occur, and
A — 0, corresponding to the degenerate case of all collisions
being “inelastic” but the energy loss being zero. Starting
from the first elastic limit, limps_,., Tpa=1987(0), the maxi-
mum temperature decreases as A" decreases as would be
expected since lower values mean that more atoms can par-
ticipate in inelastic collisions. A minimum is reached near

300

200

Tmax/T ©

100

| ) L L | . L '
0 50 100 150 200 250 300
AJT(0)

FIG. 9. Maximum temperature as a function of A.
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A"=40 where T,,,~47T(0). It is interesting that at this
minimum in T, (A"), one has A/ T, ~ 1 so that the cooling
that occurs is maximal according to Eq. (19). For smaller
values of A*, the maximum temperature increases which is
not surprising since the elastic limit is again recovered at
A=0. What is surprising, however, is that at A"=1 the
maximum temperature is 2847(0) or about 50% higher than
in the elastic, A"=0, case. The explanation of this result is
that for the range of A under consideration the speed of the
shocks, and the increase in the density behind them, in-
creases monotonically as A decreases thus leading to
higher pressures, and higher rates of viscous heating, at the
moment the shocks are focused. This interpretation is
supported by the fact that eliminating the divergence of the
pressure at high densities by setting x(n) — x(n(0)) in the
evaluation of the pressure eliminates the increase in maximal
temperature as A" decreases to one. That only leaves the
question as to why the shock slows down. To answer that, the
calculations were repeated with all transport properties and
the pressures are evaluated using the expressions for an
elastic gas so that the only effect of the inelasticity is through
the cooling rate. The result is that the shocks are still
slow and that the qualitative behavior of the maximal tem-
perature is unchanged leading to the conclusion that the
slowing of the shock is solely due to the &, term in the heat
equation.

As A" decreases from one, the maximum temperature
begins to decrease. However, the numerical code used be-
comes unstable in the range 0.8>A">0.2 so it is not pos-
sible to follow this behavior further. The instability may be
due to deficiencies in the code but a more intriguing possi-
bility is that this indicates a real hydrodynamic instability
due to a pressure inversion as occurs in granular fluids. A
pressure inversion occurs when the compressibility becomes
negative due to the fact that an increase in density leads to
such a decrease in temperature that the pressure decreases
with increasing density.

V. CONCLUSIONS

In this paper, a simple model of a gas exhibiting cou-
plings between hydrodynamics and chemistry, in the form of
inelastic collisions, has been explored. The model consists of
hard spheres that lose a fixed amount of energy, A, if the
collisional energy is sufficient. This model was inspired by
the simplest prototype for an activated chemical reaction
wherein the reaction can only take place if there is sufficient
kinetic energy during collisions.?? It was found that in con-
trast to the well-known behavior of granular systems, the
fixed energy loss model studied here gives rise to a homoge-
neous cooling state that is well described by a Gaussian dis-
tribution. The cooling is algebraic in time for temperatures
much larger than the energy loss, A, and logarithmic for
temperatures much smaller than A. While the cooling rate
grows monotonically with temperature, it was found that
the rate of change of the physically relevant variable
A"=A/kgT has a maximum at the value A"=1.5 and that
this gives rise to numerous nonmonotonic temperature

J. Chem. Phys. 125, 164319 (2006)

dependencies in the thermodynamic and transport properties
of the system. In particular, in the homogeneous state, the
coefficients of the first non-Gaussian corrections to the dis-
tribution involve rapid changes near this value and yet are
well predicted by kinetic theory as demonstrated by compari-
son to numerical solutions of the Enskog equation. Explicit
expressions for the transport coefficients were given and it
was shown that a relatively simple and accurate “adiabatic”
approximation existed. The transport coefficients show
“resonances” which are again related to the nonmonotonicity
of the rate of change of A"

