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Nucleation of colloids and macromolecules: Does the nucleation
pathway matter?

James F. Lutskoa)

Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles,
Blvd. du Triomphe, Code Postal 231,1050 Brussels, Belgium

(Received 6 February 2012; accepted 14 March 2012; published online 2 April 2012)

A recent description of diffusion-limited nucleation based on fluctuating hydrodynamics that ex-
tends classical nucleation theory predicts a very non-classical two-step scenario whereby nucleation
is most likely to occur in spatially extended, low-amplitude density fluctuations. In this paper, it is
shown how the formalism can be used to determine the maximum probability of observing any pro-
posed nucleation pathway, thus allowing one to address the question as to their relative likelihood,
including of the newly proposed pathway compared to classical scenarios. Calculations are presented
for the nucleation of high-concentration droplets in a low-concentration solution of globular proteins
and it is found that the relative probabilities (new theory compared to classical result) for reach-
ing a critical nucleus containing Nc molecules scales as e−Nc/3 thus indicating that for all but the
smallest nuclei, the classical scenario is extremely unlikely. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3698603]

I. INTRODUCTION

Nucleation – whether homogeneous or heterogeneous –
is a paradigmatic example of self assembly. It occurs when
a physical system can be in two or more states that are
separated by free-energy barriers. If the system is initially in
one of the metastable states, thermal fluctuations can drive
it over the free-energy barrier and into a more stable state.
Because the energy needed to overcome the barrier scales
with the spatial size of the system, the process occurs locally
via the formation of a finite sized cluster or nucleus. In many
processes of interest such as the crystallization of proteins
from solution,1, 2 the formation of snowflakes3 and the
crystallization of polymorphic solids4 the system may pass
through one or more intermediate metastable states before
arriving at the final, stable state. In fact, the heuristic known
as Ostwald’s rule of stages specifically states that a system
will pass in turn from one state to another having the next
lowest free energy until it reaches the minimal energy state.
Various arguments can be given in support of this rule5 and
they can be grouped into two classes: either it arises because
the barriers separating “similar” states are smaller than those
separating disparate states or it arises due to the kinetics of
the transition. The former reason is an application of another
heuristic known as the Stranski-Totomanow conjecture which
states that the observed transition will be the one correspond-
ing to the minimal energy barrier.6 The latter is more difficult
to characterize as it may depend on microscopic details of
the various states and the dynamics of the system. Recent
work on model systems indicates that, depending on the
free energy landscape and the dynamics, either Ostwald or
Stranski-Totomanow or both may be correct or not.7

a)Electronic mail: jlutsko@ulb.ac.be. URL: http://www.lutsko.com.

The common issue at question is the description of the
nucleation pathway. Clearly, a theoretical description for the
nucleation pathway that goes beyond the empirical heuris-
tics mentioned above must be based on a dynamical descrip-
tion of nucleation including the role of thermal fluctuations,
mass and energy transport, and the structure of the various
phases. A framework for such a dynamical formulation of nu-
cleation has recently been described.8, 9 For large clusters, it
was shown to reproduce classical nucleation theory (CNT) in
the weak-noise limit. For a diffusion-limited dynamics – ap-
propriate for the description of colloids and macromolecules
in solution – it was shown that the relative probability of dif-
ferent nucleation pathways could be easily calculated and that
the most likely path (MLP) could be determined by steepest
descent on the free energy surface. This framework can be
contrasted with numerous proposals for determining the nu-
cleation pathway based solely on the properties of the free en-
ergy surface with no dynamical input, see, e.g., Refs. 10–16.
As discussed below, because of the heuristic nature of the lat-
ter, evaluating their relative merits has proven difficult.

