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A general theory of nucleation for colloids and macromolecules in solution is formulated within
the context of fluctuating hydrodynamics. A formalism for the determination of nucleation path-
ways is developed and stochastic differential equations for the evolution of order parameters are
given. The conditions under which the elements of classical nucleation theory are recovered are
determined. The theory provides a justification and extension of more heuristic equilibrium ap-
proaches based solely on the free energy. It is illustrated by application to the low-concentration/high-
concentration transition in globular proteins, where a novel two-step mechanism is identified, where
the first step involves the formation of long-wavelength density fluctuations, and the second step is
the actual nucleation event occurring within the fluctuation. © 2012 American Institute of Physics.
[doi:10.1063/1.3677191]

I. INTRODUCTION

Nucleation is a fundamental physical process of impor-
tance in fields as diverse as chemistry, materials science, biol-
ogy, and cosmology. Our basic understanding of it goes back
to Gibbs’ discussion of the nucleation of a liquid droplet in a
metastable vapor, see, e.g., discussion in Ref. 1. The physics
is governed by the fact that the excess free energy of a cluster
of new phase relative to the mother phase has a negative con-
tribution that scales as the volume and a positive contribution
that scales as the surface area. The former is due to the fact
that the bulk new phase has lower free energy than the bulk
mother phase, while the latter arises from the free-energy cost
of the interfacial region. When the cluster is small, the sur-
face term dominates and the excess free energy of the clus-
ter is positive making the cluster thermodynamically disfa-
vored. When the cluster is large, the volume term dominates,
the cluster has lower free energy than the mother phase and
so cluster growth is favored. Separating the two regimes is
the metastable critical cluster. In classical nucleation theory
(CNT), it is assumed that the cluster is spherical, that its inte-
rior is in the bulk new-phase state and that the surface tension
is the same as for a planar interface of the coexisting new
and mother phases so that the free energy of the cluster as a
function of its radius can be calculated giving a quantitative
picture of homogeneous nucleation.1

The dynamics of nucleation – the nucleation rate, the de-
termination of the nucleation pathway, and the nature of the
post-critical growth of clusters – is a more involved subject.
In CNT, the starting point for understanding nucleation rates
is the monomer attachment/detachment picture that leads to
the Becker-Döring equations.1, 2 These are simply rate equa-
tions for number of clusters of size N based on the processes
of monomer attachment and detachment. Following Frenkel,
Zeldovich, and co-workers,1 these equations can be converted

a)Electronic mail: jlutsko@ulb.ac.be; URL: http://www.lutsko.com.

into a Fokker-Planck equation for the evolution of the distri-
bution of clusters. All of these formalisms can be used to es-
timate nucleation rates. The physics enters via the monomer
attachment and monomer detachment rates which in general
depend on the thermodynamic driving force (the derivative of
the CNT free energy with respect to cluster size) and the dy-
namics of the surrounding mother phase. In many cases, ade-
quate approximations are available that express the nucleation
rate in terms of e−β��c where β = 1/kBT, kB is Boltzmann’s
constant, T is the temperature, and ��c is the excess free
energy of the critical cluster.

Although physically appealing, this formalism suffers
from a number of deficiencies. First and foremost is the well-
known fact that the nucleation rates estimated from CNT are
often many of orders of magnitude too large or too small3

(see also Fig. 13.8 of Ref. 1). This is largely attributed to a
poor estimate of the free-energy barrier: more sophisticated
methods allow for better estimates of the barriers. A common
way to get improved estimates of the barriers is via classi-
cal density functional theory (DFT; Refs. 4, 5, and 7) (for
early examples of this approach see Refs. 8 and 9). How-
ever, the use of DFT raises new conceptual questions. The
monomer attachment/detachment picture requires estimates
of the rates for all cluster sizes which in turn means estimat-
ing “free energies” for all clusters. But, DFT is an equilibrium
theory that can only describe – at best – stationary states on
the free-energy surface. This fact follows trivially since the
procedure to determine free energies via DFT begins with the
extremization of the free energy to get the structure of the
cluster and naturally must result in a minimum, maximum,
or saddle point but it is also connected to the theorems that
underlay DFT, which only attach significance to minima of
the free-energy functional.5, 10 This, therefore, raises the ques-
tion as to whether DFT can be used to determine the nucle-
ation pathway, i.e., the sequence of necessarily nonequilib-
rium states leading from the pure unstable phase to the critical
cluster.
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Putting aside the conceptual questions, there are currently
two primary approaches to determining nucleation pathways
using DFT. The first, and oldest, is to extremize the free en-
ergy under some sort of constraint that stabilizes non-critical
clusters: in effect, imposing a stabilizing external field.8, 9, 11

The problem with this approach is that there are numerous
possible ways to implement it. To take a simple example, one
could minimize the free energy at fixed radius so that the path-
way would be mapped out by varying the radius which acts as
the reaction coordinate (or “order parameter”). However, one
could equally well minimize at fixed number of molecules
in the cluster, N, so that this becomes the order parameter.
These do not necessarily give the same result since, e.g., the
number of molecules can increase with the radius actually de-
creasing provided the interfacial width or interior density of
the cluster increases enough to compensate; indeed, this actu-
ally occurs in some calculations.12 Notwithstanding this prob-
lem, the constraint approach continues to be widely used.13–16

A more recent alternative is to search for steepest-descent
paths on the free-energy surface.11, 17–20 However, here there
is also an ambiguity as steepest-descent requires a measure of
distance in parameter space and there is a priori no unique
prescription for this measure.17

It is reasonable to suppose that all of the ambiguity un-
derlying the DFT approaches is due to the fact that DFT is
an equilibrium theory, whereas nucleation is fundamentally
a nonequilibrium, fluctuation-driven process. Viewed in this
way, one can question other aspects of CNT as well, such
as whether it is really necessary that the system even passes
through the critical cluster since the free energy may not be
the only factor controlling the nonequilibrium evolution. Sim-
ilarly, one can also ask why the pre-critical process does not
seem to depend on fluid-kinetics, while these are crucial in
driving post-critical growth. (This question has also been ad-
dressed recently by Peters6 using CNT free-energy models).
All of this suggests that one would like a unified descrip-
tion with the following properties: it is inherently nonequilib-
rium in nature, it is dynamical; it allows for the determination
of the nucleation pathway from the dynamics, it allows for
the determination of nucleation rates and it gives a descrip-
tion of post-critical growth. Of course, one would expect that
it involves free energies in a natural way without assuming
equilibrium and that under some limit the CNT would result
thus also helping to clarify its applicability. Additionally, one
would hope that such a formalism would be sufficiently flex-
ible to be applied to more complex problems involving mul-
tiple order parameters and to determine the relative probabil-
ity of completely different nucleation pathways (e.g., whether
crystals form directly from solution or whether they form in
two steps, passing first through a dense amorphous phase.21)

The aim of this paper is to illustrate an approach that
can satisfy these requirements. Attention will primarily be
focused on nucleation from a vapor or liquid phase, but
the basic ideas could be extended to other systems in obvi-
ous ways. The development is based on Brownian dynamics
where molecules move according to Newton’s laws while be-
ing subject to a frictional force as well as fluctuating forces.
This is a simple model for colloids and the important case of
macromolecules in solution in which cases the friction and

the fluctuations come from the bath/solvent and has the virtue
of allowing for useful simplifications. As described in Sec. II,
the fundamental level of description adopted for the descrip-
tion of nucleation is fluctuating hydrodynamics, in which the
free energy enters the dynamics via a local equilibrium ex-
pression for the pressure, resulting in a set of stochastic differ-
ential equations (SDEs). The most likely path (MLP) is intro-
duced as a means of characterizing the nucleation pathway via
a deterministic equation derived from the stochastic model. In
Sec. III, a reduced description in terms of order parameters is
developed. It is shown that in the weak-noise limit, the MLP
is simply gradient descent on the free-energy surface with a
metric uniquely determined by the dynamics and that it neces-
sarily passes through the critical cluster thus making contact
with the CNT picture. Finally, in Sec. IV three applications
are discussed: nucleation of high-concentration droplets from
a low-concentration solution of globular proteins; the reverse
transition of high-concentration solution to low-concentration
bubbles in an under-saturated solution; and finally the spe-
cialization to a single order parameter so as to recover well-
known results from CNT. For the first application – droplet
nucleation – calculations lead to an unexpected but physi-
cally appealing result, wherein it is found that the coupling
of fluctuations, fluid dynamics, and thermodynamics implies
that nucleation is most likely to occur within regions of en-
hanced density due to long-wavelength density fluctuations.
Section V summarizes the results and discusses possibilities
for further developments. A brief summary of some of these
results has appeared previously.22

II. THE MODEL

A. Dynamics

The system consists of a collection of particles with po-
sitions and momenta qi , pi interacting via a potential V. Ad-
ditionally, the particles interact with a bath/solvent of small
particles and this is described via a frictional drag and a fluc-
tuating force, both characterized by the constant γ ,

·
qi = pi/m,

·
pi = − ∂V

∂qi

− γ pi + ε
√

2γmkBT fi (t) , (1)

where all the components of the force are independent,

〈fi(t)fj (t ′)〉 = 1δij δ(t − t ′). (2)

The coefficient of the noise term is determined by demanding
that the system admits of an equilibrium Boltzmann distribu-
tion thus forcing a fluctuation-dissipation relation. Here and
in the following, an additional parameter, ε, is included to al-
low for the discussion of a weak-noise limit. The physicality
of such a limit will be discussed below.

Defining the local density and momentum density,
respectively, as

ρ̂ (r; t) =
∑

i

δ (r − qi) ,

(3)

ĵ (r; t) =
∑

i

piδ (r − qi) ,
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one sees that these satisfy the exact equations

∂ρ̂ (r; t)

∂t
= − 1

m
∇ · ĵ (r; t) ,

∂̂j (r; t)

∂t
= −∇ ·

∑
i

pipi

m
δ (r − qi) −

∑
i

∂V

∂qi

δ (r − qi)

− γ ĵ (r; t) + ε
√

2γmkBT ρ̂ (r; t)F (r;t) (4)

with

〈F(r;t)F(r′;t ′)〉 = δ(t − t ′)δ(r − r′)1. (5)

Note that the actual form of the noise term that occurs in the
momentum equation is

ε
√

2γmkBT
∑

i

δ (r − qi) fi (t) . (6)

However, it is well known that a noise term of the form Bijξ j(t)
(with summation over repeated indices) can be replaced by
another of the form Cijξ j(t) without changing the statistical
properties of the dependent variables provided that coeffi-
cients are related by BilBjl = CilCjl, i.e., the autocorrelation
of the noise is unchanged.23, 24

There are two sources of stochasticity in this problem.
The obvious source is the fluctuating force that represents the
bath or solvent. The second arises because one is not inter-
ested in following a single trajectory of the system but, as
usual, want to consider an average over an ensemble of sys-
tems. In equilibrium, the ensemble is drawn from a known
distribution (the canonical distribution). The distribution for
systems out of equilibrium is generally time-dependent and
one must specify the ensemble for a particular point in time,
e.g., a distribution of initial conditions. In the present case,
because of the two sources of noise, one must carry out this
procedure in two steps: first, the set of values of the fluctu-
ating forces acting on the colloids at each instant in time is
specified. Then, this fixed set of values for the noise simply
acts as an external field coupled to the colloid dynamics and
nonequilibrium statistical mechanics can be developed in the
usual way as an average over an ensemble of initial condi-
tions of the particles. Then, having developed whatever level
of description is of interest, a second average is performed
over the noise. As a result, one can go from the exact bal-
ance equations, Eq. (4), to a description of ensemble-averaged
quantities.

To fix the notation, let �(t) = {qi , pi}Ni=1 represent the
collection of positions and momenta of all N large particles
at time t and to be more explicit one can write �(t; �(0)),
since the phase variables at time t are completely determined
by their values at some earlier time. Similarly, one can write
for the density, for example, ρ̂ (r; t) ≡ ρ̂ (r; �(t ; �(0))). The
probability for the phase variables to have particular initial
values is denoted f (�(0)) and the ensemble-averaged density
is then

ρ(r, t) =
∫

ρ̂ (r; �(t ; �(0))) f (�(0)) d�(0),

=
∫

ρ̂ (r; �) f (�; t) d�, (7)

where in the second line the time-dependence has been moved
to the distribution function.25 Notice that the ensemble-
averaged density and momentum density are all conditional
on the fluctuating forces which for now just act as external
forces. At this point, the usual methods of nonequilibrium sta-
tistical mechanics can be used to develop a hydrodynamic de-
scription – either a mesoscopic fluctuating hydrodynamics or
a macroscopic, deterministic hydrodynamics, the former hav-
ing the form

∂ρ (r)

∂t
+ 1

m
∇ · j (r) = 0,

∂j (r)

∂t
+ ∇ · j (r) j (r) /ρ (r) + ∇p(r, t) + ∇ · � (r)

= −γ j (r) + ε
√

2mγkBTρ (r)ξ (r; t) , (8)

where ρ (r) and j (r) are the ensemble-averaged local density
and momentum density, and �(r, t) is the dissipative stress
tensor which for the case of fluctuating hydrodynamics will
have both a deterministic part and a fluctuating part. The other
new term that appears here is p(r, t) which is the local pres-
sure. Note that in the present case, the bath acts as a ther-
mostat and so temperature fluctuations and heat transport are
neglected, although in principle the model could be extended
to include them.

