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Homogeneous nucleation is formulated within the context of fluctuating hydrodynamics. It is shown
that for a colloidal system in the strong damping limit the most likely path for nucleation can be
determined by gradient descent in density space governed by a nontrivial metric. This is illustrated
by application to low-density/high-density liquid transition of globular proteins in solution where
it is shown that nucleation process involves two stages: the formation of an extended region with
enhanced density followed by the formation of a cluster within this region. © 2011 American Institute
of Physics. [doi:10.1063/1.3657400]

INTRODUCTION

Homogeneous nucleation is a fundamental physical pro-
cess of importance in fields as diverse as chemistry, materials
science, biology, and cosmology. Our basic understanding of
it goes back to Gibbs.1 The physics is governed by the fact
that the excess free energy of a liquid cluster relative to the
vapor has a negative contribution that scales as the volume
and a positive contribution due to surface tension that scales
as the surface area. In classical nucleation theory (CNT) it is
assumed that the cluster is spherical, its interior is in the bulk
liquid state, and the surface tension is the same as for the co-
existing liquid and vapor so that the free energy of the cluster
as a function of its radius can be calculated giving a quantita-
tive picture of homogeneous nucleation.1

This description has several shortcomings. The surface
tension is generally not constant and, especially for small
clusters, can depend strongly on the size of the cluster. There
is also no reason that the density within the cluster should be
constant or, even if it were, that it should be equal to the bulk
density for all cluster sizes. A more detailed picture can be
developed using density functional theory (DFT) which pro-
vides models of the free energy as a functional of the density
profile (see, e.g., Refs. 2 and 3). One can describe the den-
sity according to some parametrization (such as a hyperbolic
tangent) which will involve at least three parameters: the cen-
tral density, the radius, and the interfacial width, and proceed
by choosing a reaction coordinate – such as the radius of the
cluster – and minimizing the free energy while holding the
reaction coordinate constant. This does indeed lead to finite
interfacial widths and size-dependent central densities, as ex-
pected (for recent examples, see Refs. 4 and 5).

Despite being physically reasonable, there are sig-
nificant conceptual problems with this approach, such as
the arbitrariness of the reaction coordinate. As described,
the nucleation pathway will consist of a monotonically
increasing radius with the other parameters determined by
the minimization. However, one could just as well choose the

a)Electronic mail: jlutsko@ulb.ac.be; http://www.lutsko.com.

number of molecules in the cluster as the reaction coordinate
in which case – in principle – the radius need not increase
monotonically along the pathway since the mass of the
cluster can increase by increasing the width while, at the
same time, decreasing the radius.5 Even the excess mass is
not a good reaction coordinate in general and imposing more
complex constraints can, at least for some models, lead to
spurious divergences.6

The fundamental difficulty underlying these and other
equilibrium, free-energy based approaches is that the physi-
cal description is incomplete since homogeneous nucleation is
a fundamentally nonequilibrium, fluctuation-driven process.
This raises several questions about the classical description
such as whether the free energy plays such a central role
and whether it is necessary that the growing cluster actually
passes through the critical cluster. The solution is to develop
a nonequilibrium, dynamical description of homogeneous nu-
cleation and this is the goal here. The following development
is based on Brownian dynamics wherein molecules move ac-
cording to Newton’s laws while being subject to a frictional
force as well as fluctuating forces. This is a simple model for
colloids and the important case of macromolecules in solution
in which case the friction and the fluctuations come from the
bath/solvent.

THEORY

The system consists of a collection of molecules of
unit mass with positions and momenta qi ,pi interacting via
a potential V. Additionally, the particles interact with a
bath/solvent of light particles and this is described via a fric-
tional drag and a fluctuating force:

·qi = pi ,
·pi = − ∂V

∂qi

− γ pi + fi (t) , (1)

where all components of the fluctuating force are Gaussian
and independent,

〈fi (t) fj (t ′)〉 = 2γ kBT 1δij δ(t − t ′). (2)
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Defining the local density and momentum density, respec-
tively, as {

ρ̂ (r; t)

ĵ (r; t)

}
=

∑
i

{
1
pi

}
δ (r − qi) , (3)

one sees that these satisfy the exact equations

∂ρ̂ (r; t)

