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The process of nucleation of vapor bubbles from a superheated liquid and of liquid droplets from a
supersaturated vapor is investigated using the modified-core van der Waals model density functional
theory �J. F. Lutsko, J. Chem. Phys. 128, 184711 �2008��. A novel approach is developed whereby
nucleation is viewed as a transition from a metastable state to a stable state via the minimum free
energy path, which is identified using the nudged elastic-band method for exploring free energy
surfaces. This allows for the unbiased calculation of the properties of sub- and super-critical clusters,
as well as of the critical cluster. For Lennard-Jones fluids, the results compare well to simulation and
support the view that at low to moderate supersaturation nucleation proceeds smoothly rather than
via spinodal-like instabilities as has been suggested recently. The possibility that the nucleation
barrier vanishes at high supersaturation is, however, not ruled out. © 2008 American Institute of
Physics. �DOI: 10.1063/1.3043570�

I. INTRODUCTION

The liquid-vapor phase transition is of fundamental im-
portance in many areas of physics, chemistry, and engineer-
ing. For this reason, the process of homogeneous nucleation
of bubbles in a superheated fluid and of droplets in a super-
saturated vapor has a long history going all the way back to
the fundamental paper of van der Waals.1–3 Recent years
have seen tremendous progress in the development of simu-
lation methods that circumvent the time and size limitations
of simulations to allow for the study of rare events, such as
homogeneous nucleation.4–7 In parallel, various approaches
to a theoretical description of nucleation have been formu-
lated with varying degrees of success.8–10 However, the the-
oretical description of nucleation is difficult because it is
fundamentally a nonequilibrium process: the initial and final
states are metastable and stable, respectively, but the transi-
tion between them involves a sequence of unstable configu-
rations making the use of equilibrium statistical mechanics
difficult.

Density functional theory �DFT� is the modern realiza-
tion of van der Waals’ approach to inhomogeneous fluids.
The fundamental quantity in DFT is the ensemble-averaged
local density, ��r� in the presence of an external field ��r� at
fixed temperature T and chemical potential �. It can be
proven that there is a one to one relationship between applied
fields and the resulting density profiles. Furthermore, it can
also be shown that there exists a functional F�n�, such that
the quantity ��n��F�n�+�n�r����r�−��dr is minimized
when n�r� is the equilibrium density profile ��r� correspond-
ing to the applied field.11,12 Then, ���� is the grand potential
for the given field, temperature, and chemical potential.
Since the theory only gives meaning to density functions that
minimize ��n�, the question is how to extract information

from this formalism in the case of nucleation in the absence
of an external field �or perhaps, at constant gravitational
field�.

Intuitively, one imagines that if the functional ����
gives the free energy for any density profile ��r� in the pres-
ence of the appropriate stabilizing field, then, in the absence
of such a field, it should give information about the energetic
cost of moving from a stable state to the state ��r�. For
closed systems, this intuition has been formalized in recent
years in the development known as dynamical DFT13–15 and
more generally, it underlies phase-field models for both open
and closed systems �see, e.g., Ref. 16 for a recent example�.
For all of these models, when fluctuations are included, de-
tailed balance implies that the probability of observing a den-

sity profile ��r� is proportional to e−�L���/�2
, where L���

=F��� for closed systems and L���=���� for open systems
and where � characterizes the strength of fluctuations.17,18

One then expects that an approximation to the most likely
path from one state to another in an open system will be the
shortest path involving the smallest free energy barriers,
which is to say the minimal free energy path �MFEP� as
defined by ����. This, of course, underlies the classical
theory of nucleation and is the view adopted in the present
work.

The simplest method to approximate the MFEP is to de-
fine a class of parametrized profiles, ��r�=��r ;R ,w , . . .�,
where R is the radius of the bubble or droplet, w is the width
of the interface, and the notation indicates that there may be
additional parameters as well. Then, the functional F��� be-
comes simply a function of the parameters R, w, . . ., and one
can define a path by minimizing it for each fixed value of R
with respect to the remaining parameters. The problem, of
course, is that one restricts the space of possible density pro-
files and may exclude the most likely profile. A seconda�Electronic mail: jlutsko@ulb.ac.be.
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possibility is to introduce some auxiliary constraint that de-
fines what is meant by a bubble �or droplet� of a given size.
For example, such a constraint for a bubble could be ���l

−��r��dr=�N, which defines a profile to be of size �N if the
total number of atoms is �N less than in the uniform fluid.
For reasons described elsewhere,19 this particular example of
a constraint is not really useful but more realistic constraints
have been constructed.9,10,20 Note, however, the philosophy
of this approach: a path through density-function space is
defined by the parameter �N �or whatever parameters enter
the constraint�. This is not so different in spirit from the use
of parametrized profiles as both methods effectively reduce
the dimensionality of the problem. However, in the case of
gas bubbles, it has been shown using both numerical calcu-
lations and analytic models that the constraint approach can
fail to yield a stable profile for a fixed value of �N �or
whatever parameters are used� even though the underlying
free energy landscape is well behaved.19 Hence, while it is
certainly more general than the use of parametrized profiles,
the constraint method is not a robust approach to the deter-
mination of the MFEP.

In fact, the search for minimum energy paths over some
energy landscape is a problem that occurs in many applica-
tions such as the determination of chemical reaction paths
from ab initio calculations and the determination of transi-
tions between cluster structures.21 In recent years, several
techniques have been developed for determining the MFEP.
Here, one such method—the nudged elastic band
�NEB�22,23—is applied to the problem of nucleation. This
allows for a completely unbiased and robust determination of
the MFEP between two metastable states.