The final approximation involves the pressure and can be
motivated in different ways but always amounts to an assump-
tion of local equilibrium. At its most heuristic, one starts with
the Gibbs-Duhem equation for a single-component system,
Ndμ = −SdT + Vdp. For an isothermal system, this gives dp
= ρdμ where ρ is the density. Assuming local-equilibrium
this is generalized to

dp(r, t) = ρ(r, t)dμ(r, t) = ρ(r, t)d
δF [ρ]

δρ (r)
, (9)

which is a widely used approximation (see, e.g., Sec. 8.4 of
Ref. 1). Substituting into the equations for the density and
momentum gives

∂ρ (r)

∂t
+ 1

m
∇ · j (r) = 0,

∂j (r)

∂t
+ ∇ · j (r) j (r) /ρ (r) + ρ (r) ∇ δF [ρ]

δρ (r)
+ ∇ · � (r)

= −γ j (r) + ε
√

2mγkBTρ (r)ξ (r; t) . (10)

An alternative way to motivate this is to evaluate the pressure
under the assumption of a local equilibrium (i.e., Maxwellian)
velocity distribution and using the local-equilibrium version
of the first Yvon-Born-Green equation26 to rearrange the
resulting virial expression for the pressure. The same system
of equations has been developed starting with the Boltzmann
equation.27 Chavanis28 has discussed the derivation of these
equations for coarse-grained quantities (i.e., averaged over
small volumes and time intervals) as well as their derivation
based on the general Landau-Lifshitz fluctuation formalism.28

Chavanis also discusses the difference between this model
and the Cahn-Hillard dynamics, the main point being that the
latter does not include the density in the noise amplitude and
the free-energy term. However it is found, the most important
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assumption is clearly the introduction of the local equilib-
rium expression for the pressure since this is what brings
the free energy into the picture. This assumption of local
equilibrium is, on the one hand, heuristic and represents an
uncontrolled approximation. On the other hand, it is widely
used in nonequilibrium statistical mechanics (e.g., a similar
assumption underlies the generalized Enskog equation25) and
similar approximations are even used for dissipative granular
systems. Thus, while it cannot be rigorously justified it does
represent the “state of the art.”

Having developed the general framework, it is now spe-
cialized to the case of strong dissipation due to the bath. This
assumption greatly simplifies the analysis as it means that
(a) the dissipative stresses can be neglected since they will
act more slowly than the friction due to the bath and (b) the
momentum current will always be small so that the quadratic
convective term can be neglected. The result is

∂ρ (r)

∂t
+ 1

m
∇ · j (r)=0,

∂j (r)

∂t
+ ρ (r) ∇ δF [ρ]

δρ (r)
=−γ j (r) + ε

√
2γmkBTρ (r)ξ (r; t) .

(11)

The linearity allows us to eliminate the momentum giving

1

γ

∂2ρ (r)

∂t2
+ ∂ρ (r)

∂t
= kBT

γm
∇ ·

(
ρ (r) ∇ δβF [ρ]

δρ (r)

)

−∇ · ε

√
2kBT

γm
ρ (r)ξ (r; t) . (12)

Scaling time by 1/γ shows that the second-order time deriva-
tive is of higher order in 1/γ than the other terms so that it can
be neglected in the strong damping approximation leaving

∂ρ (r)

∂t
= kBT

γm
∇ ·

(
ρ (r) ∇ δβF [ρ]

δρ (r)

)

−∇ · ε

√
2kBT

γm
ρ (r)ξ (r; t) . (13)

(Note that this result can be obtained directly from the full
hydrodynamic equations by introducing a scaling of the time
and momentum current of t = γ t* and j = (kBT /γ l)ρ̄j∗, with
ρ̄ a typical density and l a molecular length scale, and noting
that the dissipative stress tensor is of at least first-order in
the momentum current.) Although the coefficient of the noise
term is state-dependent, it is nevertheless the case that the Ito
and Stratonovich interpretations of this stochastic differential
equation are the same as shown in Appendix A. This model is
well known in the literature as the Dean-Kawasaki model24, 29

and it has been widely used, e.g., in the study of the glass
transition. Chavanis28 discusses various approaches to its
interpretation. The derivation sketched here emphasizes the
relation between this model and the more general theory of
fluctuating hydrodynamics because the latter can be used, in
conjunction with the approach described below, to address
related problems to which Brownian dynamics is not appli-
cable such as nucleation in simple fluids, multicomponent
reacting fluids, etc. However, for the specific problem of

nucleation of over-damped colloids, it is worth noting that
the Dean-Kawasaki model can be derived by more rigorous
methods as discussed, e.g., by Kawasaki29 and Chavanis.30

Without the noise term, this is often referred to as dy-
namical density functional theory. Another way of thinking
about this is to say that the usual DDFT results from aver-
aging this result over the noise. The question then arises as to
whether the “free energy” entering here is the thermodynamic
free energy or some other quantity (such as a coarse-grained
free energy) that becomes the free energy after averaging over
the noise. From the sketch given above, it would appear con-
sistent to interpret the free-energy functional in Eq. (13) as
being the free-energy functional for the one-component sys-
tem of large molecules or colloids since it arises from a local-
equilibrium approximation for the pressure which is in turn
entirely due to interactions between the large-particles.

Note that at low density one has4

βF [ρ] �
∫

(ρ (r) ln ρ (r) − ρ (r)) dr, (14)

so that the dynamical equation becomes

∂ρ (r)

∂t
� kBT

γm
∇2ρ (r) − ∇ · ε

√
2kBT

γm
ρ (r)ξ (r; t) , (15)

which is simple diffusion with noise. One can, therefore, iden-
tify D = (kBT)/γ m as the diffusion constant for the large par-
ticles in the bath so that it, and therefore the coefficient γ , can
be determined from the Einstein-Stokes equation based solely
on the size of the particles and the properties of the bath.

B. Spherical symmetry

In principle, this model could be studied numerically.
Here, however, the goal is to make contact with the stan-
dard approach to nucleation and one of the key assumptions
usually made is that of spherical symmetry of the clusters.
One cannot, however, simply assume a spherically symmetric
density profile in Eq. (13) as the noise term breaks spherical
symmetry. One solution would be to average Eq. (13) over a
spherical shell but it proves more convenient and natural to
integrate over a spherical volume.

The total (or cumulative) mass inside a spherical shell of
radius r, m(r), is simply the integral of the density

m (r) =
∫

r ′<r

ρ(r′)dr′. (16)

Integrating the dynamical equation over a spherical shell gives
an evolution equation for the cumulative mass

∂m (r)

∂t
= D

∫
r ′<r

∇′ ·
(

ρ(r′)∇′ δβF [ρ]

δρ(r′)

)
dr′

− ε

∫
r ′<r

∇′ ·
√

2Dρ(r′)ξ (r′; t) dr′,

= D

∫ (
ρ (r) ∇ δβF [ρ]

δρ (r)

)
· r̂d r̂

− ε

∫
r ′<r

∇ ·
√

2Dρ(r′)ξ (r′; t) dr′, (17)
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where Gauss’ theorem has been used to convert the first inte-
gral on the right to a surface integral. It is straightforward to
show that the autocorrelation of the noise term is

δ(r − r ′)δ(t − t ′)2Dε24πr2

×
(

1

4πr2

∫
δ(r ′′ − r)ρ(r′′)dr′′

)
, (18)

where the last term is the density averaged over a spherical
shell of radius r,

〈ρ; R〉S ≡ 1

4πR2

∫
δ (r − R) ρ (r) dr. (19)

Hence, the noise term can be replaced by
ε
√

8πDr2〈ρ; r〉Sξ (r; t), where ξ (r; t)ξ (r′; t′) = δ(r − r′)
δ(t − t′). At this point, since there is no more coupling to the
non-radial noise terms, one can consistently seek a solution
in terms of spherically symmetric density distributions, ρ(r),
thus giving

∂m (r)

∂t
= D4πr2ρ (r)

∂

∂r

δβF [ρ]

δρ (r)

∣∣∣∣
ρ(r)

− ε
√

8πr2Dρ (r)ξ (r; t) . (20)

It is again easy to verify the equivalence of the Ito
and Stratonovich interpretations of this equation (see
Appendix A).

This result can be made somewhat more transparent by
noting that for a spherically symmetric function ρ (r) ≡ ρ (r),
one has

ρ (r) = 1

4πr2

∫
δ(r − r ′)ρ(r′)dr′, (21)

so that for any functional F of ρ(r),

δF [ρ]

δρ (r)
=

∫ ∞

0

δF [ρ]

δρ(r ′)
δρ(r ′)
δρ (r)

dr ′ = δF [ρ]

δρ (r)

1

4πr2
(22)

giving

∂m (r)

∂t
= D4πr2ρ (r)

∂

∂r

(
1

4πr2

δβF [ρ]

δρ (r)

)
− ε

√
8πr2Dρ (r)ξ (r; t) . (23)

Next, using the functional chain rule gives

∂

∂r

(
1

4πr2

δβF [ρ]

δρ (r)

)
= ∂

∂r

1

4πr2

∫ ∞

0

δm(r ′)
δρ (r)

δβF [ρ]

δm (r ′)
dr ′,

= ∂

∂r

1

4πr2

∫ ∞

0
�(r ′ − r)

× 4πr2 δβF [ρ]

δm (r ′)
dr ′,

= −δβF [ρ]

δm (r)
, (24)

where �(x) is the Heaviside step function, so that the SDE
can be written as

∂m (r)

∂t
= −D

∂m (r)

∂r

δβF [ρ]

δm (r)
− ε

√
2D

∂m (r)

∂r
ξ (r; t) .

(25)

This shows very clearly that the spherically symmet-
ric dynamics is gradient-driven with kinetic coefficients
D(∂m (r)/∂r) and obeys a fluctuation-dissipation relation. It
also emphasizes the central role played by the mass in this
approach to nucleation – as opposed to density or any order
parameter – which is a consequence of the fact that the theory
is founded in hydrodynamics where conservation of mass is
always true.

C. Nucleation pathway

The stochastic evolution equation, Eq. (25), could be
used as the basis of numerical simulations. However, the goal
here is to provide a description of the nucleation pathway and
to make connection with more phenomenological descrip-
tions of the nucleation processes. It is therefore necessary to
characterize the typical or expected pathway. One natural way
to do so is to determine the most likely path. When the noise
is weak, it can be expected that typical paths will be close to
the MLP, so that the latter can be viewed as characterizing the
process. If the noise is strong, the status of the MLP is less
clear and it may only be one of many alternative paths that
could be explored by the system.

1. The path probability

The question of the determination of the most likely path
for a stochastic process dates back to Onsager and Machlup.31

For Gaussian processes with constant diffusion matrix the re-
sult is relatively easy to derive, whereas for the most general
cases there are several subtleties and the most general result
seems to have first been derived by Graham.32 Here, and in
the following sub-subsection the theory of the MLP is re-
viewed and then its application to the problem of nucleation is
discussed.

Consider the general stochastic dynamics given by

dxi

dt
= bi (x (t)) + εQij (x (t)) ξj (t) , (26)

where the noise terms, ξ j(t), are Gaussian, white and uncorre-
lated. Note that here, and in the following, the Einstein sum-
mation convention is used. Interpreted within the Ito calcu-
lus, Graham32 shows that the probability to observe a given
continuous path is given by

P (x (t)) ∼ exp

(
−

∫ tN

t1

L(x (t) ,
·
x (t))dt

)
, (27)

where the Lagrangian is

L
(

x,
·
x
)

= 1

2
ε−2(

·
xi − ci(x))D−1

il (x)(
·
xl − cl(x))

+ 1

2
det (Q (x))

∂

∂xi

ci (x)

det(Q(x))
+ ε2 R

12
(28)

with

Dil ≡ QilQjl,
(29)

ci ≡ bi − 1

2
ε2 det (Q)

∂

∂xj

Dji

det (Q)
,
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the Ricci curvature scalar formed using D−1
il (x (t)) as a metric

in x −space is

R = DabDcd

1

2

(
∂2D−1

ab

∂xc∂xd

+ ∂2D−1
cd

∂xa∂xb

− ∂2D−1
bc

∂xa∂xd

− ∂2D−1
ad

∂xb∂xc

)
+DabDcdD

−1
ef

(
�e

ab�
f

cd − �e
db�

f
ca

)
and the Christoffel symbols of the second kind are

�a
bc = 1

2
Dad

(
∂D−1

db

∂xc

+ ∂D−1
dc

∂xb

− ∂D−1
bc

∂xd

)
. (30)

The probability of observing a path is simply the probability
of observing the required noise needed to generate the path
plus additional terms related to the change in variable from the
noise to the path. The first term on the right in the Lagrangian
is due to the fact that the probability to observe a sequence of
noises is by definition P (ξ (t)) = exp(−1/2

∫ tN
t1

ξ 2(t)dt) to-
gether with a replacement of ξ j(t) based on rearranging the
stochastic differential equation. The second and third terms
are due to the Jacobean in transforming variables from ξ (t)
to x (t). Note that the first term is of order ε−2, the second of
order ε0, and the third of order ε2 so that in the weak noise
limit, only the first term contributes. In this case, another in-
terpretation of the expression for the path probability is that
it is the Freidlin-Wetzel action functional from the theory of
large deviations.33, 34 The fact that these results can be writ-
ten in the fully covariant form given above is, as noted by
Graham,32 necessary since the path probability must be inde-
pendent of the choice of variables used to express it. Thus,
while the original stochastic model has no explicit geometri-
cal interpretation, the focus of paths, which are geometrical
objects, induces a natural geometrical perspective in which
the (inverse of the) covariance of the noise plays the role of a
metric in the space of stochastic variables.

Given fixed endpoints, the MLP is determined by max-
imizing the probability with respect to variations in the path
resulting in the Euler-Lagrange equations

d

dt

∂

∂ẋi

L(x(t), ẋ(t)) − ∂

∂xi

L(x(t), ẋ(t)) = 0 (31)

or, after some manipulations,

d2

dt2
xr + 1

2
�r

lc

dxc

dt

dxl

dt
+ Dri

(
∂D−1

cl cl

∂xi

− ∂D−1
il cl

∂xc

)
dxc

dt

= Dri

∂

∂xi

[
1

2
cmD−1

ml cl+ε2 1

2
det (Q)

∂

∂xm

cm

det (Q)
+ε4 R

12

]
.