As an application, the hydrodynamic description thus
specified was used to study the behavior of shocks in a two-
dimensional circular piston. It was found that the maximum
temperature obtained when the shocks were focused at the
center of the volume exhibits a minimum as a function of
A/kgT(0) at about A/kzT(0)=40 and rises to a maximum
near A/kgT(0)=1. Below this value it appears that the fluid
becomes unstable, perhaps due to a pressure inversion. It is
interesting to note that for a gas at room temperature,
kgT(0)~300 K so the minimum occurs at A~ 12 000 K or,
roughly, 1 eV which is clearly a physically relevant value
for sonochemistry. The picture here is therefore more com-
plex than that found in the study of the effect of energy loss
on the maximum temperature using adiabatic models (i.e.,
assuming uniform density and temperature in the gas).10’16
On hand, the present results show that for a large range of
values, A>12 000 K, the dissipation leads to a substantial
reduction of the maximum temperature—at the minimum,
the maximum temperature is only 20% of that predicted for
an elastic system—in agreement with the predictions of
Yasui'®. On the other hand, for the physically important
range 300 K<A<12000 K, the maximal temperature in-
creases rapidly with decreasing A, eventually reaching val-
ues 50% greater than those predicted in an elastic system.
This increase is attributed entirely to excluded volume
effects, in agreement with the results of Toegel et al.,16
driven by the effect of the cooling in slowing down the
shocks and leading to much increased densities behind the
shock front.

The present study is only a first step in understanding the
coupling of chemistry and hydrodynamics that is undoubt-
edly important in sonochemistry. Several open questions re-
main. First, it would be useful to be able to relate the cooling
to the shock velocity. In particular, one could imagine doing
this at the level of the Euler equations, which are analytically
tractable in the case of an elastic fluid.>° Second, it would be
interesting to consider richer models with multiple species
and real endothermic chemical interactions. Finally, and per-
haps most interesting, would be to simply extend these re-
sults to three dimensions and with a coupling to the
Rayleigh-Plesset equation.

ACKNOWLEDGMENT

This work was supported in part by the European Space
Agency under contract No. C90105.

Downloaded 26 Oct 2006 to 164.15.125.22. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



164319-10  James F. Lutsko J. Chem. Phys. 125, 164319 (2006)

APPENDIX A: DETAILS OF THE HCS CALCULATIONS

In Ref. 25, it was shown that the coefficients /,,; which determine the HCS could be calculated as

1
I''=D|l'(k+1
*(2>( )2kBT“21 &
Lg=-n lim lim lim — [E G, (A - Go] (A1)
F<1D+k) mo* rlstk! 2,—0 2,—0 x—0 dz} dz5 ax*
2
with
-z V2= (2-z-z)x
GuwlA, )-— 7281 = 22) 7120 duk(\u)exp Sall)
2-X—-20—-71+X212, 0 2-x-z-z+xz1252
1 —2x 1 - X ' *
Xexp(— = u)exp(— = (&2~ 2,) (u— Vuvu - ZAG(\E))) (A2)
2-x-2- 7 +X212 22-x-zn-utang
and
Go=- %W_I/ZSD(I -2 x) PR —x - 7y — 7 +az20) (A3)

In the present case,

KZ(\'Z)=KO(\/ B> 1—p®< A>=1-p®(u-z,3A),

(Ad)
K/ (Vu) = Kl( Vo ) p®< ) =pO(u-2p4),
and Ag(&)zo and AT(Vu):BA. For this model, the coefficients can be more conveniently written as
Irs,k = IrEs,k + Iis,k (AS)
with an elastic part defined by
F( 1D)I‘(k 1)
= +
L \2 2UsT\V? 1 g &
I =—n lim lim lim — — =[Gz - Gol, (A6)
F<1D+k) m0'2 rlslk! 71—0 zp—0 x—0 8Z1 ﬁ ox
2
where the elastic generating function is
1 1= 172 ® 1=
GE=——W_l/zSD(l—zlx)_(”z)D< o ) X f du exp| — @ u
2 2-x—2,—7; +X212» 0 2-x-n-n+xziz
1 2-Xx—-2—-71+x 12
= a1 —zlx)—<1/2)D< n-2 Z]Zz) .
2 1 — X
and an inelastic contribution
(Lo
= +
. L \2 2kT\* 1 g &
I =—pn lim lim lim ———G(A") (A8)
F(1D+k> mo? rlslk! 210 2—0 x—0 972} 9z (9 ox
2
with the inelastic generating function
1 1- 2-xz1—x
G(A) =- -7 "28p(1 —zlx)‘(”z)D( ot ) X f du exp( ik u)
2 2—Xx—2,—2; + X212, 2 22-x-2-2 +x01%
1(2-zp—z))xA+ luNu—2A 1
« [exp<_( 20— 20)XA + (25— 2)x\u\u — ) exp(— (20— zy)xu )] ' (A9)
2 2-Xx—-2—71+Xx212 22-x—-2p—21+ X212