In this paper, the details of droplet and bubble nucleation
are calculated for the Lennard-Jones �LJ� fluid. Because the
structure of the liquid-vapor interface is a balance between
bulk free energy and surface tension, it is important that a
useful theory be able to describe both quantities with quan-
titative accuracy. The calculations presented here therefore
use the modified-core van der Waals �MC-VDW� model
DFT,24 which gives a quantitatively accurate description of
the planar liquid-vapor interface, of the structure of the LJ
fluid near a hard wall and of the LJ fluid confined to a slit
pore.24 Although not necessary in principle, attention in this
paper is restricted to the formation of spherical droplets,
which is expected to be a good approximation except in the
case of very small clusters.5 In Sec. II, the model is described
and the details of the application of the NEB method to the
problem of bubble nucleation is outlined. The results of the
calculations are presented in Sec. III. The evidence is given
of the robustness of the method and direct, quantitative com-
parison is made to the results of computer simulation. The
MFEPs for nucleation of droplets from a supersaturated va-
por and of bubbles from a supercooled liquid are described.
Section IV gives a summary of the results obtained and their
implication concerning recent claims10,25 of nonstandard
pathways in liquid-vapor nucleation.

II. THEORY

A. Density functional theory

The model free energy functional used in my calcula-
tions is the MC-VDW model,24 which is written as a sum of
four contributions,

F��� = Fid��� + Fhs��� + Fcore��� + Ftail��� . �1�

The first contribution is the ideal gas term which is given by

Fid��� =� ���r�log���r�� − ��r��dr . �2�

Next is a hard-sphere contribution, Fhs���, for which the
“White Bear” fundamental measure theory �FMT� model
was used26,27 along with the Barker–Hendersen hard-sphere
diameter.12,28 The third contribution, the “core correction”
Fcore���, is similar to a FMT model but is constructed so that
the total free energy functional reproduces a given equation
of state �EOS� in the bulk phase as well as certain other
conditions concerning the direct correlation function in the
bulk fluid.24 The final term is a mean-field treatment of the
long-range attraction,

Ftail��� =� ��r12 − d���r1���r2�v�r12�dr1dr2, �3�

where ��x� is the step function, d is the Barker–Henderson
hard-sphere diameter, and v�r� is the pair potential. In most
of the calculations described below, the potential is a trun-
cated and shifted LJ interaction,

v�r� = �vLJ�r� − vLJ�rc� , r 	 rc

0, r 
 rc,
	 �4�

where vLJ�r�=4���� /r�12− �� /r�6� is the untruncated LJ po-
tential. �In one case, comparison is made to simulations per-
formed with an unshifted potential and in that case the cal-
culations were performed with a truncated, but unshifted
potential.� The DFT model requires as input the bulk EOS.
Since the object of the calculations was to model the LJ
system as accurately as possible, the empirical EOS of
Johnson, Zollweg, and Gubbins �JZG�29 was used.

B. Determining the MFEP

The NEB method is a chain-of-states description of the
MFEP. A path in density space is described by a collection of
profiles, 
�a�r��a=0

M . To be concrete, consider the problem of
the nucleation of bubbles in a superheated liquid. Then, the
initial state is the uniform liquid ��0��r�=�l, where �l is the
bulk liquid density determined by the temperature and
chemical potential. The subsequent images are initialized to
a guess of the MFEP, for example, a sequence of hyperbolic
tangents with increasing radii. Of course, if one simply tries
to minimize the total energy of the path, �a=1

M−1����a�� then
nothing is learned since the images will eventually converge
to one of the two attractors, the uniform liquid or the uniform
vapor, depending on whether their initial values are smaller
than, or larger than, the critical cluster. The starting point of
the NEB method is the addition of fictitious elastic forces
between the images in order to force them to remain evenly
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spaced along the MFEP. The following discussion is divided
into two parts: first the general implementation of the NEB is
described after which the specialization to spherical symme-
try is given.

The basic element needed to implement the method is a
definition of a scalar product in density space. The natural
choice is, for two real functions f�r� and g�r�,

f * g =� f�r�g�r�dr . �5�

Note that the limits of the integral are not specified: for most
purposes here, the product will only be evaluated for func-
tions having finite support so that some large volume will
suffice. Using this definition, the distance between two pro-
files, ��i��r� and ��j��r� is defined as


��i� − ��j�
2 = ���i� − ��j�� * ���i� − ��j�� , �6�

which is the usual L2-norm. The idea behind the NEB is to
minimize the free energy functionals, ���i�, in the manifold
orthogonal to the current estimate of the MFEP and to move
them along the estimated MFEP using fictitious elastic forces
to maintain an even spacing of the images. To this end, the
critical element is the estimation of the tangent to the MFEP
at each density image for which the algorithm of Ref. 22 was
used. This involves the neighboring images and their free
energies. For example, if ����i−1��	����i��	����i+1��, then
the tangent to the image ��i�, called t�i�, is

t�i��r� = ��i+1��r� − ��i��r� , �7�

and the normalized tangent, t̂�i��r�= t�i��r� / �t�i�� t�i��. If the in-
equalities are reversed, the tangent is in the direction ��i�

−��i−1�. For nonmonotonic neighbors, the heuristic is given
in Ref. 22. The NEB method then consists of finding a con-
figuration that gives zero NEB-force. Let the “force” due to
the actual free energy surface be F�i��r�=−������i�� /���r�.
Then the NEB method consists of solving

0 = F��i��r� + kt̂�i��r��
��i+1� − ��i�
 − 
��i� − ��i−1�
� , �8�

where F��i��r�=F�i��r�− t̂�i��r��t̂�i�*F�i�� is the component of
the thermodynamic force orthogonal to the tangent vector
and k is the spring constant. The stability and robustness of
the method depends in part on the spring forces being strong
enough to maintain a more or less fixed separation between
the images, but not so strong as to severely affect the path as
it evolves.