(32)

This can be interpreted as describing a particle with curvi-
linear coordinates x moving in response to a force given by
the gradient of a potential under the metric D−1. (Note that
here and below, it is assumed that one selects a solution that
actually corresponds to a maximization of the probability, as
opposed to a minimum or saddle point extremization.)

Equation (32) was derived under the condition that the
end points of the path are fixed, so it defines a two-point
boundary value problem with fixed initial point, x(0) = x0,
and end point, x(tf ) = xf , and the time, tf, is determined by

minimizing the action. In some cases, the endpoints are not
both known a priori and one wishes instead to determine the
MLP from any state satisfying some set of constraints to any
other satisfying a different constraints. (For example, in the
nucleation problem, this might be the path connecting a clus-
ter of total excess mass M1 to one with total excess mass M2.)
If these constraints involve only the coordinates and are repre-
sented, in general, as Ka(x(t0)) = 0 and Ka

(
x(tf )

) = 0, then
the boundary conditions become

·
xi (0) = ci (x (0)) +

∑
a

λ(0)
a D−1

ij (x (0))

(
∂Ka (x)

∂xi

)
x(0)

,

·
xi(tf ) = ci(x(tf )) +

∑
a

λ(f )
a D−1

ij (x(tf ))

(
∂La (x)

∂xi

)
x(tf )

,

(33)

where the λ’s are Lagrange multipliers which must be de-
termined. To illustrate, suppose the desired path started at
point x0 but that the final point was determined as having a
fixed mass, M(x(tf )) = Mf . If there were n parameters, there
would be n constraint equations, Eq. (33) at the end point xf

together with the condition on the final mass. These n + 1
constraints would take the place of the n conditions otherwise
determined by specifying the final coordinate as well as pro-
viding one additional constraint for the Lagrange multiplier.

2. The most likely path when there is a
fluctuation-dissipation relation

In the limit of weak noise, i.e., for ε → 0, it can be shown
(see Appendix B) that for the case of a generalized potential
driven dynamics of the form

bi(x) = −Lij (x)
∂V (x)

∂xj

(34)

that obeys a fluctuation-dissipation relation,

Lij (x) ∝ Dij (x) (35)

the MLP between two metastable states, i.e., points satisfying
bi(x) = 0, must pass through a saddle point and follow the de-
terministic path connecting the saddle point to the metastable
states

dxi

dt
= ±Lij (x)

∂V (x)

∂xj

. (36)

It is easily verified by substitution that this is an exact solution
to the general expression, Eq. (32), when Eqs. (34) and (35)
hold and the initial and final states are metastable points. It
can be interpreted as saying that, starting in the metastable
state, one follows the time-reversed dynamics against the free-
energy gradient up to the critical point; beyond the critical
point, one follows the forward-time dynamics down to the
stable state. Note that this is only a mathematical prescription
that serves to determine the MLP: there is no suggestion that
the highly dissipative physical system is in any sense time-
reversal invariant. Similarly, the MLP is not the same as the
deterministic (i.e., ε → 0) limit of the stochastic process: it is
a separate concept that concerns the most likely path to move
both up and down free-energy barriers, whereas the determin-
istic path can only describe movement down a free-energy
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gradient and is a priori incapable of describing movement up
an energy barrier. While it so happens that for a part of the
path between two points that involves moving down a free-
energy gradient, the MLP and the deterministic limit coincide,
this is not a general identification of the two: thus, while the
deterministic path is indeed given by Eq. (36) with the minus
sign, the more general – and most certainly fluctuation-driven
– MLP is given by Eq. (36) with the appropriate sign for the
part of the path being determined.

Recognizing that Eq. (36) is equivalent to steepest-
descent in curvilinear coordinates with metric gij ≡ L−1

ij

means that the MLP can be determined using the stan-
dard gradient-descent algorithms.35 This involves first locat-
ing the saddle point, xs , using, e.g., eigenvector-following
techniques,35 and then perturbing slightly in the direction of
the unstable eigenvector as determined from the generalized
eigenvalue problem

Hijvj = λL−1
ij vj , (37)

where the Hessian at the saddle point is

Hij = ∂2V (x)

∂xi∂xj

∣∣∣∣
xs

. (38)

In principle, the perturbation should be infinitesimal but in
practice, some small, finite perturbation must be used with the
approximation becoming exact as the size of the perturbation
goes to zero. From this initial point, the steepest-descent path
is determined using Eq. (36) with the positive sign (i.e., the
forward-time, deterministic dynamics).

3. Application to nucleation

For the nucleation problem, instead of a collection of
variables, xi, as considered above, one has the density ρ (r)
or the cumulative mass function, m(r), which are both fields.
Generally, stochastic differential equations involving fields
are understood to be defined by some sort of spatial discretiza-
tion scheme so that the field, say m(r), is actually a collection
of values, m(ri) ≡ mi, defined on a lattice thus allowing the
use of the results developed for discrete variables.

With this understanding, it is easy to verify that the
general model, Eq. (13), does indeed posses a fluctuation-
dissipation relation between the deterministic and fluctuating
parts of the dynamics so that one can immediately infer that
the MLP between the initial and final phases will pass through
a saddle point determined from

δF

δρ (r)
= μ, (39)

where μ is the chemical potential of the mother phase and will
be determined by moving away from this state in the forward
and backward directions either by following the time-reversed
dynamics from the metastable state to the critical state and
then the forward-time dynamics thereafter,

∂ρ (r)

∂t
= ±D∇ · ρ (r) ∇ δβF [ρ]

δρ (r)
, (40)

or, equivalently, by perturbing slightly away from the critical
cluster in the direction (or anti-direction) of the most unstable

eigenvector and following the forward-time dynamics to the
respective minima. This is the first significant result of this
analysis and represents a generalization of the usual dynamic
density functional theory to barrier crossing problems. Lack-
ing this result, applications of DDFT have until now had to
rely on the artificial introduction of noise via the initial condi-
tions of the density in order to induce nucleation (for a recent
example, see Ref. 36). Such a procedure is in fact inconsis-
tent in so far as the density appearing in DDFT is already a
noise- and initial-condition-averaged quantity and so, for ex-
ample, for mother phases which are fluids it should simply be
a constant.

In the case of spherical symmetry, the dynamical
model given in Eq. (25) is obviously of the same form as
Eq. (26) and obeys the fluctuation-dissipation constraints of
Eqs. (34) and (35). The MLP in the limit of weak noise, there-
fore, passes through the saddle point determined from

0 = δβF [ρ]

δm (r)
= ∂

∂r

δβF [ρ]

δρ (r)

∣∣∣∣
ρ(r)

(41)

and is given by

∂m (r)

∂t
= ±D

∂m (r)

∂r

δβF [ρ]

δm (r)

= ±D
∂m (r)

∂r

∂

∂r

δβF [ρ]

δρ (r)

∣∣∣∣
ρ(r)

, (42)

which can be given a geometric interpretation as steepest-
descent on the free-energy surface in mass-space with a met-
ric of (∂m (r)/∂r)−1. Note that this is exactly equivalent to
Eqs. (39) and (40) with the assumption of spherical symme-
try, thus showing the equivalence of the approaches. It also
allows one to define the distance between two mass distribu-
tions, m0(r) and m1(r), as

s[m0,m1]

= min
T

min
paths

∫ T

0

√∫ ∞

0

∂m(r, t)

∂t

(
∂m(r, t)

∂r

)−1
∂m(r, t)

∂t
drdt,

(43)

where the right-hand side is minimized over all “acceptable”
paths connecting the two mass distributions with m(r, 0)
= m0(r) and m(r, T) = m1(r). An “acceptable” path is one
obeying the basic constraints on the cumulative mass distri-
bution that it be monotonically increasing as a function of r
and that m(0) = 0. These properties mean that the position r
may be replaced by m(r) as the variable of integration yielding

s[m0,m1]

= min
T

min
paths

∫ T

0

√∫ ∞

0

(
∂m (r, t)

∂t

/
∂m(r, t)

∂r

)2
∂m(r, t)

∂r
drdt

= min
T

min
paths

∫ T

0

√∫ ∞

0

(
∂r (m, t)

∂t

)2

dmdt

=
√∫ ∞

0

(
m−1

0 (x) − m−1
1 (x)

)2
dx, (44)
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where the last line follows from recognizing that the second
line now defines a Euclidean metric. Since m−1

0 (x) is the lo-
cation at which distribution m0(r) has value x and m−1

1 (x) is
the analogous quantity for the second distribution, this ex-
presses the distance between the distributions in terms of
the sum over Euclidean distances between equal-mass points.
This structure is entirely due to the presence of the factor
(∂m (r, t)/∂r) ∼ ρ (r) in the dynamical equations and, via the
fluctuation-dissipation relation, in the noise. Without it, Eq.
(43) would already be Euclidean and the distance function
would simply depend on the integral over (m0(r) − m1(r))2.

The fact that the exact distance function can be easily cal-
culated means that powerful approximate methods for deter-
mining the steepest-descent path, such as the string method37

and the nudged elastic band,38, 39 can be used to determine
the steepest-descent paths defined by Eq. (42) which is to say,
the MLP. Another implication concerns the stochastic evolu-
tion equations themselves. The fact that the induced distance
function is Euclidean in the variable r(m), immediately im-
plies that if the SDE is written in terms of this variable, the
noise will be white (i.e., the coefficient of the noise variable
ξ (r; t) will be constant rather than state-dependent). That this
is the case is easily verified by first observing that

∂r (m)

∂t
= ∂r

∂m

∂m

∂t
=

(
∂m

∂r

)−1
∂m

∂t
. (45)

Using the evolution equation, Eq. (25), gives

∂r (m)

∂t
=

(
∂m

∂r

)−1
∂m (r)

∂t

= −D
δβF [ρ]

δm(r)
− ε

√
2D

(
∂m(r)

∂r

)−1

ξ (r; t), (46)

where the term δF [ρ]/δm(r) must be expressed in terms of
r(m). At the moment, it does not seem as if the goal of getting
white noise is going to be achieved. However, note that one
must express the noise in terms of m as the dependent variable
rather than r. Since

〈ξ (r; t)ξ (r ′; t ′)〉 = δ(r − r ′)δ(t − t ′),

= δ(r(m) − r(m′))δ(t − t ′),

=
(

∂r (m)

∂m

)−1

δ(m − m′)δ(t − t ′), (47)

it is clear that one can make the substitution ξ (r; t)
−→

√
(∂r (m)/∂m)−1ξ (m; t) giving

∂r (m)

∂t
= −D

δβF [ρ]

δm (r)

∣∣∣∣
r(m)

− ε
√

2Dξ (m; t) (48)

as expected. It is not clear whether this formulation is of any
practical significance.

III. ORDER PARAMETERS

So far, the central quantity governing the description
of nucleation has been the cumulative mass, m(r; t). How-
ever, the classical description of nucleation is typically for-
mulated in terms of a small number, often just one, order

parameter. For example, in classical nucleation theory clus-
ters of the new phase are assumed to be spherical, with a
radius R, to have the bulk new phase in the interior of the
cluster and to have an interface of vanishing width. The
only quantity that can vary is, therefore, the radius and this
is the order parameter in terms of which the dynamics are
formulated.

The point of view adopted here in order to make a con-
nection with the concept of order parameters is that the pa-
rameters must determine an approximation to the cumulative
mass distribution or, equivalently, to the density. For exam-
ple, in the CNT picture described above, a cluster has interior
density ρ0 which is just the bulk density of the new phase;
exterior density ρ∞ which is the density of the metastable
phase, a radius R and an interface of negligible width. Hence,
it implicitly specifies a density model

ρ (r; t) −→ ρ (r; R(t)) ≡ ρ0� (R(t) − r) + ρ∞� (r − R(t))

(49)

and a cumulative mass of

m(r; t) −→ m(r; R(t))

≡ 4π

3
r3ρ0�(R(t) − r)

+4π

3
(R3(t)ρ0 + (r3 − R3(t))ρ∞)�(r − R(t)).

(50)

In general, the approximating function can depend on many
parameters so that the general case is ρ (r; t) −→ ρ (r; x(t))
for a set of time-dependent parameters x(t). The goal in this
section is to determine how the time-dependence of the re-
stricted description in terms of the order parameters can be
developed from the general theory. The reason for investigat-
ing this question is that it has been shown that one can derive
the CNT description of the critical cluster as the lowest or-
der result in a systematic expansion of the DFT free energy
based on these types of parameterizations of the density12, 17

so that this gives a path for making contact between the gen-
eral theory and CNT. Finally, it is also relevant to note that
any practical scheme for the integration of Eq. (25) will in-
volve some sort of representation of the field in terms of
a finite number of parameters, so the results obtained here
will be of equal use in numerical calculations as discussed
below.

In the following, two different approaches to the use of
order parameters will be described. The first is solely con-
cerned with the determination of the most likely path for nu-
cleation and involves relatively few assumptions. The second
is aimed at determining approximate stochastic equations for
the order parameters which, in turn, can be used to determine
the MLP. The approaches have different strengths and weak-
nesses: the former involves fewer assumptions but is more re-
stricted in its use, while the latter gives broader contact with
earlier work but is somewhat heuristic. Both methods become
exact in the limit of a complete set of order parameters and
of course agree with one another in that limit as demonstrated
below.
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A. Direct determination of pathway
using order parameters

In the weak noise limit, the probability for a path based
on the spherically-symmetric dynamics, Eq. (23), is

P ∼ exp

(
− 1

8πDε

∫ T

0
Ldt

)
(51)

with Lagrangian

L= 1

2

∫ ∞

0

1

r2ρ (r)

(
∂m (r)

∂t
− Dr2ρ (r)

∂

∂r

1

r2

δβF [ρ]

δρ (r)

)2

dr.