A change of variables in the integral gives
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172
G(A)=- 177‘”25 (1—zx)"172P Loax exp| — L 2-x-x, A
D I p
2 Z—X—ZZ_ZI+XZ1Z2

22—X—Z2—11+X1122
Joo < 1 2_le - X2y >|: (1 (Z—ZZ—ZI)XA+ (Z2_ZI)XA\y2_ 1)
XA exp Ay || exp|
1 22 X—2—21 +X212 2 2—-X—20—21+ X212
1 - Aly+1
_exp(_ (za—z)xA(y+1) )}dy (A10)
22-x-2p-71+Xx212,
Using
F ( 1 2-xy-xp I (s -z)xAy? 1 )
exp Ay + — dy
1 22 X—2p— 21 +X212 22—-x—2,—- 21+ X212
o1 —z)xA n 1 2-xz-
E—(- (2= 2))x )f exp( L Ay)(yz—l)"’zdy
o nI\22—x—z—z1+xz120/) J4 22 X—=2p— 21+ X212
1
I N N e ) A All
\/7_7’,% F(n + 1) n(x,21’zz’ ) ( )
with
)2 —r)2 1 2 —Xx71— X2y
F(x,21,2034) = (20— 2)"X"(2 = x — 25 — 2 + X212)” (2 —xzy = x25)” Kuennl = A (A12)
22—-x—-2,—-2,+X212»
and
f”’ ( 1 2-xz-xz ) (1 (zp—z)xA(y +1) )
exp Ay |exp| = dy
1 22 X—=2p—21+X212 22-x-2p-21+Xx212,
1 —z)xA * 1 —2ox
—exp( (&= 21) )f exp(— 2 Ay)dy
22-x—-zp—71+x3122/ ), 2-Xx—2p— 21 +X22,
1 2-3xg+ 1- -
—exp( . A)( ot A) (A13)
22 X—20—21 +X2122 2-x—-2—21+X2122
gives
1 1= 1/2 1=
G(A)=__7T_'/ZSD(1—zlx)_(”z)D( ot ) X exp| — * A
2 2-x-2—-71+ X212, 2-x—-2—- 21+ X212,
—X—-7—-Z1+x - X+ 2X
E A("”)/ZFH(X,ZI,ZZ;A)—( IR lez)exp(—— 22 A) (A14)
nO F(n 1) 1—zpx 22-x—-25—21+ X212,

Notice that in order to evaluate /,,;, only the first r+s terms of the sum need be retained. Thus, for example, using K, (x)
=+/(7/2x)e™™ one has that

lim lim G(A) =— 3728 (2 — x) X (e74 - £24/072)

2
21—0 zp—0

(A15)

and
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B} 2k 1/2 (91{
Ik,00=li,00=—pn X771 ( ;) lim lim lim G(A )
F(_D i k) m 71—0 zp—0 x—0 ax

2kpT\'"? A .
o 1 (mi) lm})_(2 X)P2(e™ 20D (A16)
N F(—D+k) o
2
so that
SDpn*X<kBT>”2 . A Sp,PN"y <K3T>”2 R
I o= —"7 Afe ™, = (1-AMHAE (A17)
1,00 Dwr o> 2,00 D(D+2)\J'7r'r Mo?
[
APPENDIX B: COOLING RATE .. 3 .
Ini =A" —Eln A", (B7)

The cooling rate is well described by the equation

d . *
LA = A2

7 (B1)

If the initial temperature is high, so that A*(0)<1, then for
short times

A A2 (B2)
dt’
which is easily solved to give
. A" (0
A(r) = © (B3)