The specialization to spherical geometry is made by not-
ing that if the density is spherically symmetric, ��r�=��r�,
then the corresponding thermodynamic forces, F�r� and
FS�r��−������i�� /���r�, are related by the functional chain
rule,

FS�r� = −� ������i��
���r��

���r��
���r�

dr�

= −� ������i��
���r��

��r� − r�dr� = 4
r2F�r� . �9�

It therefore follows that

t�i��r� = ��i+1��r� − ��i��r� ,

0 = FS
��i��r� + 4
r2kt̂�i��r��
��i+1� − ��i�
 − 
��i� − ��i−1�
� ,

�10�
FS

��i��r� = FS
�i��r� − 4
r2t̂�i��r��t̂�i� * F�i�� ,

t̂�i� * F�i� =� t̂�i��r�F�i��r�dr =� t̂�i��r�FS
�i��r�dr ,

and so forth. Note that this differs somewhat from the more
heuristic scheme described in Ref. 19. The present approach,
starting from the general case and specializing to spherical
symmetry, is more systematic and yields lower free energies
than did the earlier implementation.

A final refinement is the use of a so-called climbing
image.23 This is an image, say image ��c�, for which the sign
of the component of F�c� along the path is reversed, instead
of eliminating this component, thus causing it to climb to-
ward the local maximum. For this image, no spring forces
are applied so that its behavior is governed by

− FS
��c��r� + �FS

�c��r� − FS
��c��r�� = 0. �11�

�Note, however, that the images on either side of the climb-
ing image still feel spring forces connecting them to the
climbing image: there is no analogy of Newton’s third law in
this case.� The climbing image proves very effective in de-
termining the saddle point, which is to say in this problem,
the critical cluster.

So far, nothing definite has been said about the end point
of the chain of states. The initial point is the uniform liquid,
but the end cannot be taken to be the uniform gas because
the distance between the uniform gas and any finite bubble is
infinite. In an initial implementation of this method,19 the
end point was taken to be a sigmoidal profile with fixed,
large radius and with the width adjusted to minimize the free
energy. The idea was that the profiles of large bubbles would
be basically sigmoidal and any error introduced by the ap-
proximation would be insignificant. However, this is some-
what unsatisfying as it potentially biases the chain of states
away from the MFEP. In the present work, a more elegant
approach was taken. Note that in a part of the chain of states
where the free energy is monotonically decreasing, as it is
for clusters larger than the critical cluster, the tangent vector
for the image i is determined by the images i−1 and i. The
only role played by image i+1 is in the calculation of the
spring force on image i. However, if this image was excluded
completely, the spring between i and i−1 would cause these
images to converge. To avoid this, it is sufficient to replace
the term 
��i+1�−��i�
 in Eq. �8� by any convenient constant.
Then, there is no harm in terminating the chain even though
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the last image is neither fixed, nor a minimum of the free
energy. This gives a completely unbiased approach to the
determination of the MFEP.

C. Relation to previous approaches

The NEB and other methods of exploring energy sur-
faces have been used extensively in conjunction with ab ini-
tio calculations,21 but as far as I am aware, the present use of
the NEB method for exploring nucleation in the context of
classical DFT is novel. However, the problem has been stud-
ied using other approaches. The properties of the critical
cluster are, in principle, accessible since it is an extremum of
the free energy and several authors have calculated its prop-
erties, although using less sophisticated DFT models than
that employed here.8,20,30 Since the critical cluster is a saddle
point, rather than a minimum, in the free energy surface, it is
still difficult to isolate. One would like to make an initial
guess as to its structure and then to solve the Euler–Lagrange
equation, which inevitably involves an iterative refinement
of the initial guess until stability is reached. However, be-
cause the critical cluster is a saddle point, and because the
only stable minima are the uniform liquid and vapor, one
finds that an initial guess that is too small evolves toward
smaller and smaller clusters until the uniform state is
reached, while one that is too large evolves toward larger and
larger clusters until the uniform state of the other phase is
reached. Oxtoby and Evans therefore used this behavior to
bracket the critical cluster with successive initial guesses and
extracted the properties of the critical cluster at an interme-
diate point in the iterative calculations.8 This technique gives
correct results but is obviously messy, and the NEB with the
climbing image can be seen as an improvement since it gives
the critical cluster in one run.