The purpose of this paper is to illustrate the compar-
ison of different candidate nucleation pathways by means
of their relative probability. The particular example investi-
gated is the formation of high-concentration droplets in a low-
concentration solution of globular proteins. This process is
analogous to the vapor-liquid transition in simple fluids and,
while being of intrinsic interest as part of the process of crys-
tallization in globular proteins, has the practical advantage of
allowing for a relatively simple theoretical description as de-
scribed in Refs. 8 and 9 and below. For this problem, the re-
cently developed dynamical theory of nucleation predicts a
very different nucleation pathway than do the older density
functional theory (DFT)-based theories. The new prediction
is that the process of droplet nucleation involves two steps:
first, a long-wavelength density fluctuation forms and then a
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nucleation event takes place within this fluctuation. The older,
classical view is that nucleation begins with a spatially lo-
calized cluster that grows monotonically. From a point of
view focused on the comparison of the theories, it is there-
fore of interest to compare the relative likelihood of these
two pathways so as to determine whether the difference be-
tween them is qualitative or quantitative. More broadly, in
the context of the general theory of nucleation this allows us
to address the question of how important it is to choose the
“right” path when there are multiple possible paths that pass
through the (unique) critical cluster. Note that a feature of the
heuristic rules is that they are phrased entirely in terms of
the free-energy maxima (the barriers) and minima (the states)
and, hence, they provide no guidance on this question. In this
sense, they are in accord with the common intuition that all
that matters in nucleation are the free-energy extrema which,
in addition to their use in choosing pathways, are also the only
relevant quantities entering the CNT for nucleation rates.17

Here, it will be shown that even paths beginning and end-
ing on the same states and passing over the same barriers can
have wildly different probabilities of occurrence. The paths
compared will be the most likely path as determined from the
dynamical theory and a path determined from one of the non-
dynamical, free-energy methods which, by means of direct
comparison to simulation,12 is known to give a very accurate
description of the free-energy barrier for nucleation in pro-
teins. Since this method has also recently been applied to the
study of nucleation of wetting films on curved substrates18

and of ordered phases of block copolymers,19 where mul-
tiple candidate pathways were found, it is of particular in-
terest to use as a test-case. This paper therefore serves two
purposes: (i) to introduce a method of comparing the like-
lihood of candidate nucleation pathways, however, they are
arrived at; and (ii) to use this method to determine whether
the proposed non-classical pathway is significantly different
(more probable) than a “classical” alternative. Note that in the
present context, the term “classical” refers to previous results
in which it is either found or assumed that nucleation begins
with a small, spatially compact structure while the term “non-
classical” refers to the present results involving a spatially de-
localized, extended structure.

In Sec. II, the elements of the theoretical description are
reviewed. Section III describes the application to the nucle-
ation of protein-rich droplets in solution, including a detailed
comparison of the different candidate pathways and a com-
putation of their relative probabilities. The paper ends with a
brief discussion of our conclusions.

II. THEORY

The present theoretical development concerns a collec-
tion of particles – molecules or colloidal particles – that in-
teract with one another via a prescribed pair potential and
which are also subject to random, Brownian forces. This is
a simple model for large particles in a bath of small parti-
cles wherein the effect of the bath or solution is incorporated
via the effective interaction between the large particles and
random (Brownian) forces acting on the large particles. As
such, the bath is not explicitly represented except through

the amplitude of the random noise which in turn determines
the (low-concentration) diffusion constant for the large par-
ticles. For this reason, the concentration of the large parti-
cles is equivalent to their density and the two terms will be
used interchangeable in the following. Further details of the
microscopic model can be found in Ref. 9. The fundamen-
tal quantity with which the phase transition is characterized
is then the local concentration (or number density), ρ (r). The
density/concentration is commonly assumed to be spherically
symmetric and this assumption will be used throughout the
present development. The initial, metastable, system is char-
acterized by a uniform density ρ(r) = ρ i where ρ i, is a min-
imum of the bulk free energy. The new phase is also charac-
terized by a uniform density, ρ(r) = ρ f, where ρ f is the global
minimum of the bulk free energy. We assume throughout the
existence of a Helmholtz free energy functional, F[ρ], so that,
e.g., in the grand canonical ensemble the appropriate free en-
ergy is �[ρ] = F[ρ] − μN, where N = ∫

ρ (r) dr is the total
number of particles. For a uniform density the free energy be-
comes an ordinary function, F [ρ (r) = ρi] ≡ F (ρi), and the
conditions for the uniform phases to be minima are the usual
relations 1

V
F ′ (ρi) = μ = 1

V
F ′(ρf ).

