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The validity of the principle of corresponding states is investigated for the case of a potential with
more than one intrinsic length scale. The planar surface tension of coexisting liquid and vapor
phases of a fluid of Lennard–Jones atoms is studied as a function of the range of the potential using
both Monte Carlo simulations and density functional theory �DFT�. The interaction range is varied
from r

c
*=2.5 to r

c
*=6 and the surface tension is determined for temperatures ranging from T*

=0.7 up to the critical temperature in each case. The simulation results are consistent with previous
studies and are shown to obey the law of corresponding states even though the potential has two
intrinsic length scales. It is further shown that the corresponding states principle can also be used to
enhance the accuracy of some, but not all, DFT calculations of the surface tension. The results show
that most of the cutoff dependence of the surface tension can be explained as a result of changes in
the cutoff-dependent phase diagram and that corresponding states can be a useful tool for explaining
differences between theory and simulation. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3072156�

I. INTRODUCTION

One of the most fundamental properties of a fluid is the
surface tension at the liquid-vapor interface. Aside from its
obvious physical importance, the surface tension is also one
of the most accessible quantities for comparison between
liquid-state theory and computer simulation. It is clearly
hopeless to make quantitative predications of, e.g., nucle-
ation rates, based on a theory that does not properly describe
the planar surface tension. For simple two-body potentials,
with single energy and length scales, some inadequacies of
theoretical calculations can be corrected by making use of
the law of corresponding states. However, it is unclear that
this is useful for more complicated potentials that involve
multiple length and/or energy scales. An important class of
such potentials is the truncated form of the simple pair po-
tentials. Truncation is primarily a computational convenience
employed to make computer simulation less costly but, be-
cause of the different truncations used, it has the negative
effect of making it difficult to compare the results of differ-
ent simulation studies if the range of truncation differs. On
the positive side, however, it is extremely useful as a test of
theoretical models to have such a diversity of results as a
base line. In this paper, we show that for the important case
of a truncated Lennard–Jones �LJ� potential, the law of cor-
responding states can still be used to correlate simulation
studies at different values of truncation as well as in com-
parison to theoretical calculations.

It would seem that such a fundamental property would
be an ideal candidate for study via computer simulation.
However, the determination of the surface tension from
simulation turns out to be frought with difficulties so that
even today there is still a substantial amount of effort di-
rected toward the development of more reliable algorithms
and the refinement of the reported values even for the para-
digmatic case of a simple fluid modeled with the LJ
interaction.1 Because the surface tension is very sensitive to
the cutoff, an important part of the development of algo-
rithms has focused on the calculation of the corrections
needed to get the infinite-ranged limit from data obtained
using a truncated potential �see, e.g., Refs. 1–7�. This sensi-
tivity is a nuisance when the goal is to get the infinite-range
result, but, as noted above, it can be made useful. In particu-
lar, one of the important reasons to determine the surface
tension from simulation is that it provides a base line against
which theories of inhomogeneous liquids can be tested.8,9

For this application, the sensitivity of the surface tension to
the range of the potential can be used as a test of the gener-
ality of a theory which was probably motivated in the first
place by its agreement with some existing simulation data.
Furthermore, there has recently been a significant increase in
interest in short-ranged potentials in their own right. This is
due to the fact that certain complex fluids, in particular
globular proteins, can, in a first approximation, be modeled
as a simple fluid with a very short-ranged interaction.10 It is
therefore interesting to study the properties of fluids with
these kinds of interactions and to test that existing theories
work in this new domain of interest. For these reasons, we
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present in this paper a systematic study of the dependence of
the surface tension of a LJ fluid as a function of the range of
the potential.