The properties of noncritical clusters were studied by
Lee et al.31 and by Talanquer and Oxtoby.9 In the study of
Lee et al., finite-sized volumes were used. By varying the
size of the volume and/or the density of material within the
volume, clusters of different sizes become stable—
presumably because the system wants to phase separate. The
problem in this case is that it is not clear what analogies can
be drawn between these clusters and those forming in open
systems. Talanquer and Oxtoby used a method inspired by
this approach and developed in Refs. 4, 32, and 33. In the
language used in this paper, the Talanquer–Oxtoby method
consists of minimizing the grand potential, ��n�, subject to
the constraint that the total number of atoms in a volume v
be fixed at a given number, i,

i = �
v

��r�dr . �12�

�The relation between this formulation and that of Ref. 9 is
given in the Appendix.� Talanquer and Oxtoby furthermore
adjusted the density outside the volume so that the density
profile is continuous. The idea here is, in some sense, to
reduce the number of degrees of freedom required to explore
density-function space to just two, the parameters i and v,
thus reducing the difficulty of the problem of finding the
MFEP. However, as shown in the Appendix, this amounts to

changing the chemical potential so as to stabilize a cluster
with the prescribed number of atoms. In other words, the
clusters so obtained are just the critical clusters at different
chemical potentials. These would not appear to be physically
equivalent to clusters of different sizes at fixed chemical po-
tentials. Uline and Corti10 used a similar method to explore
bubble nucleation but without the adjustment of the density
outside the clusters. This circumvents the objection raised
above, but the method has other problems: the generation of
discontinuous density profiles and the appearance of spurious
instabilities.19 Thus, the constraint method, while physically
appealing, is not a reliable approach for the exploration of
density-function space.

D. Parametrized profiles: Classical nucleation theory

A somewhat simpler alternative to minimizing the free
energy with respect to a density function is to use param-
etrized density profiles of the form n�r ;��, where � repre-
sents one or more parameters. An example is the hyperbolic
tangent profile,n�r ;A ,z0�=�l+

1
2 ��v−�l��1+tanh�−A�z−z0���

used to described planer interfaces. For a spherical geometry,
a closely related form,

��r� = �l + ��v − �l�
1 + br

1 + �br�2

1 − tanh�A�r − R��
1 − tanh�− AR�

, �13�

has the advantage of having zero derivative at the origin and
of showing the expected behavior n�r��exp�−ar� /r at large
r.34 This profile will be used as an initial guess for the NEB
calculation.

An even simpler parametrization is of particular impor-
tance. Using n�r ,R�=�l��R−r�+�v��r−R�, where the step
function ��x� is one for x�0 and zero otherwise, in con-
junction with a simple van der Waals free energy functional
gives

����R;�,T� =
4


3
R3��P��v;T� − �P��l;T��

+ 4
R2�coex� �l − �v

�l,coex − �v,coex
�2

, �14�

where P��� is the bulk pressure at density �, �c,coex is the
surface tension at coexistence, and �l,coex and �v,coex are the
liquid and vapor densities at coexistence.19 This is just a
slight generalization of the classical nucleation theory �CNT�
model for the free energy of a bubble. �The classical model
results from setting �l,coex−�v,coex=�l−�v, as will be done
henceforth.� This expression for the excess free energy has
minima at R=0 and R→� corresponding to the uniform va-
por and liquid, respectively, and a maximum at the critical
radius,

Rc =
2�coex

�P��v;T� − �P��l;T�
�15�

and

����Rc;�,T� =
16


3

�coex
3

��P��v;T� − �P��l;T��2 . �16�
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E. Computational details

In the calculations presented below, the radial variable
was discretized into 40 points per hard-sphere diameter. The
profiles were discretized out to a maximum radius of 20
hard-sphere diameters giving 800 points in total. The contri-
butions to the free energy coming from the density profiles at
larger distances were taken into account by assuming the
density to be constant and equal to the appropriate uniform
�liquid or vapor� density at larger distances. As alluded to
above, the results were very insensitive to the value of the
spring constant, which was, in most cases, fixed at 1 in LJ
units. For calculations very close to the spinodal, where the
energy barriers are very small, a smaller spring constant
sometimes proved to give better convergence.

The modified Euler–Lagrange equation was solved using
the fast inertial relaxation engine.35 In this algorithm, a fic-
titious time variable is introduced and each component of
each image is treated as a dynamical variable moving in
response to the “forces.” The algorithm involves a quench so
that the system relaxes toward a state of zero force. This
algorithm appears to be one of the most efficient ways to
implement the NEB method.36 In the present case, it was
found to be necessary to treat the images as being dynami-
cally independent: that is to say, each image had its own time
variable, time step and quenching variables. The parameters
governing the quenches were the same as those given in Ref.
35, and the quench was deemed to be converged when the
root-mean-squared force was less than 5�10−5 in LJ units
when only the energies were of interest. The convergence of
the profiles, particularly near the core, r=0, are slow because
of the r2 weighting of the forces so the algorithm was run
until the rms force was less than 1�10−5 when the profiles
were desired.

III. RESULTS

A. General aspects of droplet nucleation

In this section, the nucleation of liquid droplets from a
supersaturated vapor will be examined. Before turning to
specific examples that will mainly involve a comparison to
existing simulation data, it is interesting to consider some
general properties of the present method. Two important
properties of the critical cluster are its size and excess free
energy. The size of a cluster may be unambiguously defined
as the number of atoms in the system relative to the number
in the metastable state,

�n =� ���r� − ���dr , �17�

where in the case of droplets �bubbles� �� is the density of
the bulk vapor �liquid� at the specified chemical potential and
temperature. Figure 1 shows the size and free energy barrier
of the critical droplets calculated for the LJ potential with
cutoff rc