( : )2’
1-=VJA*(0){
5 0)

suggesting that A" — and T—0 at t'=+4kzT(0)/A. This
obviously does not happen and instead, the long-time behav-

ior, corresponding to A" > > 1, can be determined by writing
Eq. (B1) as

A*
t*=f, xetdx
A% (0)

* *

oA 0 — A
=2——=—+2iVmerf(iV - =
VA™(0) JA*
-2 \"77 erf(i V’T). (B4)
Now
. Lo of 1 1 3
erf(ix) = i7 12¢% <;+E+E+ ) (B5)
s0, defining y=-2¢% ©/\/A%(0) - 2i\m erf(i'A(0)),
[ = 2A*+2eﬁ<1+ P A )
RN A" AT T aA Y
A*
¢ 3 * s
=W{1+E+..._W—AA 3/2] (B6)

Keeping only the leading order term and taking the log give

At long times, A* will be large so that the first term on the
right dominates showing that A"~In¢". Treating the last
term on the right as being a perturbation, a series solution
can be developed. The result is A*:EkzoAZ with the first few
terms given by

A:;:lnt*,
* 3 *
AT==1nA,
1 211 0
. 3A]
A2=__:<’
24,
. (B8)
L34, 347
37 2A 475
. 3AT 1AA, 12A5A A,
e Tt i e W
20, 2 A7 2 A

Numerical calculations confirm that only the first three terms
give significant contributions.

APPENDIX C: THE TRANSPORT COEFFICIENTS
1. Total transport coefficients

With the approximation c¢,=0, the transport coefficients
can be written in terms of their Kinetic contributions as

(10 )0 2

Y=Y+ n1.

7707’1 s

(C1)
=(1+0)u*,

_ Dk
k=(1+ B)KK+——B7]0'71,
2 m

with the auxiliary functions
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485, ) 1 F 2 [ aE
—yy — D 1+— (20722 = 2A = v)d
" 7]0’7T(D+2)D2n X P \We v (Vo v)dv

452 . 1. s (1, : .
7]0—77(D :;)Dzn 2)([1 + Zp(A e~ (1124 K1<§A > —2¢2 (1+A ))] (C2)

o

— ="y 1+ —= ve~ 120 (2 = 1)(\p? = 2A% - v)dv
2p(p+2)" X [ 2o ) o

= %n*x{l + %p(e‘A(l +A-2 \/g(l + A)) —(1- erf(\r’K))>:| . (C3)

It is also useful to note that
ay  4Sa%x |1 1 1, 1.
_')’* = ZD—X _p(— _e_(I/Z)A A (K()(_A ) +K2<_A )) +2A €_A )
A" D (D+2)m| 4 2 2 2
1 1 1
- gpAe_“/z)A<K1(EA> + KO(EA) - 4e_(”2)A) (C4)

and

903 i \f )}
A " 2p(D+2)" [ (QA b (C5)

2. Dimensionless equations for kinetic parts of the transport coefficients

The kinematic contributions obey

1 duX 1 [dln kzT\D +2
§0(D+2)—TL+I’1‘1,uK—§0(D+2)—T(ﬂ>KK=(nkB ( B ) )Ql
m T m on m 2

1| oxX 9 kgT D+2( _; nkgTD(D+2)
gO(D+2) T— + T—ln§0 K|+ 17 k8 = mn Q4+ ————-—],
JT m 2 T m 2

(Co6)

1. D+2 J Vu Vu Vu (Vu Vu
150 T [TaTa(2 )+2a( )} +122a(2 )=Qz ,
B

D+2(2kgT\ 0 kpT\?| [ kgT | D
go—< B ) o7 + I n(i) n(L>D(D+ 2) -2+ —Q |,
m m aT m m D-1
where a2 “=(Vmo?/kgT)¥~. Introducing the scaled transport coefficients and switching to A" as the independent variable give

n
1

D+2)