∂t
= −∇·̂j (r; t) ,

∂̂j (r; t)

∂t
= −∇·

∑
i

pipiδ (r − qi)−
∑

i

∂V

∂qi

δ (r − qi) (4)

− γ ĵ (r; t) +
√

2γ kBT ρ̂ (r; t)F (r;t)

with

〈F (r;t) F
(
r′;t ′

)〉 = δ(t − t ′)δ(r − r′)1. (5)

Coarse graining in space and assuming local equilibrium
leads to a mesoscopic description of fluctuations in terms of
fluctuating hydrodynamics. Neglecting temperature fluctua-
tions gives

∂ρ (r)

∂t
+ ∇ · j (r) = 0,

∂j (r)

∂t
+ ∇ · j (r) j (r) /ρ (r) + ρ (r) ∇ δF [ρ]

δρ (r)
(6)

+∇ · � (r) = −γ j (r) +
√

2γ kBTρ (r)ξ (r; t) ,

where ρ (r) and j (r) are the coarse-grained local density and
momentum density, F[ρ] is the coarse-grained free energy,
and � is the dissipative part of the stress tensor which has
both a deterministic and a fluctuating contribution.7 The free
energy term is a representation of the local pressure and has
been discussed extensively in the DFT literature : its use here
can be viewed as a local equilibrium approximation.2, 8–10 The
quantity ξ (r; t) is the noise due to the Brownian dynamics
and is white and delta-correlated in space and time. Note that
this is just the natural generalization of Landau and Lifshitz’s
fluctuating hydrodynamics taking account of the Brownian
forces. Assuming that the velocity will always be small due
to the damping, the convective term can be neglected so that
the second equation becomes linear in the momentum density.
Eliminating the momentum current then gives

∂2ρ (r)

∂t2
+ γ

∂ρ (r)

∂t
− ∇·

(
ρ (r) ∇ δF [ρ]

δρ (r)

)
(7)

+∇ ·
√

2γ kBTρ(r)ξ (r; t) = 0.

In the following, the second-time derivative, the so-called
inertial term, will be neglected, as is usual in the strong-
damping approximation. Then, when the density is low, in
the ideal gas limit, the first term on the right becomes
γ −1kBT ∇2ρ (r) so that D ≡ γ −1kBT can be identified as the
diffusion constant.

The use of fluctuating hydrodynamics as basis for study-
ing nucleation is similar to the approach developed by
Langer.11 The primary difference here is that the emphasis
is on understanding the time-evolution of the formation of the

critical cluster whereas previous work focused on the nucle-
ation rate. This development differs from more phenomeno-
logical approaches which are couched entirely in terms of or-
der parameters, such as nonequilibrium thermodynamics12 or
phase field theory,13 in that nonlinearities of the transport co-
efficients and colored noise occur naturally and play an impor-
tant role. One of the goals below is to relate the hydrodynamic
description to the one involving order parameters.

In order to characterize the generic properties of the pro-
cess of nucleation, we focus here on the most likely path
(MLP) where a “path” is understood as a function ρ(r; t) con-
necting the initial state of a pure metastable phase and the
final state of a pure stable phase. When the noise amplitude is
small (as in the strong damping limit), most systems should
go through a nucleation pathway close to this generic result.
In general, determining the MLP is complex. However, with-
out the inertial term, Eq. (7) is a gradient-driven, diffusive
dynamics which obeys a fluctuation-dissipation relation. By
a straightforward generalization of Ref. 14, it can be shown
that for this type of dynamics the MLP connecting metastable
states does indeed pass through the saddle point and that it
coincides with either the forward-time or backward-time de-
terministic trajectory in density space.15 The MLP can there-
fore be determined by starting at a local minimum and moving
along the deterministic path

∂ρ (r)

∂t
= ±D∇·

(
ρ (r) ∇ δβF [ρ]

δρ (r)