�=4 at temperature T=0.8 and excess chemical po-
tential �−�coex=0.15�coex, corresponding to a supersatura-
tion of SP� Pv / Pcoex=2.27. �Note that with this cutoff, the
critical point is calculated to occur at Tc=1.25.� The calcu-
lations were performed using 20 images each of which is a

density profile ��r� represented by 800 points for 0	r
	Rmax, where Rmax is chosen to be much larger than the size
of any of the nuclei �typically Rmax=20��. The images were
initialized as modified hyperbolic tangents, Eq. �13�, with
increasing radii. The figure shows the results of calculations
in which the initial guess of the width of the interfaces was
very narrow �A=5 in Eq. �13��, which is far from the
optimized-sigmoidal value �A�1� as well as the result using
initial guesses near the optimized-sigmoidal value. It is ap-
parent that even though the initial paths are very different,
the final results are indistinguishable in shape. Note that one
of the final curves is longer than another because the choice
of which image is the climbing image that locates the critical
droplet, was based on the initial energies and these differed
in the two runs. Since the climbing image always ends up at
the maximum of the free energy, the number of images be-
fore and after the maximum can differ if the initial curves are
sufficiently different. This figure also shows that the final
free energy barrier is indistinguishable from the initial
optimized-sigmoidal profile for large clusters which just con-
firms that large clusters are indeed sigmoidal in shape. How-
ever, as shown in the inset, the converged barrier is definitely
lower than the optimized-sigmoidal barrier.

Since the calculations sample the entire nucleation path-
way, a picture of the development of droplets is given. Figure
2 shows the sequence of droplets along the MFEP for the
same conditions as above. The figure indicates that the drop-
lets form via a gradual increase in the density near the core.
This is in contrast to the picture in CNT where small droplets
are assumed to have the density of the bulk liquid over a
small volume and consistent with previous calculations dem-
onstrating that the density at the center of the critical cluster
is below the bulk density.8,30 In fact, as the figure shows,
even very small droplets appear to have finite volume. This
can be quantified by calculating the equimolar radius, de-
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β∆G
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A=5, final
optimized, initial
final, optimized

0 100 200 300
0
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FIG. 1. �Color online� Comparison of the results of the calculation using
different initial conditions. The line and open circles show the initial path
when the profiles are initialized using Eq. �13� with parameter A=5, while
the dashed line shows the initial path when each free energy of each profile
is optimized with respect to A, which gives much broader, A�1, profiles.
The solid circles show the final path after relaxing the NEB functional
starting with the unoptimized profiles and the squares correspond to relaxing
the optimized profiles. The inset shows that the final, relaxed path has lower
free energy than the path consisting of optimized modified hypertangents.
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fined as the radius of a sphere with uniform density ��0� that
has the same excess number of atoms as the actual density
profile,

4


3
Re

3���0� − ��� = �n . �18�

This is shown in Fig. 3 using the same data as the previous
figures as well as additional data from a calculation with
more images in the subcritical region. It is interesting to note
that the data sets are in very good agreement again demon-
strating the robustness of the calculations. The inset in the
figure shows a magnification of the small �n region as well
as a fit to the data for �n	100 to the function Re=a0

+a1��n�1/3+a2��n�2/3. This function was chosen because
one expects that for large droplets, the radius and excess
number will be approximately related as �n= �4
 /3�Re

3�l.
�For example, for the largest bubble shown in the figure, one
has that Re=6.32 so that �4
 /3�Re

3�l=869, which is very
close to the observed value of 864.� What is found is that the
data do appear to be consistent with a finite radius even for
zero atomic deficit. As shown in the figure, a fit that forces
the intercept to be zero, a0=0 gives a poor description of the
data.

B. Comparison to simulation

There have been many simulation studies of the forma-
tion of liquid clusters in a supersaturated vapor. Simulations
of stable clusters are possible using constant particle number,
volume and temperature �NVT�: see, e.g., Refs. 31 and 37–
39. Beginning with an unstable density, the system will spon-
taneously phase separate into one or more liquid droplets
surrounded by vapor. However, this does not correspond to
nucleation of droplets in the laboratory which normally oc-
curs as constant pressure or at constant volume but with vol-
umes so large that the vapor pressure remains nearly con-
stant. In contrast, the NVT simulations have mostly been
performed on small systems so as to result in the formation
of a single droplet and the size of the droplet and density of
the surrounding vapor is then a function of the size of the
simulation cell. One exception is the work of Oh and
Zeng,6,39 which was done using relatively large systems.
Comparison to their work will be made below.

Perhaps the cleanest simulations, from the standpoint of
a comparison to theory, were those of Rein ten Wolde and
Frenkel5 carried out in the constant number, pressure, and
temperature—or NPT—ensemble. By means of umbrella
sampling, they were able to determine the properties of un-
stable clusters of all sizes, at least for one value of the su-
persaturation. Since their method gives a faithful sampling of
the NPT ensemble, direct comparison of theory to simulation
is relatively straight forward, with some caveats. For ex-
ample, the DFT calculations are performed in the grand en-
semble: physically, these are expected to give the same re-
sults as in both cases, droplets are nucleated within a
background vapor of essentially constant density. More for-
mally, it is easy to see that the free energy differences should
be the same in both ensembles.8 Rein ten Wolde and Frenkel
used a truncated and shifted potential with cutoff rc=2.5�
and all simulations were performed at a reduced temperature
of T��kBT /�=0.741. In the following, the reduced density
is �����3 and the reduced length is r��r /�.