(52)
It is shown in Appendix C that if the density is parametrized as
ρ(r; t) = ρ(r; x(t)), then the weak-noise Lagrangian becomes

L = 1

2
gab (x)

dxa

dt

dxb

dt
+ D

dxa

dt

∂β� [ρ]

∂xa

+ V (x) , (53)

where �[ρ] = F[ρ] − μρ and

V (x) = 1

2
D2

∫ ∞

0
r2ρ (r)

(
∂

∂r

1

r2

δβF [ρ]

δρ (r)

)2

dr (54)

and where the metric gab (x) is

gab =
∫ ∞

0

1

4πr2ρ(r)

∂m(r)

∂xa

∂m(r)

∂xb

dr. (55)

Maximizing the path probability gives the Euler-
Lagrange equations

gil

d2xl

dt2
+ 1

2

dxl

dt

dxj

dt

(
∂gil

∂xj

+ ∂gij

∂xl

− ∂glj

∂xi

)
= ∂

∂xi

V (x)

(56)
or

d2xi

dt2
+ �i

lj

dxl

dt

dxj

dt
= g−1

ir

∂

∂xr

V (x), (57)

where the Christoffel symbol of the second kind is

�i
kl = 1

2
g−1

im

(
∂gmk

∂xl

+ ∂gml

∂xk

− ∂gkl

∂xm

)
. (58)

Equation (57) is recognized as the equation of motion of a
particle expressed in curvilinear coordinates with a force de-
rived from the potential V (x). If the end points are determined
by the constraints,

Jl (x (0)) = 0, l = 1, . . . , n,

(59)
Kl (x (T )) = 0, l = 1, . . . , n,

then the boundary conditions are

dxi

dt

∣∣∣∣
t=0

+ D

4π
g−1

il (x)
∂βF [ρ]

∂xl

∣∣∣∣
t=0

= μrg
−1
il (x)

∂Jr

∂xl

∣∣∣∣
t=0

,

dxi

dt

∣∣∣∣
t=T

+ D

4π
g−1

il (x)
∂βF [ρ]

∂xl

∣∣∣∣
t=T

= λrg
−1
il (x)

∂Kr

∂xl

∣∣∣∣
t=T

,

(60)

where μr and λr are Lagrange multipliers introduced in the
course of minimizing the action under the constraints. Note
that if, e.g., the initial point is fixed, then Jr = xr(T) − x0r

and the constraint just serves to evaluate the (uninteresting)

Lagrange multiplier: in this case the constraint equations play
no role. On the other hand, if a nontrivial constraint is applied,
then instead of fixing the value of xr(T) a condition is imposed
on the velocities at time T. For example, for nucleation one
might know the initial state, x (0), and might want to know
the most likely final state with a given excess mass

M = 4π

∫ ∞

0
(ρ (r; x (T )) − ρ∞) r2dr. (61)

Then, the boundary conditions at the end point would be

dxi

dt

∣∣∣∣
t=T

+ D

4π
g−1

il (x)
∂βF [ρ]

∂xl

∣∣∣∣
t=T

= λg−1
il (x(T ))4π

∫ ∞

0

∂ρ(r; x(T ))

∂xl(T )
r2dr. (62)

B. An order-parameter dynamics

The spatial and temporal components of the density can
be separated by writing it in some parametrized form as
ρ (r; t) = ρ (r; x (t)), where x (t) is a collection of scalar pa-
rameters. One common method of doing so would be to ex-
pand the density in a complete set of basis functions. Alterna-
tively, the parameters could represent a discretization of the
density, xn = ρ(n�) for some small distance �. As these ex-
amples indicate, there will be in general an arbitrary number
of parameters. Their time evolution can be developed by not-
ing that the m(r) will also be a function of the parameters so
that from Eq. (20), one can write

∂m (r; x (t))

∂xi

dxi

dt
= D4πr2ρ (r; x (t))

∂

∂r

δβF [ρ]

δρ (r)

∣∣∣∣
ρ(r;x(t))

− ε
√

8πr2Dρ(r; x(t))ξ (r; t). (63)

Suppose that this is multiplied by some function Wj (r; x (t))
and integrated giving

gij (x)
dxi

dt
= D

∫ ∞

0
Wj (r; x (t)) 4πr2ρ (r; x (t))

× ∂

∂r

(
δβF [ρ]

δρ (r)

)
ρ(r;x(t))

dr

−
∫

Wj (r; x(t))ε
√

8πr2Dρ(r; x(t))ξ (r; t)dr,

(64)

where

gij (x) =
∫ ∞

0
Wi (r; x (t))

∂m (r; x (t))

∂xj

dr. (65)

The autocorrelation of the noise term is easily calculated
giving

ε22D

∫ ∞

0
4πr2Wi (r; x (t)) Wj (r; x (t)) ρ (r; x (t)) dr. (66)

While these equations are exact regardless of the choice of
Wi (r; x (t)), it will soon be apparent the result is particularly
simple if the diffusion matrix and the matrix gij (x) are re-
quired to be proportional which is only possible if, modulo a
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multiplicative constant,

Wi (r; x (t)) = 1

4πr2ρ (r; x (t))

∂m (r; x (t))

∂xi

, (67)

so that Dij (x) = 2Dgij (x) with

gij (x) =
∫ ∞

0

1

4πr2ρ (r; x (t))

∂m (r; x (t))

∂xi

∂m (r; x (t))

∂xj

dr,

(68)
i.e., the same metric as found above (see Eq. (55)). Another
result of this choice is that the thermodynamic driving force
becomes∫ ∞

0
Wj (r; x (t)) 4πr2ρ (r; x (t))

∂

∂r

δβF [ρ]

δρ (r)

∣∣∣∣
ρ(r;x(t))

dr

=
∫ ∞

0

∂m (r; x (t))

∂xi

∂

∂r

δβF [ρ]

δρ (r)

∣∣∣∣
ρ(r;x(t))

dr

=
[

∂m (r; x (t))

∂xi

δβF [ρ]

δρ (r)

∣∣∣∣
ρ(r;x(t))

]∞

0

−
∫ ∞

0

∂2m (r; x (t))

∂xi∂r

δβF [ρ]

δρ (r)

∣∣∣∣
ρ(r;x(t))

dr

=
[

∂m (r; x (t))

∂xi

δβF [ρ]

δρ (r)

∣∣∣∣
ρ(r;x(t))

]∞

0

−
∫

∂ρ (r; x (t))

∂xi

δβF [ρ]

δρ (r)

∣∣∣∣
ρ(r;x(t))

dr. (69)

For the problem of nucleation, the first term gives no contri-
bution at r = 0, while for very large r, one expects the system
to have the bulk properties giving

lim
r→∞

∂m (r; x (t))

∂xi

δβF [ρ]

δρ (r)

∣∣∣∣
ρ(r;x(t))

= ∂N (x (t))

∂xi

μ, (70)

where N is the total number of particles and μ is the chemi-
cal potential in the bulk. Using the functional chain rule, the
second term is recognized as∫

∂ρ (r; x (t))

∂xi

δβF [ρ]

δρ (r)

∣∣∣∣
ρ(r;x(t))

dr =∂βF (x) ,

∂xi

(71)

where F (x) = F [f ]. (Note that this is only exact if the
parametrization is complete.) Combining these results gives
the stochastic model

gij (x)
dxj

dt
= −D

∂β�

∂xi

− ε

∫ √
2D

4πr2ρ (r; x (t))

× ∂m (r; x (t))

∂xi

ξ (r; t) dr, (72)

where again � = F − μN. Ideally, one would like to re-
place the noise by a simpler form giving the same autocor-
relation function; however, there is a complication. The use
of the usual chain rule for derivatives means that the re-
sulting stochastic differential equation must be understood
in the Stratonovich interpretation23 and, unfortunately, in the
present case the resulting equation is not Ito-Stratonovich
equivalent. It is, therefore, not the case that one can substi-
tute one noise term for another with the same autocorrela-

tion matrix as this only holds in the Ito form. As described in
Appendix F, the spurious drift arising from Ito-Stratonovich
inequivalence gives rise to an additional contribution to the
deterministic part of the equation with the final result

dxj

dt
=−Dg−1

ij (x)
∂β�

∂xi

+ 2Dε2Ai (x) − ε
√

2Dq−1
ji (x) ξj (t)

(73)
with gij = qilqjl (note that g is positive semi-definite so this
decomposition is always possible) and what will be termed
the “anomalous force” (since it does not arise from the ther-
modynamic driving force) is

Ai (x) = q−1
ik (x)

∂q−1
jk (x)

∂xj

− 1

2
g−1

il (x)
∂g−1

jm (x)

∂xl

gmj (x)

+ 1

2

(
g−1

il (x) g−1
jm (x) − g−1

ij (x) g−1
lm (x)

)
×

∫ ∞

0

1

4πr2ρ2 (r; x)

∂ρ (r; x)

∂xl

∂m (r; x)

∂xj

∂m (r; x)

∂xm

dr.

(74)

The presence of the anomalous force means that there is no
exact fluctuation-dissipation relation. However, since it has its
origin in the noise, and is therefore of order ε2, it will not af-
fect the weak-noise limit and the MLP will be determined as
usual from the forward- and backward-time dynamics start-
ing at the critical point. Again, it is important to remember
that in the strong-noise regime Eq. (73) must be understood
in the Stratonovich interpretation: the equivalent Ito equa-
tion will have a modified form of the anomalous force (see
Appendix F for details).

The advantages of the choice for Wi (r; x (t)) are now ev-
ident. First, the particular choice used here results in the free-
energy term having the form of a simple gradient of the free
energy due to the ability to integrate by parts in Eq. (69). Sec-
ond, the fact that the fluctuation-dissipation relation is pre-
served means that in the weak-noise limit one recovers the
classical behavior with the MLP passing through the critical
cluster.

Equation (73) is exact when the parameters are deter-
mined from a complete representation of the density. For a
finite collection of parameters, it seems reasonable to continue
to use Eq. (73) as an approximation and numerical evidence
in support of this will be given below. Appendix E gives an
alternative derivation of this model showing that it is reason-
able even for an incomplete (i.e., approximate) representation
of the density provided that the difference between ρ (r; x (t))
and the actual density ρ(r; t) is in some sense small.

C. Most likely path

A heuristic stochastic dynamics for a set of order param-
eters is given in Eq. (73) above. In the weak noise limit, in
which the anomalous force can be neglected, this dynamics
is gradient-driven and satisfies a fluctuation-dissipation rela-
tion, so that it immediately follows that the MLP connect-
ing the two metastable phases passes through the saddle point
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defined by

0 = ∂β�

∂xi

(75)

and is determined by steepest-descent according to

dxi

dt
= −Dg−1

ij (x)
∂β�

∂xj

. (76)

Following the same arguments given above, the general MLP
connecting any two states is determined from the Euler-
Lagrange equations

gij

d2xj

dt2
+ 1

2

(
∂gis

∂xr

+ ∂gir

∂xs

− ∂grs

∂xi

)
dxr

dt

dxs

dt

= ∂

∂xi

(
D2

2

∂β�

∂xj

g−1
j l

∂β�

∂xl

)
. (77)

It is easy to show by direct substitution that Eq. (76) is a so-
lution to Eq. (77).

Two expressions for the evolution of order parameters
have been derived: Eq. (76), which follows from the general
equations for the MLP, Eq. (77), for the special case that the
endpoints are metastable states, and Eq. (56), which follows
from the minimization of the path probability after assum-
ing a particular test function. In essence, the former results
from introducing the approximate density after determining
the equations for the MLP, while the latter results from intro-
ducing the approximate density before determining the MLP.
Each formulation has its advantages: the gradient formulation
shares certain properties with the exact MLP, such as the role
of the critical cluster, whereas it is not even clear a priori that
Eq. (56) will give a path passing through the critical point. On
the other hand, Eq. (56) is exact, given the assumed form for
the density, whereas the gradient equations are derived via a
series of manipulations which are not unique: one could de-
rive any number of equations of motion for the parameters
from Eq. (63) by similar manipulations to those used above.
It is therefore of some interest to examine the connection be-
tween these two formulations.

Comparing Eqs. (57) and (77), it is clear that the only dif-
ference is in the source terms and that equivalence would de-
mand that∫ ∞

0
r2ρ (r)

(
∂

∂r

1

r2

δβF [ρ]

δρ (r)

)2

dr = ∂β�

∂xj

g−1
j l

∂β�

∂xl

. (78)

Now, from the derivations above, it is already known that

∂β�

∂xj

= −
∫ ∞

0

∂m (r)

∂xj

∂

∂r

1

r2

δβF [ρ]

δρ (r)
dr, (79)

so

∂β�

∂xj

g−1
j l

∂β�

∂xl

=
∫ ∞

0
dr ′

∫ ∞

0
drr2ρ(r)

(
∂

∂r

1

r2

δβF [ρ]

δρ(r)

)
×

(
∂

∂r ′
1

r ′2
δβF [ρ]

δρ (r ′)

) (
r−2ρ−1(r)

∂m(r)

∂xj

g−1
j l

∂m(r ′)
∂xl

)
,

which is the same as Eq. (78) provided that

∂m (r)

∂xi

g−1
ij

∂m(r ′)
∂xj

= r2ρ (r) δ(r − r ′). (80)

As demonstrated in Appendix D, this is a completeness re-
lation and is sufficient to give equality between the two de-
scriptions of the MLP. It is satisfied when the parameters re-
sult from an expansion of the density in a complete set of
basis functions. The use of the order-parameter dynamics for
a finite collection of order parameters is, therefore, heuristic.
However, as shown below, only a small number of parameters
is necessary for the heuristic dynamics to show convergence
to the exact result.