)
, (8)

where the sign is chosen according to the direction one wishes
to move.14, 15

Equation (8) is the primary theoretical result of this com-
munication. It superficially resembles the usual dynamic den-
sity functional theory (DDFT) equation2, 7, 9, 10 but is, in fact,
considerably more general. It says that the most likely path
can be determined by following the DDFT dynamics when
that dynamics does indeed connect the desired states such as
in passing from a high-energy to a low-energy state with no
barrier separating them. (An example of this would be spin-
odal decomposition.9) However, DDFT cannot describe the
crossing of a free energy barrier as it specifically pertains to
the ensemble-averaged density. In essence, it is the result of
averaging Eq. (7) (without the inertial term) over the noise.
In contrast, Eq. (8) also describes the MLP when this means
going uphill against the free energy gradient. In that case, it
says that the MLP can be obtained by reversing the sign of
the gradient or, equivalently, by following the time-reversed
dynamics.14, 15 It can therefore be viewed as an extension
of DDFT to barrier-crossing problems, given the various as-
sumptions set out above. This simple result is strongly depen-
dent on the existence of the fluctuation-dissipation relation in
Eq. (7) and on the assumption of weak noise (compared to the
thermodynamic driving force). It will not be exact if either of
these conditions are violated and, in particular, the much more
complicated strong-noise result will be discussed in at a later
time. Finally, it is important to note that Eq. (8) is simply a
mathematical means of identifying the MLP and that it does
not imply in any sense that the actual (strongly dissipative)
dynamics is time-reversal invariant.
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In principle, Eq. (8) could be integrated directly to de-
termine the MLP or some other technique, such as the string
method, used to determine the path. However, the goal here is
to generalize previous descriptions of nucleation which are
based on a set of order parameters characterizing the sys-
tem. In CNT, the cluster is assumed to be spherical and the
only parameter is the size of the cluster: more generally, a
minimal set would include some measure of the density in-
side the cluster and the width of the interface as well. In the
present formalism, the order parameters must somehow be re-
lated to the spatial density since it is the fundamental quantity
describing the evolution. We therefore imagine that the den-
sity profile is approximated by some test function of the form
ρ (r, t) = f (r; x (t)), where x (t) stands for the set of order
parameters. It is possible to give an exact equation for the
evolution of the parameters based on an analysis of the MLP
but here a more heuristic method is used. First, Eq. (8) is in-
tegrated over a spherical volume of radius r giving

∂m (r; x (t))

∂t
= ±D

∫
S(r)

ρ
(
r′) (

∂

∂r ′
δβF [ρ]

δρ (r′)

)
dS ′, (9)

where m (r; x (t)) is the mass inside the spherical shell of ra-
dius r and the notation indicates a surface integral over that
shell. Then, spherical symmetry is assumed and Eq. (9) is
multiplied by r−2ρ−1 (r) (∂m(r)/∂xa) and integrated over r
to get

gab

dxb

dt
= ±D

1

4π

∂β	

∂xa

, (10)

where repeated indices are summed and the metric is

gab = 4π

∫ ∞

0

1

r2ρ (r)

∂m (r)

∂xa

∂m (r)

∂xb

dr (11)

and where 	 = F − μN is the grand potential which arises
due to an integration by parts. This becomes exact if the
parametrization is complete in the sense that f (r; x (t)) is
able to represent any well-behaved function arbitrarily closely
(e.g., an expansion in a complete set of basis functions). The
exact minimization of the action for the case of a finite num-
ber of order parameters and its relation to this approximation
will be discussed elsewhere.

APPLICATION TO LOW DENSITY/HIGH DENSITY
LIQUID TRANSITION IN GLOBULAR PROTEINS

Many proteins in solution exhibit a phase transition be-
tween a low density gas-like phase and a high density liquid-
like phase (for information on the phase behavior of proteins,
see, e.g., Refs. 16 and 17). This behavior can be modeled us-
ing an effective pair-potential in which case it becomes anal-
ogous to the vapor/liquid transition in simple fluids. Calcula-
tions were performed for the ten Wolde-Frenkel18 model po-
tential for globular proteins having hard-core diameter σ and
energy scale ε using the squared-gradient free energy model,

F [ρ] =
∫ (

f (ρ(r)) + 1

2
K(∇ρ(r))2

)
dr, (12)

where f(ρ) is the bulk free energy per unit volume, calculated
using thermodynamic perturbation theory, and the coefficient

FIG. 1. The excess particle number, excess free energy, and central density
relative to their values in the critical cluster as functions of the natural reaction
coordinate, s, where s = 0 corresponds to the initial vapor phase and the final
liquid phase occurs for s = ∞. The vertical line marks the transition between
the two growth regimes (see text).