As stated above, the MC-VDW model was solved using
the empirical JZG EOS. However, the JZG EOS was devel-
oped for an infinite ranged potential. The usual means to take
account of a finite-ranged potential is to introduce mean-field
corrections.29 For relatively large cutoffs, this gives an accu-
rate account of the thermodynamics but for cutoffs as short
as that used by Rein ten Wolde and Frenkel, the corrected
EOS is not very accurate. In particular, it gives a critical
temperature of Tc

�=1.0366 whereas simulation gives Tc
�

=1.085. This difference of about 4% is important as the sur-
face tension goes to zero at the critical temperature and is
thus very sensitive to its value. Fortunately, it has been
shown that the effect of this inaccuracy can be almost com-
pletely eliminated by invoking the law of corresponding
states and comparing theory and simulation at equal values
of T /Tc.

40 This is the strategy used here so that the theory is
evaluated at T /Tc=0.741 /1.085=0.683 or given the theoret-
ical value of the critical temperature, T�=0.708.

Figure 4 shows the excess number of atoms in the criti-
cal cluster and the free energy barrier as functions of the
supersaturation SP= Pv / Pcoex, where Pv is the pressure in the
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FIG. 2. �Color online� Profiles of subcritical and supercritical droplets for
T�=0.8 and SP=2.27. The system starts in a uniform state with density
���r����r��3=0.0207 corresponding to an excess number of atoms �n=0.
The various curves represent various points along the MFEP. The first few
curves are labeled with the value of �n and the critical cluster is indicated
with an arrow.
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FIG. 3. �Color online� The equimolar radius as a function of the excess
number of atoms in a droplet for T�=0.8 and SP=2.27. The cluster marked
with the arrow is the critical cluster. The inset shows the small �n region in
more detail including data from a second calculation with more subcritical
images. Two different fits to the data are also shown: one with an intercept
determined from the data and a second with intercept forced to be zero.

244501-6 James F. Lutsko J. Chem. Phys. 129, 244501 �2008�

Downloaded 18 Oct 2009 to 164.15.129.45. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



bulk vapor and Pcoex is the pressure at coexistence. The
agreement is very good even at quite high supersaturations
and correspondingly small clusters and is seen to be far bet-
ter than the predictions of CNT. The agreement for small
clusters is particularly important as the clusters are so small,
with a radius less than 2�, that virtually all atoms in the
cluster are part of the interface; in other words, the system is
extremely inhomogeneous. Figure 5 shows the theoretical
prediction for the structure of the critical cluster at SP

=1.535 compared to the simulation results. In both cases, the
structure near r=0 is poorly resolved: in the simulations be-
cause there are few atoms and poor statistics, and in the
calculations because the r2 weighting in the integrals means
that this region has very little effect on the free energy. Thus,
Rein ten Wolde and Frenkel only reported the density profile
for r��1 in Ref. 5 although more data are shown in the
figure here. The theory is clearly very accurate in giving the
correct overall size and shape of the density profile, although
it does show some structure near the core that is absent from
the simulation. There are several possible reasons for this
difference in shape: the oscillations in the theoretical profile
could be an artifact of the theory, they could be smoothed by
long-wavelength fluctuations not accounted for in the
theory17,18 or they could exist in the simulations but be
washed out due to noise.

All of the properties compared so far are restricted to the
critical nucleus. However, one of the most impressive as-
pects of the work of Rein ten Wolde and Frenkel is that they
were able to determine the free energy barrier as a function
of cluster size for one particular value of supersaturation �S
=1.535�. This allows for a check of the novel approach used
here to determine the MFEP as well as its relevance to the
nucleation problem. There is, however, one subtlety in mak-
ing this comparison. Rein ten Wolde and Frenkel character-
ized the barrier as a function of cluster size rather than the
excess number of atoms in a cluster. Their definition of
whether or not an atom was in the liquid or vapor was based
on the local density: an atom was classified as part of a liquid
cluster if it had at least four neighbors within a distance of
q=1.5�. There is no practical, exact way to translate this into
a criteria that can be evaluated theoretically so the following
heuristic procedure was used. The number of neighbors of
within a distance q of an atom in the uniform bulk system at
density � is n=4
�0

q�g�r ;��r2dr, where g�r ,�� is the pair
distribution function �PDF�. I have used this expression, to-
gether with the usual first order Weeks–Chandler–Anderson
perturbative approximation for the PDF,12,41–43 to determine
that n
4 occurs for ���0.32. Hence, in the theory, all re-
gions with density satisfying this inequality were classified
as liquid. For the critical cluster, where the theory gives an
excess number of atoms of 315 compared to 330 reported by
Rein ten Wolde and Frenkel, this procedure gives a theoret-
ical cluster size of 265 compared to 285 found in the simu-
lations. It would appear that this is a sensible way to calcu-
late cluster size in the theory.