IV. APPLICATIONS

The classic problem of the nucleation of a liquid droplet
in a supersaturated vapor will be used to illustrate the the-
ory described above. Calculations were performed using the
squared-gradient free-energy model

F [ρ] =
∫ (

f (ρ(r)) + 1

2
K(∇ρ(r))2

)
dr, (81)

where f(ρ) is the bulk free-energy per unit volume. The cal-
culations reported here were performed for the ten Wolde-
Frenkel model potential for globular proteins,40 which con-
sists of a hard core of radius σ and an effective pair potential
outside the core

v (r > σ ) = 4 ε

α2

((
1

( r
σ

)2 − 1

)6

− α

(
1

( r
σ

)2 − 1

)3
)

,

(82)
where ε is the energy scale of the potential and the parameter
α controls its range. For large values of α, such as α = 50
used here, this gives a phase diagram typical of proteins in-
cluding a metastable high-concentration (“liquid”) phase.41, 42

The results presented here pertain to the transition from the
low-concentration (“gas”) phase to a high-concentration (“liq-
uid”) phase which is known to sometimes play a role as the
first step in the processes of protein crystallization.41, 43 The
bulk Helmholtz free-energy function, f(ρ), was approximated
using first-order perturbation theory5, 44 as described in detail
in Refs. 42 and 45. The coefficient of the squared-gradient
term, K, was evaluated using a recently derived approxima-
tion based on the potential.12

The most direct approach towards the determination
of the nucleation pathway based on the field equations,
Eqs. (41) and (42), would be to discretize them by first dis-
cretizing the radial coordinate, r −→ ri ≡ δ, for some small
length δ, which then implies a discretization of the density,
ρ (r) −→ ρi ≡ ρ (iδ). Since the density is only expected to
vary quickly near the interface, the efficiency of this scheme
can be significantly improved by allowing for a dynamic dis-
cretization whereby the density and position of the lattice
points are allowed to vary. Here, this is done by introduc-
ing a particular model for the density based on a continuous,
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piecewise-linear approximation,

ρ(r)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ0, r < w0

ρ0 + (ρ1 − ρ0) r−w0
w1

, w0 < r < w0 + w1

ρ1+(ρ2−ρ1) r−w0−w1
w2

, w0+w1 <r <w0+w1+w2

· · ·
ρ∞, w0 + · · · + wN−1 < r.

(83)

The parameters that are allowed to vary freely and dynami-
cally are the combinations ρ i, wi (referred to as “links”), while
the density ρ∞ is always fixed at that of the surrounding bulk
(e.g., the vapor density for nucleation of liquid droplets). Note
that the simplest model consisting of just two links

ρ (r) =
⎧⎨⎩

ρ0, r < w0

ρ0 + (ρ∞ − ρ0) r−w0
w1

, w0 < r < w0 + w1

ρ∞, w0 + w1 < r

(84)

give the minimal description of a cluster in terms of a radius,
say w0 , an interfacial width, w1, and a central density, ρ0.
Similar parameterizations based on these three quantities are
common in the literature and here I note in particular one
introduced by da Gama and Evans46 and used recently by
Ghosh and Ghosh13 to study both planar interfaces and spher-
ical clusters

ρ (r) =
[
ρ0 − ρ0 − ρ∞

2
exp (a (r − R))

]
� (R − r)

+
[
ρ∞ + ρ0 − ρ∞

2
exp (−a (r − R))

]
� (r − R) ,

(85)

where the radius is here denoted R. The parameters occur-
ring in all of these approximations are “order parameters” in
the sense discussed above and the most likely path of the den-
sity can be determined by means of the order-parameter equa-
tions, Eq. (76). These are of course only approximations but
the piecewise-linear scheme becomes exact as the number of
links is increased.

As discussed above, once a parametrization is chosen,
there are three steps involved in determining the MLP. The
first is to determine the critical cluster, i.e., the saddle point of
the free-energy surface in parameter space. This was done us-
ing standard eigenvector-following methods35, 47 which result
in a given set of parameters describing the approximation to
the critical cluster, xc. At the saddle point, the Hessian matrix
determined from the free energy has one negative eigenvalue
and a corresponding eigenvector, vneg, which specifies the un-
stable direction. The second and third parts of the calculation
are the numerical integration of the order-parameter equa-
tions, Eq. (76), with initial conditions consisting of a small
perturbation away from the critical point in the unstable di-
rection, xc ± εvnegwhere the parameter ε is chosen so that the
change in free energy is some specified amount. The result of
one of the perturbations will be that the system falls back to
the metastable state, i.e., the cluster will diminish, while the
other will send the system towards the final, stable state which
means the cluster will grow.

TABLE I. Excess free energy, ��, and mass (number of molecules, �N)
for different density models. The label “PWM” refers to piecewise-linear pro-
files with M links, Eq. (83).

Approximation β�� �N

PW2 98.9 1471
PW4 82.9 1250
PW6 79.4 1211
PW8 77.8 1186
PW10 77.1 1175
Exponential, Eq. (85) 80.4 1246
Exact, Eq. (86) 75.8 1158

A. Nucleation of droplets

The critical cluster for temperature kBT/ε = 0.375 and su-
persaturation S ≡ ρv/ρvc = 1.175, where ρvc is the vapor den-
sity at coexistence, was determined for both the piecewise-
linear profiles with varying numbers of links and the
exponential profile. The “exact” critical cluster was deter-
mined by solving

0 = δ� [ρ]

δρ (r)
= K∇2ρ (r) − f ′ (ρ (r)) + μ (86)

numerically using a relaxation technique,48 where the chem-
ical potential is simply μ = f ′(ρv). The excess free energy
and excess mass of the critical cluster is given in Table I as
calculated from several approximations. It demonstrates the
gradual convergence of the properties of the critical cluster to
the exact result as the number of links in the piecewise-linear
profiles is increased. The exponential profile gives a relatively
good description of the critical cluster based on only three
parameters. Figure 1 shows the exact density profile of the
critical cluster and the piecewise profile based on 2, 4, and
10 links. It is apparent that while the simple profile based on

FIG. 1. The density profile of the critical cluster as determined by numeri-
cally finding a stationary solution of Eq. (86), the “exact” solution, and from
the piecewise linear model with N links, Eq. (83). The inset shows the con-
vergence of the central density towards the exact value as the number of links
increases. For the model with 10 links, the figure shows the boundaries of the
links as circles. Notice how the density of the discretization is automatically
adjusted to be highest in the region of most rapid variation of the profile.
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2 links is quite crude, the 10-link profile is already a good
approximation to the continuous profile.

The evolution of the droplet was determined beginning
with the profile for the critical nucleus. The Hessian for the
free energy was evaluated and diagonalized giving in all cases
a single negative eigenvalue. The profile was perturbed by
adding a multiple of the corresponding eigenvector with the
coefficient chosen so as to give a change in free energy of
1 kBT. The equations for the MLP, expressed in terms of or-
der parameters, Eq. (76), were then integrated using the Intel
ODE solver library.49 Depending on the sign of the coeffi-
cient used to perturb the state, the system would either fall
backwards towards the metastable state (i.e., decreasing clus-
ter size) or forwards towards the stable state (increasing clus-
ter size). The integration was stopped in both cases when the
excess free energy reached 1 kBT. For the forward (growing)
direction, this was simply a convenient place to stop but in
the backward direction, some such cutoff is necessary since
the weak-noise assumption must break down.

The independent variable in the integrations is time but
care must be taken in interpreting the results. The “time” has
the physical meaning of the time taken by the deterministic
dynamics to drive the system in the desired direction. When
moving forwards in time, this is therefore the physical time.
However, when evaluating the MLP via the time-reversed dy-
namics, this “time” does not correspond to the physical time
needed for fluctuations to drive the system up the free-energy
gradient. Discussion as to what physical meaning can be at-
tached to this time can be found in Bier et al.50 In order to
avoid any ambiguity, the results here are displayed in terms of
the dimensionless distance along the path defined as

s = ±σ−2
∫ t2

t1

√
gab

dxa

dt

dxb

dt
dt (87)

with s = 0 being taken to correspond to the smallest cluster
and the sign being chosen so that s increases monotonically
moving from the smallest cluster to the critical cluster and on
to post-critical clusters.

Figure 2 shows the evolution of the central density, the
excess mass and the excess free energy of the cluster as de-
termined using the piecewise-linear parametrization with 10
links (19 parameters). At first, the central density remains
very close to that of the vapor and the excess free energy
is small – on the order of a few kBT. Surprisingly, even at
the very beginning of the process the excess mass is finite
and a significant fraction of the mass of the critical clus-
ter. After some time during which the density and mass in-
crease very slowly the growth enters a new regime in which
the density increases rapidly to nearly the bulk liquid den-
sity. From that point onward, the evolution is unremarkable
as the cluster grows to criticality and beyond. Corresponding
behavior is seen in the size of the cluster which is charac-
terized in Fig. 3 in two ways: the equimolar radius, Req de-
fined via 4π

3 R3
eq(ρ(0) − ρ∞) = ∫

(ρ(r) − ρ∞) dr, and the to-
tal spatial extent, defined for the model given in Eq. (84), as
Rtotal ≡ ∑N−1

i=0 wi . (For a general representation of the den-
sity, this might be characterized as the distance at which the
density reaches some small threshold above the background.)

FIG. 2. The variation with path distance, s as defined in Eq. (87), of the
excess number of molecules, N, total excess free energy, ��, and central
density, ρ(0), relative to the values for the critical cluster for a nucleating
droplet. The calculations were performed using the piecewise-linear model
with 10 links (19 parameters). For reference, the values for the critical cluster
are N = 1175, �β� = 77.1, and ρ(0)σ 3 = 0.68. To aid in comparison, the
vertical line picks out the same value of s as in Fig. (3).

Initially, the equimolar radius is nearly constant, while the
cluster has very large spatial extent and, counter-intuitively,
the cluster shrinks. At the same point as the density begins
its rapid increase, the equimolar radius also begins to in-
crease even while the total spatial extent continues to dimin-
ish. Eventually, the latter reaches a minimum and the cluster
grows according to both measures.

These results are in stark contrast to the usual picture
of droplet growth as assumed in the Becker-Döring picture
(where droplets begin as dimers and grow by attachment and
detachment of monomers) as well as the corresponding results
from constrained DFT calculations (where droplets begin as
zero mass objects that grow monotonically). In fact, how can
a droplet “begin” with a finite mass? I shall attempt to an-
swer this question from two different perspectives: first, that
of the formalism and second from a physical point of view.

FIG. 3. The variation of the equimolar radius, Req, and the total radius, Rtotal,
as functions of distance along the path, s as defined in Eq. (87), for a nucle-
ating droplet. To aid in comparison, the vertical line picks out the same value
of s as in Fig. (2).
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FIG. 4. The excess number of molecules in the cluster at the beginning of the
nucleation process, N(0), as a function of the inverse of the number of links in
the profile, Nlinks. The log-linear plot shows a nearly linear variation indicat-
ing that N (0) ∼ Aeb/Nlinks . Fitting all of the data to this functional form and
extrapolating gives an asymptotic value of N(0) = 1331 and using only the
three points with the largest value of Nlinks gives N(0) = 1068. These values
are consistent with the expectation that the limiting value should be the mass
of the critical cluster, Nc = 1175, shown as the square symbol.

In terms of the formalism, the MLP going from “nothing” to
the critical droplet is the time-reversed evolution of the dy-
namics with no noise: in other words, it is the time-reversal
of the deterministic evolution starting with a droplet slightly
smaller than the critical droplet. What happens in such a case
is obvious: the droplet evaporates by shedding mass to the
bulk. Since mass is conserved, the excess mass originally in
the droplet cannot just disappear but must diffuse over ever
larger volumes until it is lost in the (infinite) bulk. It is easy
to understand, then, why the total mass is almost constant in
the beginning of the process. Indeed, one would expect that
the total mass should be the same as that of the critical clus-
ter and should not change at all. That this is the actual result,
if one could solve the model with the number of parameters
tending to infinity, is indicated in Fig. 4 which shows the ini-
tial mass as a function of the number of links in the profile.
It is clear that the mass increases with increasing refinement
of the profile and that an extrapolation gives a mass close to
that of the critical cluster. The fact that the mass is less than
that of the critical cluster can be attributed to the difficulty of
approximating the density distribution when the density be-
comes very dilute. Figure 5 illustrates this as well, showing a
large variation of the various parameterizations at short times
with close convergence at long times. This includes the case
of the exponential profile which is also not well suited to rep-
resenting the diffusive distribution at short times. Note that
according to this picture, one would expect the excess density
at early times to behave purely diffusively, giving, e.g.,

�ρ (r, t) ∼ �N (2πD |t |)−3/2 exp

(
− r2

2D |t |
)

(88)

(where “early times” means that t is large and negative). Then,
the total mass would be conserved, whereas the equimolar ra-

FIG. 5. The excess number of molecules, N, (left panel) and the total radius,
R, (right panel) as functions of distance along the nucleation pathway using
piecewise-linear models with N links, “PWN,’ and the exponential profile.
The figures demonstrate that the short-time behavior is sensitive to how well
the density profile is represented, whereas all of the models converge at longer
times. The exponential profile behaves very similar to the PW2 profile, which
has the same number of free parameters, but gives a better estimate of the
properties of the critical cluster (see Table I).

dius would be given by

�N = 4π

3
R3

eq (t) �ρ(0, t)

⇒ Req(t) =
(

3

4π

)1/3

(2πD |t |)1/2 , (89)

thus explaining the slow change in the equimolar radius. The
fact that the result follows from such simple considerations
suggests that, formally, it is very robust being independent of
the assumed free-energy model, potential, or any other details.