17 95" 13 T T 1 (a1 k
- go(D + 2)_K0_A |:§0(D + 2)__K() + IllK() :| X — go(D + 2)_T( = nXO) KOK_ (nkBT( B )
m n JA m on m 2
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Next, we introduce dimensionless forms for the Boltzmann
integrals

anBT O'D SD ( kBT>]/2 %
= - n 5 s
’ 2 Xop(D +2)\m\ma?) 1

n T
ll_Ill_IlllT’

(C8)
Ly =13"T,,
Iy =15,
where the elastic contributions are
kgT\*?2(D -
E=1"F=n20P-1s), ( . ) ( — 201
m N
1/2(D 1)
JVUE _ 2 D-1g ( ) i
22 DX 2\;
(C9)
kgT\>?4D
Iz?uE yn2oP- 1513( B ) -,
m \N T
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Finally, we introduce scaled sources
05" = Q)
92 = )(nZO'DSDQ;,
(C11)

ol=0lkq;,

16m(D-1)
ksT(D +2)Dy *

n

1=

with the elastic contributions
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kT 13

m T4’

kT 1 1
n2aPxS =2 \/—
XDm2 D’
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3. Boltzmann integrals

Within the present approximations, Ref. 25 gives the
Boltzmann integrals

1%=13f[1+pf
\e“zA*

- v))dv}
= I%El 1 +pA*f
v“zA*

N ipA*e_(l/z)A*Iﬂ(%A*)] ’

—(1/2)02 (A Sy(v)
-

+ (Vo2 -2A

e~(112)v vSy(v)dv - 2pe‘A*(l +A")

(C14)
with
+8
St () =57,(v) = W_l)(v2 - 1),
1
Vu _ 6_ 0,4 2_ —
Sy, (v) = 64(D—1)(v 90" + (8D +49)v=—-37-8D)
I A S x
64(D—1)(U 6v-+3)A7,

1
Seo) = 5@ =1). (C15)

For the shear viscosity this gives
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kgT 24D\
I = (ano_D lSD( i ) T 100
m N
=1+ —pA i (llz)vzv(vz - 1)dv - lpe_A*(l +A")+ lpA*e—(l/Z)A*K (lN‘)
4D"" ) oy 2 4 "\2
1+ Lpe-A*(zA*z +A*(1-2D)-2D) + lpA*e-Wer( (Q*)- (C16)
4D 4 27 )
for the bulk viscosity
k T 1/2(D_ 1) -1
ZO_D IS B ) IVu
e e
1 * * # 1 * *
=1+——pA e_(l/z)”zv((v6 —90* + (8D +49)v> =37 -8D) — (v* = 60>+ 3)A")dv — —pe ™ (1 +A")
64(D-1) N 2
| B * 1.
+ ZPA e~ (1124 K1<5A )
=1+ ;pe_A*(4A*4 —8A™ +(75+16D)A™? + (69 — 24D)A" - 32(D - 1)) + lpA*e_(”z)A*K <1A*)- (C17)
64(D - 1) 4 27 )
and for the density and thermal conductivity
kgT\*?2(D-1)\"!
e e e e I
m \NTT
D+38 7 2 1 * 1 * 1
=l+———pA" “U20% (2~ 1)dv - —pe™ (1+A") + ~pAe A g (—A*)
o= ) ¢ v(v® = Ddv - Spe™ ( )+ pAe i\ 5
=1+ ;pe_A*((ZD +16)A™+ (16 -7D)A" - 8D + 8) + lpA*e_(”z)A*K (lA*) (C18)
16(D-1) 4 o™ )
[
4. Sources 1 D=1/k.T
R e [ Ty
Reference 25 gives the sources as 00(v) 2 D w (w v,
1 * ) SO
erszﬂyE+X’l20'DSD ,2—p e~ vT(v)dv
Nem \ZA 1 (ﬂnn X kB
n
(C19) Q= yn’o”Sp f” on ( m
. * 1 .
with % f_e—(llz)uzv_((UZ_3)(\/02_2A -0)
V24" 4
1d1nn*y kgT\1 e s T AAF
T'l’](v)—— p 4(( -3)(Nv*=2A" -v) -2A ((Wv"=2A" —v) +v))dv
n m
dln nz)((k T) *
—2A*((Nv? =2A" = =— ynldls, —— ZBT ) mATAI2
2A" (Wo* =2A" —v) +v)), xn D4w:p n )¢
kzT(D +2)Dy
k s = C21
TlT](v)=ﬁ((v4—4v2+9)(\rv2—2A -v) 16m(D-1) (€21)
m
—2A"((Wr = D(v?=2A" =v) + 0> + 50v)), with
(C20) A(
¥ D-1)S, *
1 . e QO =———=——n"p(2+nd,In y)e™ A" C22
)= o284 3 - (b7 28" -0) #= Tepr2p" Y (€22
+oA (0 =1-A"), and
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oo