Figure 6 shows a comparison of the nucleation barrier as
a function of cluster size as determined from simulation and
theory. The two are in remarkable agreement with the theo-
retical values about 1.5kBT smaller than those observed in
the simulation at the barrier’s maximum. This is consistent
with the fact that the theory determines the MFEP whereas
the simulations report a thermal average which will also in-
volve nearby, higher energy, states. This agreement gives
strong empirical validation of the present theoretical ap-
proach. �Note that since we have the ability to calculate the
free energy surface for any given density distribution we
could, if desired, explore the landscape around the MFEP,
including the saddle point, to determine the likelihood of
deviations from the MFEP.�
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FIG. 4. �Color online� Comparison of theory �circles� and simulation results
of Rein ten Wolde and Frenkel �Ref. 5� �squares� for �a� the excess number
of atoms in the critical cluster and �b� the free energy barrier height as
functions of the supersaturation.
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FIG. 5. �Color online� Comparison of theory �lines� and the simulation
results of Rein ten Wolde and Frenkel �Ref. 5� �symbols� for the structure of
the critical cluster for two different values of the supersaturation, Sp.
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FIG. 6. �Color online� The nucleation barrier at supersaturation SP=1.535 as
a function of cluster size. The squares are from simulation of Rein ten
Wolde and Frenkel �Ref. 5� and the circles are from the theory.
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Oh and Zeng performed a set of Monte Carlo simula-
tions of large systems at high supersaturation where the ob-
ject was to generate an equilibrium distribution of clusters
from which the free energy barrier can be extracted.6,39 Their
work is complementary to that of Rein ten Wolde and Fren-
kel in that it focuses on higher supersaturations, and conse-
quently much smaller clusters. However, direct comparison
of Oh and Zeng’s results to theory is complicated by their
definition of the supersaturation, which involves a sum over
the entire population of clusters. In one case, however, they
do report the pressure of the ambient vapor as P�3 / �kBT�
=0.011 66 at T�=0.67.39 Since the potential cutoff used in
the simulations was rc=4.5� �with no shift�, it can be as-
sumed that the JZG EOS with a mean-field correction for the
cutoff is essentially exact and no corresponding-state adjust-
ments are necessary. In this case, the main uncertainty comes
from the definition of the cluster size, denoted nO. Oh and
Zeng defined two atoms to be in the same cluster if they are
within 1.5� of one another. The theoretical cluster size was
therefore calculated as in the case of Rein ten Wolde and
Frenkel except the limiting density was chosen to be that at
which there is less than one neighbor in a sphere of radius
1.5�. Figure 7 shows the free energy barrier determined from
simulation compared to that calculated here. In particular, the
barrier height is calculated to be 6.5kBT compared to the
value from simulation of 8.2kBT, while the peak occurs at
almost the same place, nO�20. Although the relative error in
the barrier height is greater than in the case of the Rein ten
Wolde and Frenkel �tWF� data, the comparison is actually
remarkably similar in that the theoretical barrier is lower
than the observed barrier by almost exactly the same amount
found in the comparison to tWF, while the cluster size is
virtually identical to that found in the simulations, again as
found in the comparison to tWF. Given the very small cluster
size, the uncertainty in the thermodynamic state and in the
estimate of the cluster size, and the fact that the simulations
involve many clusters while the calculations are for an iso-
lated cluster, the agreement is probably as good as could be
expected.

The comparison to the results of Zhukovitskii44 is more
problematic for two reasons. First, there was no fixed cutoff
in the simulations: the potential was essentially infinite
ranged but the volume is finite so that the number of neigh-
bors a given atom interacted with depended on how close

that atom was to the �spherical� cell boundary. The radius of
the cell was RZ=8� so the effective cutoff is in the range
0�rc�8�. Zhukovitskii reported the density of the vapor at
coexistence as being �v,coex=0.002 43 so I have adjusted the
cutoff to approximately match this, which happens at rc

�5�. Clearly, this is only an approximation and probably
represents the greatest source of error. Next, Zhukovitskii
reported the supersaturation in terms of the variable S�

=�v /�v,coex, however, this was only estimated assuming the
vapor is an ideal gas: apparently, the actual vapor pressure
was typically about 4% lower than this,44 so in the calcula-
tions, it was assumed that �v=0.96S��v,coex. With such a
large cutoff, the error in the EOS should be minimal so there
was no need for the kinds of adjustment required for the tWF
cutoff. Given these caveats, Fig. 8 shows the size of the
critical cluster as a function of supersaturation as reported by
Zhukovitskii compared to the calculations. Given the uncer-
tainty in the cutoff and in the actual density of the vapor, not
to mention the fact that the simulation does not correspond
precisely to any standard ensemble, the agreement is satis-
factory.

C. Nucleation of bubbles

The same methods can be used to study the nucleation of
bubbles in a superheated liquid. Figure 9 shows the height of
the nucleation barrier as a function of bubble size for differ-
ent supersaturations for T�=0.8 and a cutoff of rc

�=4.0. Note
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FIG. 7. �Color online� The nucleation barrier as determined from simulation
by Oh and Zeng �Ref. 6�, squares, and from the theory, circles. The defini-
tion of the cluster size, nO, is given in text.
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that for bubbles, �n is negative and the supersaturation is
given here as S����−�coex� /�coex. In contrast to recent
claims that there is an activated instability in bubble
nucleation,10 the results indicate continuous paths for a wide
range of supersaturations. It is possible that at high absolute
value of supersaturation the free energy is concave near �n
=0, but there is no sign of a nonclassical instability, even
when the free energy barrier is less than 2kBT. Figure 10
shows a sequence of bubbles for S�=−0.15. As in the case of
droplet nucleation, the width is apparently always greater
than zero with the bubble nucleating via an initial, gradual
lowering of the central density followed by a slow broaden-
ing into a typical sigmoidal shape. Note that the density at
the center of the critical cluster shown in Fig. 10 is more than
half the liquid density and hence, much greater than the den-
sity of the gas phase being nucleated. This represents a large
difference from the assumption of CNT that the critical clus-
ter has the density of the bulk vapor inside the bubble.

IV. DISCUSSION

The nucleation of a stable phase from a metastable phase
is best understood as a transition between two local minima
in the free energy surface. As such, it is conceptually the
same as any problem that involves the crossing of a free
energy barrier and, in particular, bears strong similarities to
the description of chemical reactions. It is therefore not sur-
prising that the methods used to determine reaction pathways
can be usefully applied to the problem of nucleation.