From a physical perspective, the explanation given so far
is not very helpful. Instead, it is useful to divide the process
into two parts as indicated in Figs. 2 and 3. During the first
stage, matter comes together “from infinity” in the form of a
diffuse structure. This can be understood as the formation of
a long-wavelength density fluctuation. The presence of such
fluctuations is expected and the fact that the structure formed
only costs a few kBT in energy supports this expectation. What
appears strange is the directed way that matter seems to come
together but this is simply a result of two artifacts. The first
is the assumption of spherical symmetry which means that
the same thing must occur in all directions at the same time;
in reality, such a structure is expected to be messy and ram-
ified. Second is the nature of the MLP. It is well known that
the MLP generally follows the shortest possible path up the
gradient, with no backtracking or deviation.50 This gives it
an appearance of being directed towards reaching a final state
(i.e., the critical state) like a hiker deliberately climbing a hill.
Any individual realization of the stochastic process will, in
contrast, consist of moves in both directions – up and down
the gradient – and will only, on average, eventually trace out
the MLP (or something like it). A final artifact is that this
is the MLP for a particular process: in other words, it repre-
sents a conditional probability in which the condition is that
one does actually reach the critical state. A real system will
make many abortive attempts to climb the potential gradient
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and only after many such attempts will it succeed. Here, in
contrast, one studies the one successful attempt which again
gives the appearance of being directed.

So far, only the first part of the process – the forma-
tion of a density fluctuation – has been discussed. The sec-
ond part of the process – marked by the rapid increase in
density in the nascent cluster – can be interpreted as the oc-
currence of an actual nucleation event. This part of the pro-
cess essentially proceeds classically and can be visualized
in terms of the Becker-Döring picture or of the typical DFT
calculations.

Putting these two pictures together gives a plausible and
physically appealing interpretation. Density fluctuations of
all types occur in the fluid and it makes intuitive sense that
droplet nucleation should be more common in regions of
higher density since the free-energy barrier will be lower. Fur-
thermore, the presence of a density fluctuation means that
there is excess mass from which to build the cluster. Even
in the classical picture (which does not assume any pre-
nucleation enrichment), a cluster must somehow draw in ma-
terial from the surrounding vapor but this part of the process
is typically treated separately,51 if at all. Considered in these
terms, the classical process, with no enrichment, seems ar-
guably more mysterious: a small, unstable cluster not only
survives but manages to draw in material and, in the fluid,
mass flows at such a rate that the cluster is always in con-
tact with a vapor of exactly the bulk density. In the present
picture, the needed mass is already locally present so that the
formation of the cluster does not lead to the formation of a
depletion zone or require the orchestrated flow of matter from
far away. And finally, let us note that it is not the case that
a fluctuation with exactly the right density appears in order
to host the nucleation process: rather, fluctuations of all dif-
ferent sizes occur and if nucleation begins in one that is too
small, then it may fail to reach the critical size. On the other
hand, it is likely that the probability of a fluctuation decreases
with its size so that the most likely scenario is of a successful
nucleation event occurring in a fluctuation which is just large
enough to supply the needed mass. This is the case that the
MLP picks out.

B. Nucleation of bubbles

As a second application, the evolution of the reverse pro-
cess – the formation of a low-concentration “bubble” within
the high-concentration “liquid” – was determined. For these
calculations, the temperature was the same as previously,
kBT/ε = 0.375 but the supersaturation was taken to be S
≡ ρv/ρvc = 0.9875 so that the solution is under-saturated
making the dense phase unstable towards nucleation of the
less dense phase. The results are shown in Fig. 6. A bubble
consists of a mass deficit relative to the bulk fluid and so, ac-
cording to the deterministic dynamics, a sub-critical bubble is
expected to vanish by gradually spreading the deficit over ever
larger volumes. Therefore, based on the discussion of droplet
nucleation, one would expect the process of bubble nucleation
to begin with the formation of a long-wavelength, small am-
plitude deficit of density within which the bubble would nu-

FIG. 6. The left panel shows the variation with path distance, s as defined
in Eq. (87), of the excess number of molecules, N, the total excess free en-
ergy, �� and the central density, ρ(0). The right panel shows the evolu-
tion of the equimolar and total radii. The calculations were performed using
the piecewise-linear model with 8 links (15 parameters). The excess number
and free energies are scaled to the values for the critical cluster which are
N = −546, �� = 48.2 kBT.

cleate. The results of the numerical calculation bear this out
and all of the preceding discussion of droplet nucleation can
be carried over to the dual process of bubble nucleation.

C. Order-parameter dynamics

As a final illustration of the formalism, the general ex-
pressions for the order-parameter dynamics, Eq. (73), are spe-
cialized to give a CNT-level of description of the nucleation
process for either droplet or bubble nucleation. By “CNT-
level” it is meant that there will be only a single order param-
eter, the radius of the cluster R, and the calculations will be
performed to lowest order in w/R where w is the width of the
interface. The first step is the evaluation of the metric. This is
most easily done for a concrete model and here the minimal
piecewise linear model with 2 links will be used. The central
density is fixed at the bulk density of the new phase, ρ0, and
the width w is held constant. Then, a straightforward calcula-
tion gives

gRR =
∫ ∞

0

1

4πr2ρ (r)

(
∂m (r)

∂R

)2

dr

= 4π (ρ0 − ρ∞)2

ρ∞
R3 (1 + O (w/R)) , (90)

where ρ∞ is the density of the initial metastable phase. Using
this, the SDE for the order parameter becomes

dR

dt
= −D

ρ∞
4π (ρ0 − ρ∞)2 R3

∂β�

∂R

+
√

2D
ρ∞

4π (ρ0 − ρ∞)2 R3
ξ (t) (91)
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or, written in terms of the mass of a cluster, N = 4π
3 R3ρ0,

dN

dt
= −D

4πρ2
0ρ∞

(ρ0 − ρ∞)2 R (N )
∂β�

∂N

+
√

2D
4πρ2

0ρ∞
(ρ0 − ρ∞)2 R (N )ξ (t) . (92)

Recalling that this equation must be interpreted in the
Stratonovich sense, it is equivalent to a Fokker-Planck equa-
tion for the probability of observing a cluster of size N at time
t, p(N, t), of the form23

∂p(N, t)

∂t
= ∂

∂N

[
D

4πρ2
0ρ∞

(ρ0 − ρ∞)2 R (N )

(
∂β�

∂N
+ 1

6N

)

+D
4πρ2

0ρ∞
(ρ0 − ρ∞)2 R (N )

∂

∂N

]
p (N, t) . (93)

This can be compared to the classical result of Zeldovich
(see Eq. (9.27) of Ref. 1), which is derived using the
Becker-Döring picture

∂p (N, t)

∂t
= ∂

∂N

[
f (N )

∂β�

∂N
+ f (N )

∂

∂N

]
p (N, t) ,

(94)
where the monomer attachment frequency, f(N), in the case
of diffusion-limited kinetics is given by (see Eq. (10.18) of
Ref. 1)

f (N ) = η4πR (N ) Dρ∞ (95)

and where all unknown details of the monomer attachment
process are contained in the sticking coefficient, η. In the CNT
limit of large N, the factor of 1/(6N) in Eq. (93) can be ignored
and it then agrees with the Zeldovich result with the sticking
coefficient identified as

η = ρ2
0

(ρ0 − ρ∞)2 . (96)

For the nucleation of droplets from vapor, one expects that
ρ0 � ρ∞ so that this gives η ≈ 1. This shows that by special-
izing the general theory to the CNT regime of large clusters
and a single order parameter, one is able to recover all of the
elements of the classical formalism.

Similarly, the free energy in the squared-gradient approx-
imation is12

� [ρ] − �∞ = 4π
R3

3
(ω0 − ω∞) + 4πR2γ, (97)

where the excess surface free energy is

γ = wω + K
(ρ∞ − ρ0)2

2w

(
1 + O

(w

R

))
(98)

and the density-averaged free-energy per unit volume is

ω = 1

(ρ0 − ρ∞)

∫ ρ0

ρ∞
(ω (x) − ω∞) dx. (99)

For a large interface, the width can be estimated by minimiz-
ing the free energy of the critical cluster giving

w =
√

(ρ0 − ρ∞)2 K

2 (ω − ωcoex)
, (100)

where ωcoex is the free-energy per unit volume at
coexistence.12 All quantities here are, therefore, directly de-
termined by the interaction potential.

Substituting these elements into Eq. (73) gives

dR

dt
= −D

ρ∞ (ω0 − ω∞)

(ρ0 − ρ∞)2 R−1

(
1 − Rc

R

)

−
√

D
ρ∞ (ω∞ − ω0)

2π (ρ0 − ρ∞)2 R−3ξ (t) , (101)

where

Rc = 2γ

ω∞ − ω0
(102)

is the usual CNT expression for the critical radius. Note that
for a single order parameter, the anomalous force vanishes
and so this model applies to the strong-noise regime. In prin-
ciple, it can be used to determine a mean first-passage time
and, hence, nucleation rate as will be discussed elsewhere. For
now, it is interesting to make one further observation which is
that for large, post-critical clusters, where the noise becomes
unimportant, this gives the deterministic growth law

dR

dt
≈ −D

ρ∞ (ω0 − ω∞)

(ρ0 − ρ∞)2 R−1 (103)

implying that R ∼ t1/2 which is the well-known result for
diffusion-limited cluster growth.51, 52

V. CONCLUSIONS

The goal of this work is a description of nucleation based
on a dynamical, non-equilibrium description of fluctuations
with the additional aim of making contact with the usual ideas
of the classical nucleation theory. The purpose is to develop
a consistent and unique description of nucleation pathways,
kinetics, and post-critical cluster growth. Starting with fluc-
tuating hydrodynamics this goal is achieved for the particular
case of Brownian particles where the limit of strong dissi-
pation provides several simplifications. The nucleation path-
way is characterized as the most likely path and a reduced
description in terms of order parameters is developed. The or-
der parameter description includes both a Langevin dynamics
for the order parameters and a description of the most likely
path. It is noted that in the weak noise limit, all levels of de-
scription lead to a unique description of the MLP that passes
through the saddle point of the free-energy functional and that
is determined by steepest-descent on the free-energy surface
governed by a metric that is unambiguously specified. At this
level, the goal of making contact with CNT is achieved with
the role of the free energy emerging from the nonequilibrium
description rather than being assumed a priori. Furthermore,
as illustrated in the simple case of a single order parameter,
one also has a Langevin description of the process which can
be used to develop a rate theory that recovers the classical re-
sults and is consistent with the expected post-critical growth
law. Thus, the goal of giving a unified description of these
three elements – rates, pathways, and growth-laws – is also
achieved.
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One of the main theoretical results concerns the determi-
nation of the nucleation pathway as characterized by the most
likely path. It is shown that, in the limit of weak noise, this
is determined by the deterministic part of the dynamics mov-
ing either forward or backward in time away from the criti-
cal point. This result represents a generalization of dynamic
density functional theory to problems involving barrier cross-
ing. The same result holds when the dynamics are written in
terms of order parameters. In all cases, the MLP can, alterna-
tively, be viewed as being determined by steepest-descent on
the free-energy surface under a prescribed metric. It is noted
that the strong-noise limit may also be handled but investiga-
tion of the effect of strong noise is deferred to a later date. In
general, it is seen that one recovers the elements of CNT in
the weak-noise limit which, therefore, plays a role analogous
to the quasi-classical limit in quantum theory.

It is interesting to compare this result with previous ap-
proaches. As discussed in the Introduction, there have been
two primary approaches to the description of nucleation path-
ways using the DFT. The first is the minimization of the free
energy under a constraint that stabilizes pre-critical and post-
critical clusters. There is no direct analogy to this method in
the present theory. The other approach that has more recently
begun to be used is steepest-descent on the free-energy sur-
face. The problem then is that it is necessary to define a dis-
tance in the parameter space (whether it be the space of den-
sity distributions or a space of parameters) and there has not
been a compelling, much less unique, prescription for doing
so. In Refs. 11 and 17, it was proposed that a natural choice
was the Euclidean distance in density space,

d2[ρ1, ρ2] =
∫

(ρ1(r) − ρ2(r))2dr (104)

giving, for arbitrary parameters,

g
ρ

ab =
∫

∂ρ(r)

∂xa

∂ρ(r)

∂xb

dr (105)

which should be contrasted with the present results,
Eqs. (44) and (68). The differences between these metrics
are not trivial: integration of the steepest-descent equations,
Eq. (76), using the heuristic g

ρ

ab gives completely different
results for droplet nucleation from those presented above. In
fact, the result is the “classical” one whereby a droplet begins
as a cluster of zero mass and the mass slowly increases as the
density and radius increases during cluster formation.11, 12 It
is interesting to note that the difference in the results is not
due to the factor of the inverse density in the expression for
the correct metric, but rather is due to the fact that it is based
on the cumulative mass distribution rather than the density. In
retrospect, this could be argued to be quite physical: in mov-
ing from one density configuration to another, what actually
required is the movement of mass from one place to another
so that the “closeness” of one configuration to another is more
naturally characterized by how different they are in mass dis-
tribution. Furthermore, it is to be expected to result from a for-
mulation that respects the conservation of mass and in which,
therefore, the rate of transport of mass is a limiting factor.
Conversely, the incorrect, heuristic metric would result from

determining the MLP from a dynamics of the form

dρ(r, t)
dt

= −D
δ�[ρ]

δρ(r, t)
+

√
2DkBT ξ (r, t), (106)

which is to say, a non-conserved dynamics. (In this equa-
tion, �[ρ] = F[ρ] − μN[ρ] for fixed chemical potential, μ.
In other words, this equation for a non-conserved total mass
is to be understood in the grand-canonical ensemble.) While
this could be appropriate for describing some types of sim-
ulations that do not conserve mass, it is clearly inappropri-
ate for real physical systems. Finally, it goes without saying
that doing steepest-descent using an ad hoc metric based on
some parametrization of the free energy is the same thing as
assuming an ad hoc dynamics which will not, in general, be
physically relevant.