1
QY= xn’a’s,, D
: D\/— \2

(llz)vzv((ZA* +3-1v?)
N

X (\v* - V- 2AT - v) +vA 02— 1-A"))dv

= xn?o”SpQ), (C23)
with
= 1/——pA VA (2 + A%)e™
16N7D
— A"Vm(1 = erf(VAY))). (C24)
For the shear
Ol =— nZUD)(SDkBT N S (C25)

m 2 D

with

* 1 * * kS
QO'=1- /=pf_e_(“2)”2v(vA - (Vo2 =2A" —v))dv

1 [~ * % * o *
=1-—p| 2A"1 +A")e™ - \/je_A

+ \/g(l +AM)(1 - erf(y/E))} (C26)
and for the temperature
kgT13
Q= nzo'D)(SDL——Q (C27)
with
11 ) —(112)v2 4 2
Q' =1+— ——p e Uv((v* =40 +9)

12 V27T \V2A*
X (Vo2 =2A" —v) = 2A7 (0> - 1)(Nv? = 2A" - v)
+03+50))

| 1 .
—1+-p||1-—=(A"+2)(2A" +3 \T>e—A
21’{( 3\57( )( )

—(1+A)(1 = erf(\/F))}. (C28)

5. Derivatives

To implement the numerical solution of the Navier-
Stokes equations, it is useful to know the derivatives of the
Boltzmann integrals and the sources. For convenience these
are recorded here for the former,

d . 1 o (1 - .
[ =-Dp—| —e® 2A"?+(1-2D)A"-2D
A1 4 A (De ( ( ) )

+A*e-(1/2)A*K1(§A*))

1 1 * . .
ZDP<56_A (=2A+A"(3+2D) + 1)

J. Chem. Phys. 125, 164319 (2006)

1 % * 1 * 1 *
- _A e_(l/z)A (Kl<_A ) +Ko(_A )))’
2 2 2

J * * s *
Wlkz—mpe_A (QA™(D+8)-A"(16 + 11D)
Lo Lo
—D—8)—§pAe (D-1)|K, EA
+ - 9’
N2
Ay ——pe ™ (4AT - 24A7
JN"Y T 64(D-1)

+(99 + 16D)A™ — (81 + 56D)A" — 8D — 37)
L (s - [
- gpA e K EA + K, EA , (C29)

and for the sources

g .1 ( 2 .,
Q) =—p erf(\rA)—l+< A3/2—1)e'A),

1 ( 3VAT+4AP L 4N 6\
O7A 6 2\/7—7 ¢
+3(erf(VA") - 1)),
I ey Pl e 0 nd Iy
— == + n
gAT T TP L (Deo)p” PP T
X VAT (3 = 24",
J . 11 A* R
—=Q =-—p((B+A"-A" et
JA SDP(( - ) 7T

—A"(1 - erf( \r’T))) . (C30)

6. Cooling

From Ref. 25, the additional cooling term in the Navier-
Stokes equations is

(V-wé =&lfi]+ &lfol
kgT \'? kyT
=—V-ua”20'DS<B) B
&lfi1] ( )a, X3D o2 32\’77_
XJ_ve_(m)”zA(v“— 6v° + 3)dv,
V2a*
kT *

=(V-wn?dxS,—— Av2e= 12 gy
§1[f0] ( XDZ\/;TDP

\2a”
(C31)

giving
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% % 1 I % *_
& =—plnkgD)n xSpA'| —=(4A 24N 1)t X
32V

+$(2\/§E-A*+(1_erf(wf))) :
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