The motivation of the present work is therefore three-
fold. First is the modest goal of making available a system-
atic simulation study of the dependence of surface tension on
the range of a truncated LJ potential for use as a base line for
the development of theoretical methods. The second is to
show empirically that even a potential with two length scales
can still be well described by the law of corresponding states.
This is intended to aid in the common problem of making
comparisons of data obtained from simulations with different
truncations. The final goal is to apply the same scalings to
theoretical models, specifically density functional theory
�DFT� calculations, and to show that in some, but not all,
cases, the theoretical calculations also obey a law of corre-
sponding states. This is a useful observation as it allows one
to improve the quantitative accuracy of theoretical calcula-
tions that are often based on intrinsically inaccurate equa-
tions of state. These demonstrations, which are all of an em-
pirical nature, are made for the case of surface tension but it
is hoped that the concepts may prove more generally appli-
cable.

In this paper, we describe the results of Monte Carlo
�MC� simulations of a LJ fluid with the potential truncated at
several different points. We have chosen to truncate and shift
the LJ potential, vLJ�r�, so that the potential used in this work
is v�r ;rc�=vLJ�r�−vLJ�rc� for r�rc and v�r�=0 for r�rc.
The choice to shift the potential is made with a view to
applications where such a shift is often made, but the study
could equally well have been performed with an unshifted
potential. We do not shift the force, i.e., we do
not use ṽ�r ;rc�=vLJ�r�−vLJ�rc�− �r−rc�vLJ� �rc� with vLJ� �r�
=dvLJ�r� /dr inside the cutoff, as is usually done in molecular
dynamics simulations to avoid impulsive forces: our poten-
tial is truncated and shifted but the force is not shifted. This
choice was made in order to allow for comparison with pre-
vious MC studies.

In the simulations a slab of liquid is bounded on both
sides by vapor. The surface tension is determined using the
method of Bennett11,12 as there seems to be some evidence

that this method is more robust than other commonly used
techniques.13 It is often the case that the quantity of interest
is the surface tension for the infinite-ranged potential. Since
simulations almost always make use of truncated potentials,
various techniques have been developed to approximate the
so-called long-range corrections, i.e., the difference between
quantities calculated with the truncated potential and the
infinite-ranged quantities.4 We do not include any such cor-
rections here since our goal is actually to study the truncated
potentials. Thus, each value of the cutoff defines a different
potential with its own coexistence curve and thermodynam-
ics.

In Sec. II, we present the simulation techniques used in
our work. Section III contains a discussion of our results
including a comparison to previous work. Since one of the
motivations for this work is to provide a base line for testing
theories of the liquid state, we illustrate this by comparing
our results to DFT calculations and by testing the law of
corresponding states. We give our conclusions in the last
section.

II. SIMULATION METHODS

Simulations are performed with a standard metropolis
MC algorithm �MC-NVT� for a system of N particles of mass
m at temperature T in a volume V=LxLyLz, where Lx, Ly, and
Lz are the dimensions of the rectangular simulation cell. Pe-
riodic boundary conditions are used in all directions. Par-
ticles interact via the LJ potential,

vLJ�r� = 4����

r
�12

− ��

r
�6� , �1�

which is truncated and shifted so that the potential simulated
is

v�r� = �vLJ�r� − vLJ�rc� , r � rc

0, r � rc,
� �2�

where rc is the cutoff radius. The minimum dimension of the
box must be larger than twice the cutoff to avoid self-
interactions via the periodic boundaries so two different sys-
tem sizes were used: a system of 2000 atoms for cutoffs

TABLE I. Surface tension determined from simulation as a function of temperature for different cutoffs.

Temperature r
c
*=2.5a r

c
*=3a r

c
*=4a r

c
*=4b r

c
*=6b

0.70 0.584�27� 0.770�21� 0.964�46� 0.914�30� 1.070�13�
0.72 0.561�26� 0.726�25� 0.899�22� 1.034�7�
0.75 0.511�20� 0.698�28� 0.825�31� 0.959�8�
0.80 0.421�19� 0.608�16� 0.748�25� 0.736�32� 0.847�13�
0.85 0.315�13� 0.480�12� 0.633�24�
0.90 0.228�13� 0.384�15� 0.542�16� 0.484�33� 0.638�8�
0.95 0.181�11� 0.314�12� 0.443�22�
1.0 0.106�7� 0.234�8� 0.348�11� 0.313�59� 0.438�15�
1.05 0.156�11� 0.258�23�
1.1 0.111�16� 0.200�12� 0.261�13�
1.15 0.074�10� 0.108�14�
1.2 0.054�6� 0.067�15� 0.063�19� 0.105�5�
aUsing approximately 2000 atoms.
bUsing approximately 8000 atoms.
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rc /��4.0 and 8000 atoms for cutoffs rc /��4.0. The use of
both systems for rc=4.0� allows for a check of finite-size
effects. Each simulation starts from a rectangular box �Lx