Another point that has not been emphasized is the abil-
ity of this formalism to distinguish between multiple path-
ways. Just as there may be multiple local minima, and only
one true minimum, of a function, there can be multiple lo-
cal MLPs and only one truly most likely path. The simplest
and most relevant case occurs when the free-energy surface
possesses multiple saddle points. For example, in the case of
protein nucleation there is a question of whether the system
proceeds directly from low-concentration solution to solid or
whether it proceeds in two steps by passing through an in-
termediate, metastable high-concentration phase of the type
studied above. Until now, the only question that was accessi-
ble theoretically was the height of the energy barriers and this
alone was assumed to determine the relevant path. However,
this ignores the role of dynamics (for a very interesting dis-
cussion of this point see Ref. 53). The present theory allows
a way to address this problem. First, it is possible to deter-
mine local MLPs, e.g., in the weak-noise limit by means of
steepest-descent from the various saddle points. Then, given
these paths, their relative probabilities are easily determined
by evaluating Eqs. (27)–(29). The absolute probability of the
paths requires knowledge of possibly unknown normalization
constants but the relative probabilities can be determined di-
rectly by taking the ratio the results. This will be elaborated
at a later time.

When applied to globular proteins, namely, the case of
nucleation of the high-concentration amorphous phase from
the low-concentration solution, an unexpected result is found
whereby the process involves two steps. In the first step, a
long-wavelength, low-amplitude density fluctuation occurs.
In the second step, a nucleation event takes place within this
region of enhanced density. I argued that this is to be expected
since, on the one hand, such density fluctuations do occur, and
at little cost in free energy, and on the other hand, nucleation
should be easier in such a region since the free-energy barri-
ers should be lower and, equally importantly, since the excess
mass required for cluster formation is present. This result is
very robust in that it is independent of the interaction poten-
tial and of the free-energy functional used, while it is valid
in the weak-noise limit and could be modified when the ef-
fects of strong noise are considered. It is interesting that some
of the free-energy-with-constraint methods have given hints
of a similar pathway, most notably as discussed in Refs. 12
and 16. It is unclear whether this result is of any practical
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significance although one might speculate that the enhance-
ment or suppression of long-wavelength density (concentra-
tion) fluctuations could have a strong effect on the nucleation
rate.

The theory developed here is specific to the case of Brow-
nian particles. In some sense, however, it can rather be viewed
more as an illustration of how a theory can be constructed in
other cases. For example, for pure fluids, one still has fluctuat-
ing hydrodynamics and the basic ideas can be developed in a
similar way. In that case, temperature fluctuations and energy
transport are important so that the fluctuating hydrodynamic
theory will have to be extended to include the heat equation.
The main complication might be that the hydrodynamic the-
ory cannot be collapsed into a single equation for the density,
but rather that one must deal will multiple quantities through-
out. This may limit the practical utility of the theory but it
could still yield useful insights into, e.g., the MLP in the weak
noise limit and the role of the free energy.

Future directions for further work include the investiga-
tion of the role of strong noise. Also interesting would be the
application to heterogeneous nucleation, nucleation in con-
fined systems and the nucleation of solids.
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APPENDIX A: ITO AND STRATONOVICH
INTERPRETATIONS ARE THE SAME

In general, using the Riemann-Stieltjes definition of
integration, stochastic integrals differ from non-stochastic
integrals in that their value depends on where the sampling
point is chosen within each interval. This means that stochas-
tic differential equations differ according to whether they are
interpreted in terms of Ito or Stratonovich interpretations.
However, in ordinary fluctuating hydrodynamics, the two
interpretations turn out to be the same.54 Here, it is shown that
this is also true for the over-damped dynamical model in both
the general and spherically symmetric cases. Note that this
does not hold for the approximate order-parameter dynamics
thus giving rise to the anomalous force discussed in Sec. III
B and in Appendix F. Incidentally, it is worth noting that the
fact that the two interpretations differ in the latter case is not
directly attributable to any approximation: Ito-Stratonovich
equivalence can be broken simply by a change in variables.

1. Equivalence for the general model

In general, the Stratonovich SDE

dxi

dt
= Fi (a) + Mij (a) ξj (t) , 〈ξj (t) ξl(t

′)〉 = δjlδ(t − t ′)
(A1)

corresponds to an Ito SDE of the form

dxi

dt
= Fi(a) + ∂Mij (a)

∂ak

Mkj (a) + Mij (a)ξj (t), 〈ξj (t)ξl(t
′)〉

= δjlδ(t − t ′), (A2)

so the question comes down to an investigation of the second
term on the right in the Ito SDE, the so-called spurious drift.
To evaluate this for the hydrodynamic model, the procedure of
van Saarloos54 et al. is used whereby the stochastic differen-
tial equation is discretized in the spatial variable. Specifically,
r −→ rn = n� where n = (n1, n2, . . . , nD) are the (integer)
coordinates of a lattice point in D dimensions and � is the lat-
tice spacing. Also writing ρn ≡ ρ(rn), the noise term for the
over-damped model becomes[∇ ·

√
ρ (r)ξ (r, t)

]
rn

→ 1

2�

D∑
a=1

(
√

ρn+̂e(a)ξa,n+̂e(a) − √
ρn−̂e(a)ξa,n−̂e(a) ), (A3)

where ê(a) is the unit vector in the a-direction (i.e., ê(a)
i = δia)

and the time-arguments have been suppressed. Introducing
the notation δn,n′ meaning that all components of the vectors
n and n′ are the same the equivalent of Mij can be identified
as

Mn,n′a = 1

2�
(
√

ρn+̂e(a)δn+̂e(a),n′ − √
ρn−̂e(a)δn−̂e(a),n′),

= 1

2�

√
ρn′(δn+̂e(a),n′ − δn−̂e(a),n′). (A4)

We, therefore, need∑
kn′a

∂Mn,n′a

∂ρk
Mk,n′a

= 1

8�2

∑
kn′a

1√
ρk

δn′,k(δn+̂e(a),n′ − δn−̂e(a),n′)

×√
ρn′(δk+̂e(a),n′ − δk−̂e(a),n′)

= 1

8�2

∑
ka

(δn+̂e(a),k − δn−̂e(a),k)(δk+̂e(a),k − δk−̂e(a),k)

= 0 (A5)

thus proving equivalence of the two interpretations.

2. Equivalence for the spherically symmetric model

In the case of spherical symmetry, one has that

dm (r)

dt
= 4πr2Dρ (r)

∂

∂r

1

4πr2

δβF

δρ (r)
+

√
D4πr2ρ (r)ξ (r) .

(A6)
We discretize as in the previous case but now only require a
one-dimensional lattice. Writing r −→ rn = n� and keeping
in mind that

4πr2ρ (r) = ∂m (r)

∂r
, (A7)
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one finds the noise term√
D

mn+1 − mn−1

2�
ξn, (A8)

where mn = m(rn; t), etc. Thus

Mij =
√

D
mi+1 − mi−1

2�
δij (A9)

and so

∂Mij (a)

∂ak

Mkj (a) = δik

∂

√
D

mi+1−mi−1

2�

∂mk

√
D

mk+1 − mk−1

2�
= 0.

(A10)

APPENDIX B: MLP FOR POTENTIAL-DRIVEN
DYNAMICS WITH FLUCTUATION-DISSIPATION
RELATION

The purpose of this Appendix is to sketch a straight-
forward extension of the results of Vanden-Eijnden and
Heymann55 whereby the assumption of a constant Onsager
matrix and white noise is lifted while still assuming a
fluctuation-dissipation relation.

In the following, I consider a set of N stochastic variables,
xi(t), governed by a diffusive, gradient-driven stochastic dy-
namics with multiplicative noise

dx
dt

= −L (x) · ∂

∂x
V (x) +

√
2εσ (x) · ξ (t) , (B1)

where L (x) is a state-dependent matrix of kinetic coefficients,
where the scalar constant ε and matrix σ (x) determine the
noise amplitude and the noise itself is Gaussian, white and
diagonally correlated

〈ξi (t) ξj (t ′)〉 = δij δ(t − t ′). (B2)

Note that the probability density for ξ (t) to assume some
value, say z, is

P (ξ (t) = z) =
(

1

2π

)N/2

exp(−z2/2). (B3)

The key assumption in the following is that a fluctuation-
dissipation relation (FDR) holds, namely,

L (x) = σ (x) · σ T (x) ≡ D (x) , (B4)

where the second equality reminds that the middle quantity is
the diffusion matrix occurring in the Fokker-Planck equation.

Following Refs. 56 and 57 the probability density for
a given path taking place from time t = 0 to t = T is P

= exp(− 1
4ε

ST [x]), where the action is

ST [x] =
∫ T

0

(
dx
dt

+ L (x) · ∂

∂x
V (x)

)
· D−1 (x)

·
(

dx
dt

+ L (x) · ∂

∂x
V (x)

)
dt (B5)

and it must be remembered that x depends on time in this and
all following expression. A path between two points x1 and x2

is therefore a curve x (t) such that x (0) = x1 and x (T ) = x2.

The MLP is determined by minimizing ST[x] over both x (t),
subject to the constraints on the end points, and time, T.

In the following, we specialize to the situation that x1 and
x2 are metastable points and in fact attractors. We assume that
x-space is divided by a separatrix into two regions: region I in
which points are attracted to x1 and region II in which points
are attracted to x2. The separatrix is a curve which will be
called S. Any path from x1 to x2 must cross S at least once.
For the moment, it will be assumed that only one such cross-
ing occurs and the possibility of multiple crossings will be
discussed below. Any such path can, therefore, be separated
into two pieces: one running from x1 to some point xs ∈ S
and a second part from xs to x2,

ST [x] = SI [x] + SII [x] ,

SI [x] =
∫ Ts

0

(
dx
dt

+ L (x) · ∂

∂x
V (x)

)
· D−1 (x)

·
(

dx
dt

+ L (x) · ∂

∂x
V (x)

)
dt,

SII [x] =
∫ T

Ts

(
dx
dt

+ L (x) · ∂

∂x
V (x)

)
· D−1(x)

·
(

dx
dt

+ L (x) · ∂

∂x
V (x)

)
dt (B6)

with x (Ts) = xs . Clearly, the MLP is determined by minimiz-
ing over xs ∈ S and 0 ≤ Ts ≤ T as well. Consider the sec-
ond term first. Once the separatrix is crossed all points are
attracted to x2 by hypothesis, so the path

dx
dt

= −L (x) · ∂

∂x
V (x) ,

(B7)
x (Ts) = xs

will eventually reach x2: the time required determines T given
Ts. (Note that one does not really start on the separatrix but
rather at a point infinitesimally near it on the region II side.)
However, this path has the property that SII[x] = 0 and this
is minimal since the integrand is positive definite. This is just
the trivial result that the deterministic path is the MLP, if it
passes through the desired points.

It is not possible to take the deterministic path in region I
since the system must go from x1 to xs and the deterministic
dynamics is assumed to always take points in region I towards
x1. So, upon noting that expanding the action gives

SI [x] =
∫ Ts

0

(
dx
dt

· D−1 (x) · dx
dt

+
(

L (x) · ∂

∂x
V (x)

)

· D−1 (x) ·
(

L (x) · ∂

∂x
V (x)

) )
dt

+ 2
∫ Ts

0

dx
dt

· D−1 (x) · L (x) · ∂

∂x
V (x) dt. (B8)
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Invoking the FDR, the last term is

∫ Ts

0

dx
dt

· D−1 (x) · L (x) · ∂

∂x
V (x) dt =

∫ Ts

0

dx
dt

· ∂

∂x
V (x) dt,

=
∫ Ts

0

d

dt
V (x) dt,

=V (xs) − V (x1 ) (B9)

One can, therefore, write

SI [x] =
∫ Ts

0

(
dx
dt

· D−1 (x) · dx
dt

+
(

L (x) · ∂

∂x
V (x)

)

· D−1 (x) ·
(

L (x) · ∂

∂x
V (x)

))
dt

+ 2V (xs) − V (x1) ,

=
∫ Ts

0

(
dx
dt

+ L (x) · ∂

∂x
V (x)

)
· D−1 (x) ·

(
dx
dt

+ L (x) · ∂

∂x
V (x)

)
dt

+ 4 (V (xs) − V (x1)) . (B10)

Notice the change in sign of the gradient term. Reversing the
sign of the integration variable and introducing y (t) = x (−t),
so that y (0) = x0 and y (−Ts) = x1the action can be written
as

SI [x] =
∫ 0

−Ts

(
dy
dt ′

− L (y) · ∂

∂y
V (y)

)
· D−1(y)

·
(

dy
dt ′

− L(y) · ∂

∂y
V (y)

)
dt ′ + 4 (V (xs) − V (x1)) .

(B11)

The integral is now the action for a path going from x1 at t′

= −Ts to x0 at t′ = 0 so that the deterministic path can again
be used to set the integral to zero and this will also determine
Ts. One, therefore, gets that

S ≥ 4 (V (xs) − V (x1)) (B12)

with equality if the system follows the deterministic paths
connecting xs to the end points x1 and x2. Finally, the action
is minimized by choosing xs to be the minimal value on the
separatrix which is just the saddle point.

Note that recrossing the separatrix will involve a devia-
tion from the deterministic path on both sides of the separatrix
and so will not minimize the action. For this reason, one need
only consider a single crossing of the separatrix.

This serves to establish the claim that for the dynam-
ics given by Eq. (B1) with the fluctuation-dissipation rela-
tion, Eq. (B4), the MLP crosses the separatrix at the critical
point and follows the deterministic path away from the criti-
cal point. Note the key role played by the FDR in this process:
the same result will not necessarily hold in the general case.