K was calculated using a recently derived approximation.5

Equation (8) was integrated (assuming spherical symmetry)
by discretizing the right hand side using Eq. (10) and the
method of piece-wise linear profiles5 (equivalent to a variable
grid method). At a temperature of kBT = 0.375ε and with
a pressure supersaturation of 1.159, the exact excess energy
barrier was found to be �β	 = 75.8 with 1158 molecules
in the cluster, while the discretization with 19 parameters
gives a value of 77.1 and 1175 molecules. The MLP was
then determined by starting near the critical cluster and per-
turbing in the direction of the negative eigenvalue19 and in-
tegrating Eq. (10) numerically.20 In tracing the backwards
part of the path, the calculations were terminated when β�	

= 1kBT since the weak noise approximation is not applicable
for lower energies.21

Figure 1 shows the evolution of the excess number of par-
ticles, excess free energy, and of the central density. The in-
dependent variable is the natural reaction coordinate which
is the distance along the nucleation pathway as calculated
using the metric, Eq. (11). When the cluster is large, the
path is similar to that which would be obtained using typi-
cal heuristic methods. However, for smaller droplets, the re-
sults are quite nonclassical. Figure 2 gives the spatial size of
the droplet according to two different measures: the equimo-
lar radius as calculated based on the central density and the
(model-dependent) total spatial extent of the droplet (in this
model, the droplet always has a well-defined finite support).
Combining the information in these two figures, it is seen that
the MLP begins with a spatially extended disturbance having
very low density but a fixed excess number of molecules (in
the present case, about 450).

The interpretation of these results is not as different from
the usual picture of nucleation as they might at first appear.
At short times, during which the equimolar radius is nearly
constant, a small increase in density forms over a spatially
extended volume. From Fig. 1, it is apparant that, despite its
spatial extent, the excess energy of this density fluctuation
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FIG. 2. The same as Fig. 1, but showing the equimolar radius, Req, and the
total spatial extent, Rtotal, along the path. The vertical line marks the same
point as in Fig. 1.

is quite small so that its formation is not improbable. The
second part of the process is the formation of a cluster within
this region of enhanced density. That nucleation would pref-
erentially take place in a region of enhanced density, which
therefore already contains some of the excess mass needed
to form a cluster, is quite reasonable. Indeed, having the nec-
essary excess mass present locally allows the cluster to form
more rapidly than if matter had to diffuse in from the sur-
rounding bulk. What does appear strange is the directed nature
of process with the density fluctuation appearing to contract to
form the nucleus. This is partly a result of insisting on spher-
ical symmetry and partly due to a well-known property of the
MLP wherein it typically involves a system crossing a barrier
in the shortest number of steps possible with no back-tracking
or variation.21 The MLP is of course an abstraction: an actual
realization of the processes will involve fluctuations around it
and will not appear so deterministic (see, e.g., Ref. 21). Fi-
nally, because mass is conserved, any dynamical process of
cluster formation is going to give the appearance of drawing
in mass from the boundaries of the system.

CONCLUSIONS

A description of nucleation applicable to colloids and
macromolecules in solution based on fluctuating hydro-
dynamics has been developed. It was shown that under
assumptions of strong dissipation and weak noise the most

likely path could be determined by gradient descent on the
free energy surface and that it necessarily passes through the
critical point, thus providing justification for more heuristic
methods based solely on free energy considerations.6 It is
also interesting to note that Eq. (10) can be seen to justify
more phenomenological treatments of nucleation in which a
set of order parameters is assumed to evolve stochastically
as dx/dt = L(δF/δx) + ξ with a fluctuation-dissipation
relation determining the amplitude of the noise. The same
approach can be applied to other nucleation phenomena, such
as heterogeneous nucleation, nucleation in confined systems,
and even, conceivably, to transitions in granular fluids.
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