=Ly =L, Lz=4L for the smaller systems or Lx=Ly =2L for the
larger systems� filled with a dense disordered arrangement of
particles ��*	��3=0.8� surrounded along the z-direction by
two similar rectangular boxes containing particles in a low
density state ��*
0.01� thus giving an overall length of Lz

=12L. The total simulation box has sides of length Lx=Ly

=9.15� �smaller� or twice this for the larger cells and Lz

=109.63�. The liquid film located in the middle of the box
has a thickness �z�27� so that the two interfaces do not
influence each other. The system is first equilibrated during
5�105 MC cycles �one cycle=N updates� after which the
positions of the particles are saved every 20 cycles during
5�105 cycles. This ensemble of 2.5�104 configurations is
used to compute the density profile and the surface tension
by Bennett’s method.

Although several methods are available for the compu-
tation of the surface tension, Bennett’s approach has been
chosen because of its accuracy.13 In Bennett’s method the
calculation of the surface tension follows from the definition

	 = � �F

�A
�

N,V,T
, �3�

where F is the free energy and A is the area of the liquid-
vapor interface. In its implementation the method requires
that one performs two simulations: one for system 0 of in-
terface area A0, and another for system 1 of interface area
A1=A0+�A. In this work �A /A=5�10−4. The free energy
difference �F between the two systems is evaluated by the
method of acceptation ratio which starts with the computa-
tion of �E01=E01−E00, which is the difference between E00,
the energy of a configuration of system 0, and E01, the energy
of a new configuration obtained from the previous one by
rescaling the positions of the particles:12,14 x�=x�A1 /A0�1/2,
y�=y�A1 /A0�1/2, and z�=z�A0 /A1�. Similarly one computes
�E10=E10−E11 obtained from a configuration of system 1
following an inverse rescaling of the positions. �F is ob-
tained by requiring that

�
n0

f��E01 − �F� = �
n1

f��E10 + �F� , �4�

where �n0
��n1

� is a sum over the configurations of systems
0 �1�, and f�x�= �1+exp�
x��−1. Then, taking into account
the fact that the system contains two flat interfaces, the value
of the surface tension is given by 	=�F / �2�A�.

III. RESULTS

A. Comparison to previous results

Our results for the surface tension as a function of the
cutoff are given in Table I. Note that all quantities are re-
ported in reduced units so that the reduced temperature is
T*=kBT /�, the reduced cutoffs are r

c
*=rc /�, and the reduced

surface tension is 	*=	�2 /�. In Fig. 1 we show our results
for cutoffs of r

c
*=2.5 and 6.0 compared to the MC data of

Haye and Bruin15 for the shorter cutoff and to the MD data
of Duque et al.16 �who appeared to shift the forces� and
Potoff and Panggiotopoules17 and Mecke et al.1 The latter
two are shown even though they include long-ranged correc-
tions. Our data are seen to be very consistent with the MC
data obtained without long-ranged corrections and to lie
slightly below the corrected data, as expected.