There are in fact many methods used to study reaction
pathways including eigenvalue following,21,45 the string
method,46 the determination of the maximum likelihood
path,47 among others, including the NEB method used here.
The NEB method may not be the optimal method for nucle-
ation, but it has the advantage of being very simple to imple-
ment and of being robust.

There has been much discussion recently concerning the
possibility of nonclassical mechanisms of liquid-vapor and
of vapor-liquid nucleations. In particular, Bhimalapuram et
al.25 observed a spinodal-like breakdown at high supersatu-
rations in Ising model simulations of condensation whereby
the free energy develops a minimum at a subcritical cluster
size although the significance of their observation has re-
cently been questioned.48 Similarly, Uline and Corti10

claimed that the process of bubble formation in a boiling

liquid always involves a spinodal-like instability based on a
combination of simulations and DFT calculations. A some-
what different observation concerning crystallization was
made by Trudu et al.49 who saw the sudden formation of
finite-sized, subcritical crystals at low supersaturations and
the vanishing of the nucleation barrier at high, but finite su-
persaturation. What all of these studies have in common is
the observation of nonstandard elements in the free energy
surface: either an additional local minimum25 or some types
of discontinuity.10 For the case of liquid-vapor nucleation,
the present work does not support either the presence of
stable subcritical clusters nor a spinodal mechanism for
bubble formation. In all cases, even at very high supersatu-
ration, very near but still outside the spinodal, the free energy
surface appears to be well defined and to possess no nonclas-
sical minima. For the nucleation of droplets from a vapor,
these results are consistent with the simulations of Rein ten
Wolde and Frenkel5 and of Oh and Zeng,6 neither of which
saw evidence of such nonclassical features in the free energy
barrier. On the other hand, those simulations as well as the
present calculations are consistent with the vanishing of the
nucleation barrier at finite supersaturation as seen by Trudu
et al. for crystallization. In the case of the nucleation of
bubbles in a superheated liquid, the calculations may indicate
that at very high supersaturations, such that the free energy
barrier is less than 2kBT, the free energy barrier is not a
convex function of its size, but it is not clear that this is of
any significance. Furthermore, there is evidence, based on
simple analytically tractable models, that the discontinuities
observed by Uline and Corti are an artifact of the constraint
method used to explore the free energy surface.19 Thus,
while the present results cannot decisively settle the question
one way or another, they do tend to support the classical
picture of liquid-vapor nucleation as a simple matter of bar-
rier crossing.

ACKNOWLEDGMENTS

I am grateful to Pieter ten Wolde and Daan Frenkel for
supplying their simulation data. This work was supported in
part by the European Space Agency under Contract No. ESA
AO-2004-070.

APPENDIX: THE CONSTRAINT METHOD

The constraint method described by Talanquer and Ox-
toby consists of demanding that the number of atoms within
the volume v be fixed at some value i. Furthermore, the
density outside the volume is prescribed to be a fixed value,
��. Minimizing the grand potential under these constraints
can be formulated using Lagrange multipliers so that one
minimizes the functional

F�n� − �� n�r�dr − ���
r	R

n�r�dr − i�
− �

r�R

��r��n�r� − ���dr �A1�

with respect to n�r�, �, and ��r�. �Note that in order to force
the density, ��r�, to take on a fixed value for each spatial
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FIG. 10. �Color online� A sequence of bubble profiles along the MFEP for
supersaturation S�=−0.20. The size, in terms of atomic deficit or −�n, is
given for several profiles and the critical profile is marked with an asterisk.
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point, r, outside the droplet it is necessary to have an inde-
pendent Lagrange parameter, ��r�, for each such point.� For
r	R this gives

0 =
�F�n�

�n
− � − � ,

�A2�

0 = �
r	R

n�r�dr − i ,

so that it is clear that the effect of the Lagrange multiplier is
simply to shift the chemical potential. The resulting density
profile is just that of the system at the shifted chemical po-
tential. To make contact with the work of Talanquer and
Oxtoby, it is necessary to separate the functional derivative
occurring in this expression into its ideal gas and excess
contributions by writing

�F�n�
�n

= kBT log n�r� + �ex�r� . �A3�

This allows the first of the variational equations to be rear-
ranged to give

n�r� = exp��� + �� − ��ex�r�� . �A4�

Substitution into the second variational equation gives an
expression for the Lagrange multiplier

0 = exp�����
r	R

exp��� − ��ex�r��dr − i

or

�� + �� = log�i� − log��
r	R

exp�− ��ex�r��dr� . �A5�

Thus, the equation for the density, for the case r	R, be-
comes

��F�n�
�n

= log�i� − log��
r	R

exp�− ��ex�r��dr� , �A6�

which is, essentially, Eq. �17� of Ref. 9.
The variational equations for R	r are

0 =
�F�n�

�n
− � − ��r� ,

�A7�
0 = n�r� − ��.

For very large r, far away from the interface, it will be the
case that

V−1��F�n�
�n

�
n=��

�
� f����

���

�A8�

so that in this region, �+��r�→�f���� /���=�����, where
the last term means the chemical potential corresponding to
the density ��. In particular, if R is sufficiently large that the
cluster interface is located at much smaller values of the
radius, as appears to be the case in the work of Talanquer and
Oxtoby, then a continuous density profile will basically re-

quire that �+�=��r�+�=����� so that the procedure
simple amounts to an overall shift of the chemical potential.
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