APPENDIX C: EXACT ACTION WITH ORDER
PARAMETERS

Expanding the Lagrangian in Eq. (52) gives

L = 1

2

∫ ∞

0

1

r2ρ (r)

(
∂m (r)

∂t

)2

dr

−D

∫ ∞

0

(
∂m (r)

∂t

∂

∂r

1

r2

δF [ρ]

δρ (r)

)
dr

+ 1

2
D2

∫ ∞

0
r2ρ (r)

(
∂

∂r

1

r2

δF [ρ]

δρ (r)

)2

dr. (C1)

If the density is parametrized as ρ(r; t) = ρ(r; x(t)), then the
first term becomes

1

2

∫ ∞

0

1

r2ρ (r)

(
∂m (r)

∂t

)2

dr

=
[

1

2

∫ ∞

0

1

r2ρ (r; x)

∂m (r)

∂xa

∂m (r)

∂xb

dr

]
dxa

dt

dxb

dt

= 2πgab (x)
dxa

dt

dxb

dt
(C2)

and the second is

−D

∫ ∞

0

(
∂m (r)

∂t

∂

∂r

1

r2

δF [ρ]

δρ (r)

)
dr

= −D

∫ ∞

0

∂

∂r

(
∂m (r)

∂t
4π

δF [ρ]

δρ (r)

∣∣∣∣
ρ(r)

)
dr

+D

∫ ∞

0

(
∂

∂r

∂m (r)

∂t

)
4π

δF [ρ]

δρ (r)

∣∣∣∣
ρ(r)

dr

= −4πD
dxa

dt
lim

r→∞

(
∂m (r)

∂xa

δF [ρ]

δρ (r)

∣∣∣∣
ρ(r)

)

+4πD
dxa

dt

∫ ∞

0
4πr2 ∂ρ (r)

∂xa

δF [ρ]

δρ (r)

∣∣∣∣
ρ(r)

dr

= −4πD
dxa

dt

∂N

∂xa

μ + 4πD
dxa

dt

∂F [ρ]

∂xa

. (C3)

To evaluate this, note that limr → ∞m(r) = N, the total number
of particles in the system. Assuming that the boundary con-
dition is that the density assume the bulk value, ρ∞, far from
the interface gives

lim
r→∞

(
∂m (r)

∂xa

δF [ρ]

δρ (r)

∣∣∣∣
ρ(r)

)
= ∂N

∂xa

δF [ρ]

δρ (r)

∣∣∣∣
ρ∞

≡ ∂N

∂xa

μ,

(C4)
where the last equality defines the chemical potential. Com-
bining, the final result is

−D

∫ ∞

0

(
∂m (r)

∂t

∂

∂r

δF [ρ]

δρ (r)

)
dr = 4πD

dxa

dt

∂� [ρ]

∂xa

,

(C5)

where �[ρ] = F[ρ] − μN is the grand potential. Thus, the
Lagrangian is

1

4π
L = 1

2
gab (x)

dxa

dt

dxb

dt
+ D

dxa

dt

∂β� [ρ]

∂xa

+ V (x) (C6)
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with

V (x) = 1

2
D2

∫ ∞

0
r2ρ (r)

(
∂

∂r

1

r2

δF [ρ]

δρ (r)

)2

dr. (C7)

APPENDIX D: EQ. (80) AS A COMPLETENESS
RELATION

Assume that {pi (r)}∞i=1 is a complete set of basis func-
tions so that one can write

m (r) =
∞∑
i=1

xipi (r) ,

(D1)

xi =
∫ ∞

0
m (r) qi (r) dr,

where {qi (r)}∞i=1 is the bi-orthogonal set satisfying∫ ∞

0
pi (r) qj (r) dr = δij . (D2)

Then, since m(r) is arbitrary, one has the completeness
relation ∑

i

pi(r)qi(r
′) = δ(r − r ′). (D3)

First note that the metric is

gij =
∫ ∞

0
r−2ρ−1(r)

∂m(r)

∂xi

∂m (r)

∂xj

dr

=
∫ ∞

0
r−2ρ−1(r)pi(r)pj (r)dr. (D4)

The inverse metric is then

g−1
j l =

∫ ∞

0
r ′2ρ(r ′)

δxj

δm (r ′)
δxl

δm (r ′)
dr ′

=
∫ ∞

0
r ′2ρ(r ′)qj (r ′)ql(r

′)dr ′ (D5)

as can be verified by direct evaluation of∑
j

gij

∫ ∞

0
r ′2ρ(r ′)qj (r ′)ql(r

′)dr ′

=
∑

j

∫ ∞

0
dr

∫ ∞

0
dr ′ (r−2ρ−1(r)pi(r)pj (r))

× (r ′2ρ(r ′)qj (r ′)ql(r
′))

=
∫ ∞

0
dr

∫ ∞

0
dr ′ (r−2ρ−1(r)pi(r))

× δ(r − r ′)(r ′2ρ(r ′)ql(r
′))

=
∫ ∞

0
dr pi(r)ql(r

′)

= δil, (D6)

where the second line follows from the completeness relation
and the last line by bi-orthogonality. Then, one easily verifies

that ∑
ij

∂m (r)

∂xi

g−1
ij

∂m
(
r ′)

∂xj

=
∑
ij

pi(r)

(∫ ∞

0
r ′′2ρ(r ′′)qi(r

′′)qj (r ′′)dr ′′
)

pj (r ′)

=
∫ ∞

0
r ′′2ρ(r ′′)δ(r − r ′′)δ(r ′ − r ′′)dr ′′

= r2ρ(r)δ(r − r ′) (D7)

as claimed.

APPENDIX E: ALTERNATIVE DERIVATION OF ORDER
PARAMETER EQUATIONS

One way to relate a general functional form, ρ̃ (r; x (t)),
to the exact density, ρ(r; t), is by defining a distance in den-
sity space and then minimizing the difference between the two
functions. It is shown in the main text that the dynamics im-
poses a unique distance functional which is expressed in terms
of the corresponding mass functionals as

s2 =
∫ ∞

0

(
m̃−1 (u; x (t)) − m−1 (u; t)

)2
du. (E1)

Determining the fitting parameters at each moment in time by
minimizing the difference between the actual mass distribu-
tion and the approximating distribution gives

0 = ∂

∂xi (t)

∫ ∞

0

(
m̃−1 (u; x (t)) − m−1 (u; t)

)2
du,

=
∫ ∞

0

(
m̃−1 (u; x (t)) − m−1 (u; t)

) ∂m̃−1 (u; x (t))

∂xi (t)
du,

=
∫ ∞

0
(m̃−1 (m (r; t) ; x (t)) − r)

× ∂m̃−1 (u; x (t))

∂xi (t)

∂m (r; t)

∂r
dr. (E2)

In the following, in order to simplify the notation, the depen-
dence on time will not be explicitly indicated.

Noting that if

y (m; x) = m̃−1 (m; x) , (E3)

then

m = m̃ (y (m; x) ; x) (E4)

so

0 = m̃r (y (m, x) ; x) yi (m; x) + m̃i (y (m; x) ; x) , (E5)

where the short-hand notation

m̃r (y; x) ≡ ∂m̃ (r; x)

∂r

∣∣∣∣
r=y

(E6)

m̃i (y; x) ≡ ∂m̃ (y; x)

∂xi
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is used. Thus, Eq. (E2) becomes

0 =
∫ ∞

0
(m̃−1(m(r); x) − r)

× m̃i(m̃−1(m(r); x); x)

m̃r (m̃−1(m(r); x); x)

∂m(r)

∂r
dr. (E7)

Another derivative gives

0 = −dxj

dt

∫ ∞

0

m̃j

(
m̃−1 (m (r) ; x) ; x

)
m̃r

(
m̃−1 (m (r) ; x) ; x

)
× m̃i

(
m̃−1 (m (r) ; x) ; x

)
m̃r

(
m̃−1 (m (r) ; x) ; x

) ∂m (r)

∂r
dr

+
∫ ∞

0
m̃−1

r (m (r) ; x)
dm (r)

dt

× m̃i

(
m̃−1 (m (r) ; x) ; x

)
m̃r

(
m̃−1 (m (r) ; x) ; x

) ∂m (r)

∂r
dr

+ dxj

dt

∫ ∞

0

(
m̃−1 (m (r) ; x) − r

) d

dt

×
[

m̃i

(
m̃−1 (m (r) ; x) ; x

)
m̃r

(
m̃−1 (m (r) , x) ; x

) ∂m (r)

∂r

]
dr (E8)

or

0 = −dxj

dt

∫ ∞

0

m̃j

(
m̃−1 (m (r) ; x) ; x

)
m̃r

(
m̃−1 (m (r) ; x) ; x

)
× m̃i

(
m̃−1 (m (r) ; x) ; x

)
m̃r

(
m̃−1 (m (r) ; x) ; x

) ∂m (r)

∂r
dr

+
∫ ∞

0

1

m̃r

(
m̃−1 (m (r) ; x) ; x

) dm (r)

dt

× m̃i

(
m̃−1 (m (r) ; x) ; x

)
m̃r

(
m̃−1 (m (r) ; x) ; x

) ∂m (r)

∂r
dr

+dxj

dt

∫ ∞

0

(
m̃−1 (m (r) ; x) − r

) d

dt

×
[

m̃i

(
m̃−1 (m (r) ; x) ; x

)
m̃r

(
m̃−1 (m (r) , x) ; x

) ∂m (r)

∂r

]
dr. (E9)

Expanding in the difference m (r) − m̃ (r; x) gives

gij (x (t))
dxi (t)

dt
=

∫ ∞

0

∂m̃ (r; x (t))

∂xi (t)

(
∂m (r; t)

∂r

)−1

× dm(r; t)

dt
dr + O(m(r; t) − m̃(r; x(t))),

(E10)

which gives the result, Eq. (73).

APPENDIX F: THE SPURIOUS DRIFT

The stochastic model is

dxi

dt
= −Dg−1

ij (x)
∂β�

∂xj

− εg−1
ij (x)

×
∫ ∞

0

√
2D

4πr2ρ (r; x)

∂m (r; x)

∂xj

ξ (r; t) dr, (F1)

which must be understood in the Stratonovich interpretation.
In order to replace the noise term by a simpler form, this
must first be written as an Ito SDE. Then, the change of the
noise can be made and the result transformed back to the
Stratonovich interpretation. The first step is accomplished us-
ing the standard transformation rule23 giving the equivalent
Ito form of the SDE,

dxi

dt
= −Dg−1

ij (x)
∂β�

∂xj

+ 1

2
ε2

∫ ∞

0

(
∂

∂xl

g−1
ij (x)

√
2D

4πr2ρ (r; x)

∂m (r; x)

∂xj

)

×
(

g−1
lk (x)

√
2D

4πr2ρ (r; x)

∂m (r; x)

∂xk

)
dr

−εg−1
ij (x)

∫ ∞

0

√
2D

4πr2ρ (r; x)

∂m (r; x)

∂xj

ξ (r; t) dr.

(F2)

The autocorrelation of the noise is

Dil ≡ ε2g−1
ij g−1

lm

∫ ∞

0

2D

4πr2ρ (r; x)

∂m (r; x)

∂xj

∂m (r; x)

∂xm

dr

(F3)

= 2Dε2g−1
il , (F4)

so that the noise term in Eq. (F2) can be replaced by the equiv-
alent form ε

√
2Dq−1

ij (x)ξj (t) with qil(x)qjl(x) = gij (x) and
〈ξ i(t)ξ j(t′)〉 = δijδ(t − t′).

Up to a factor of D, the second term on the right is

A
(I )
i = ∂g−1

ij (x)

∂xj

+ g−1
ij (x) g−1

lk (x)
∫ ∞

0

1

4πr2ρ (r; x)

(
∂2m (r; x)

∂xl∂xi

− 1

2

1

ρ (r; x)

∂ρ (r; x)

∂xl

∂m (r; x)

∂xi

)
∂m (r; x)

∂xk

dr. (F5)
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Using the symmetry of g−1
ij , one has that

g−1
ij (x) g−1

lk (x)
∫ ∞

0

1

4πr2ρ (r; x)

∂2m (r; x)

∂xl∂xi

∂m (r; x)

∂xk

dr

= 1

2
g−1

ij (x) g−1
lk (x)

∫ ∞

0

1

4πr2ρ (r; x)

(
∂2m (r; x)

∂xl∂xi

× ∂m (r; x)

∂xk

+ ∂2m (r; x)

∂xk∂xi

∂m (r; x)

∂xl

)
dr

= 1

2
g−1

ij (x) g−1
lk (x)

∫ ∞

0

1

4πr2ρ (r; x)

∂

∂xi

×
(

∂m (r; x)

∂xl

∂m (r; x)

∂xk

)
dr

= 1

2
g−1

ij (x) g−1
lk (x)

[
∂glk (x)

∂xi

+
∫ ∞

0

1

4πr2ρ2 (r; x)

∂ρ (r; x)

∂xi

∂m (r; x)

∂xl

∂m (r; x)

∂xk

dr

]
(F6)

so the extra term becomes

A
(I )
i = ∂g−1

ij (x)

∂xj

+ 1

2
g−1

ij (x) g−1
lk (x)

∂glk (x)

∂xi

+ 1

2
g−1

ij (x) g−1
lk (x)

∫ ∞

0

1

4πr2f 2 (r; x)

×
(

∂ρ (r; x)

∂xi

∂m (r; x)

∂xl

− ∂ρ (r; x)

∂xl

∂m (r; x)

∂xi

)
× ∂m (r; x)

∂xk

dr

= ∂g−1
ij (x)

∂xj

+ 1

2
g−1

ij (x) g−1
lk (x)

∂glk (x)

∂xi

+ 1

2

(
g−1

ij (x) g−1
lk (x) − g−1

lj (x) g−1
ik (x)

)
×

∫ ∞

0

1

4πr2ρ2 (r; x)

∂ρ (r; x)

∂xi

∂m (r; x)

∂xl

∂m (r; x)

∂xk

dr.

(F7)

Combining these results gives the equivalent Ito form of the
SDE with simplified noise term

dxi

dt
= −2Dg−1

ij (x)
∂β�

∂xj

− Dε2A
(I )
i − ε

√
2Dq−1

lj (x) ξl (t) .

(F8)
To get the Stratonovich form, one must transform back giving
the same equation but with spurious drift

A
(S)
i = A

(I )
i − q−1

kj

∂q−1
ij

∂xk

. (F9)
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