0.6 0.8 1 1.2
T*

0

0.5

1

γ∗

r
c

*
=2.5

r
c

*
=6

FIG. 1. �Color online� The surface tension as a function of temperature for
two different cutoffs. The open circles are our data, the filled circles are
from Duque et al. �Ref. 16�, the squares are from Mecke et al. �Ref. 1�, the
diamonds are from Potoff and Panagiotopoulos �Ref. 17�, and the triangles
are from Ref. 15. Note that the Mecke and Potoff data both include long-
ranged corrections.
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FIG. 2. �Color online� Comparison of our simulation data to a DFT model
�Ref. 9�. The panel on the left shows the results of the theory using an
empirical equation of state while the results on the right were obtained using
thermodynamic perturbation theory. The lines are ordered from the smallest
cutoff �lowest lines� to the largest cutoff �highest lines� and were calculated
for r

c
*=2.5,3 ,4 ,6 ,�. The data are represented by circles �2.5�, squares �3�,

diamonds �4�, filled diamonds �4—larger system�, and triangles �6�.
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FIG. 3. �Color online� The fit of the difference in liquid and vapor densities,
as determined from simulation �symbols�, to the renormalization group
functional form �lines�. The data are shown as circles �Rc=6.0�, open
squares �Rc=4.0, larger cell�, filled squares �Rc=4.0, smaller cell�, diamonds
�Rc=3.0�, and triangles �Rc=2.5�.
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B. Comparison to DFT

In Fig. 2, we compare our results to the predictions of a
recently proposed DFT model.9 The DFT requires knowl-
edge of the bulk equation of state and the figure shows re-
sults using two different inputs: the 33-parameter equation of
state of Johnson et al.18 and first order Barker–Henderson
�BH� thermodynamic perturbation theory.19,20 Both versions
of the theory are in good qualitative agreement with the data,
showing the decrease in surface tension as the range of the
potential decreases. It might be thought that the use of an
empirical equation of state should automatically give supe-
rior results to an approximation, such as thermodynamic per-
turbation theory, but this is not necessarily the case since the
equation of state is fitted to data for the infinite-ranged po-
tential. The finite cutoff is accounted for using simple mean-
field corrections12,18 and these become increasing inaccurate
as the cutoff becomes shorter and, for fixed cutoff, as the
fluid density becomes higher. The latter condition means, in
the present context, increasing inaccuracy as the temperature
decreases. Both of these trends are confirmed by the figure.
The decrease in accuracy with decreasing cutoff can be seen
in the fact that the critical point �corresponding to the tem-
perature at which the surface tension extrapolates to zero� is
less accurately estimated for the smaller cutoffs than for the
larger cutoffs.

The perturbation theory, on the other hand, takes the
cutoff into account more accurately and consistently so that
no strong change in accuracy is expected as the cutoff de-
creases. However, the theory itself is expected to be less
accurate for higher densities so again a drop in accuracy with
decreasing temperature would be expected and that is indeed
seen in the figure. Furthermore, perturbation theory is in gen-
eral going to be inaccurate near the critical point as it does
not take into account renormalization effects which tend to
lower the critical point. These effects are less pronounced for
shorter-ranged potentials and indeed the perturbation theory
seems more consistent with shorter-ranged potential.

C. Corresponding states

The principle of corresponding states is a generalization
of the results of the van der Waals equation of state.21 The
idea is that the properties of simple liquids should be univer-

sal functions of the state variables, density, and temperature,
scaled to the critical point. In this section, we test this hy-
pothesis by applying it to the surface tension in the case of a
potential with two intrinsic length scales. The first step is
therefore to determine the critical temperatures and densities
of the various truncated potentials. Since the theoretical cal-
culations require an equation of state as input, the critical
points are easily determined. To determine them from the
simulations, we took five independent averages over 5000
configurations and fitted the density profiles in each case to a
hyperbolic tangent and then from these extract the coexisting
vapor and liquid densities at each temperature. A study of the
size dependence of the critical properties of small systems
led Wilding22 to conclude that for temperatures more than
about 5% lower than the critical temperature, the coexistence
densities obtained from simulation are well described by the
nonclassical relation ��=�c+A�Tc−T��B�Tc−T�0.325,
where the liquid �vapor� corresponds to the plus �minus� sign
and where �c is the critical density. The nonclassical expo-
nent is the best estimate from renormalization group
theory.23,24 Based on such results, which imply that the
mean-field behavior expected to be found for small system is

TABLE II. The critical points for the LJ potential truncated at different values. The theoretical values were
determined using the empirical JZG equation of state �Ref. 18� and the first order BH perturbation theory.

R
c
*

MC Theory-JZG Theory-BH

T
c
* �

c
* T

c
* �

c
* T

c
* �

c
*

2.5 1.10�1�a 0.31�9�a 1.03 0.233 1.18 0.301
3.0 1.18�1�a 0.31�7�a 1.16 0.317 1.28 0.300
4.0 1.26�1�a 0.31�5�a 1.24 0.317 1.35 0.298
4.0 1.25�2�b 0.30�6�b

¯ ¯ ¯ ¯

6.0 1.30�2�b 0.32�9�b 1.28 0.317 1.39 0.297
� 1.31c 0.317c 1.30 0.317 1.41 0.297

aUsing approximately 2000 atoms.
bUsing approximately 8000 atoms.
cFrom Ref. 27.
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FIG. 4. �Color online� The scaled surface tension, 	**		 /Tc�
2/3, as a

function of distance from the critical temperature. The left panel includes the
theoretical curves based on the empirical JZG equation of state, shown as
full line �R

c
*=��, dotted line �R

c
*=6�, dashed line �R

c
*=4�, dashed-dotted

line �R
c
*=3�, and dashed-dotted-dotted line �R

c
*=2.5� and the simulation

data, shown as circles �R
c
*=6�, filled squares. �R

c
*= 4,2000 atoms�, open

squares �R
c
*=4, 8000 atoms�, diamonds �R

c
*=3�, and triangles �R

c
*=2.5�.

The right hand panel shows only the data from simulation as well as the
estimated error. In both cases, the thin line is a best fit to all of the data
�theory and simulation� of the form 	**=	

0
**�1−T /Tc�1.26 with 	

0
**=2.09.
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confined to temperature near the critical temperature, several
authors25,26 used this expression to determine critical proper-
ties from simulations and we have followed the same proce-
dure. Thus, the critical temperatures were from 1

2 ��l−�v�
=2B�Tc−T�0.325 after which the critical density was deter-
mined using the law of the rectilinear diameter, 1

2 ��l+�v�
=�c+A�Tc−T�. The results of these fits are illustrated in Fig.
3 and summarized in Table II. The largest errors in this pro-
cedure are in the determination of the critical density. Noting
that the critical density is virtually the same in all of the
calculations, except the case of Johnson et al. and a cutoff of
2.5�, which is known to be anomolous,18 we can minimize
errors by not using the critical density in the corresponding
states scaling.

Figure 4 shows the surface tensions, as determined from
simulation and theory using the Johnson, Zollweg, and Gub-
bins �JZG� equation of state, scaled to the critical tempera-
ture as a function of distance from the critical temperature.
Despite wide range of cutoffs and the mixture of data from
simulations and theory, it is nevertheless seen that the data
do in fact obey the law of corresponding states to a good
approximation. However, the same scaling of the theoretical
calculations using the equation of state from thermodynamic
perturbation theory, shown in Fig. 5, does not give a single
curve. It would appear that care must therefore be taken in
the application of the corresponding state mapping to par-
ticular DFT models.

IV. CONCLUSIONS

We have presented our determination of the liquid-vapor
surface tension in a LJ fluid as a function of the range of the
potential. The data give a systematic picture of the variation
of surface tension with the cutoff and are in agreement with
previous studies. It is hoped that this can serve as a useful
benchmark for the development of theories of inhomoge-
neous liquids. Indeed, the results were compared here to cal-
culations made using a recently developed DFT and the

strengths and weaknesses of the theory are evident; while it
gives a good semiquantitative estimate of the surface tension
for all cutoffs, errors on the order of 10% are present indi-
cating that further improvement is possible.

We have also tested the law of corresponding states by
showing our results from both simulation and theory scaled
to the critical density and temperature. For the simulation
data and the theoretical calculations based on an empirical
equation of state, the law of corresponding states appears to
be obeyed. Høwever, the calculations based on the equation
of state from first order perturbation theory do not appear to
scale well at all. These results indicate that care must be
exercised before assuming that the law of corresponding
states applies to particular theoretical models.
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