Nucleation proceeds by the formation of a cluster consist-
ing of the new phase which grows until it consumes the entire
system. Despite the fact that the new phase is energetically
favored, small clusters are unstable due to the dominance of
surface tension effects. When a cluster is sufficiently large, the
lowering of the cluster energy due to increasing the size of the
bulk region inside the cluster outweighs the cost of increasing
the surface area and growth is favored. These regimes are sep-
arated by a saddle point in the free energy called the critical
cluster which necessarily satisfies the relation

δ� [ρ]

δρ (r)
= 0. (1)

There are generally two approaches to representing the den-
sity function. One is to simply discretize space by introducing
a lattice of points ri = i� so that one works with a series of
values ρ i ≡ ρ(i�). An alternative is to use a parametrized
functional form such as a hyperbolic tangent,

ρ (r) = ρ0 + ρ∞ − ρ0

1 + exp
(

R−r
w

) (2)

or an exponential form

ρ (r) =
[
ρ0 − ρ0 − ρ∞

2
exp

(
r − R

w

)]
� (R − r)

+
[
ρ∞ + ρ0 − ρ∞

2
exp

(
R − r

w

)]
� (r − R) ,

(3)

where, in both cases, there are four parameters: a radius, R, a
width, w , the interior density, ρ0 that characterizes the central
density for large (R � w) clusters, and the density far from
the cluster, ρ∞. It is easy to show that in the thermodynamic
limit the latter must be a minimum of the free energy so that
we will normally have that it is equal to the initial density
ρ∞ = ρ i. The advantage of the first method, discretization, is
that it is clear that one can approach the continuum limit by
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decreasing the lattice spacing whereas the advantage of the
second method, parametrization, is that one can hope to
get good results with relatively few parameters. In fact, the
two methods can be viewed as two different approaches to
parametrization and other possibilities – such as representa-
tion in terms of Fourier components or projection onto some
other set of basis functions – have the same characteristic. We
can therefore without loss of generality assume that the den-
sity field is represented by a collection of N parameters de-
noted generically as xi so that ρ (r) = f (r; x), for some func-
tion f. The change in the density profile as a function of time
therefore becomes a change in the parameters so that more
generally we have ρ (r; t) = f (r; x (t)). Thus, specification
of the evolution of the parameters, x (t), corresponds to the
prescription of a path in density space. The same notion holds
when the path is parametrized by some other quantity rather
than time – e.g., the equivalent of a reaction coordinate.

To give a concrete illustration, Ghosh and Ghosh13 use
the exponential profile with the radius acting as the reaction
coordinate. They determine the other parameters by minimiz-
ing the free energy while holding the radius constant and thus
parametrize the path by the radius. However, this is not a
unique prescription since one could equally well parametrize
by the excess number of particles in the cluster,

�N ≡
∫

(ρ (r) − ρ∞) dr (4)

and as pointed out previously, these need not be the same
since one could increase �N while holding the radius constant
and increasing the width. This ambiguity is the fundamental
problem with methods based solely on free energy consider-
ations: there is no obvious method to determine which ap-
proach is preferable (or more pertinently, which is chosen by
Nature).

Previously, it was shown that under the assumptions
listed above, the MLP can be determined by gradient descent
on the free energy surface.8, 9 This means that first the saddle
point is located and then one solves

dxi

dt
= ±g−1

ij (x)
∂�

∂xj

, (5)

where the sign is chosen according to whether one is moving
uphill from the initial state, ρ i, to the saddle point (plus sign)
or downhill from the saddle point to the final state, (minus
sign). Alternatively, one can start at the saddle point and solve
this equation with the minus sign to determine the two halves
of the path. The information about dynamics is contained in
the matrix of kinetic coefficients, g−1

ij , which are calculated as
the inverse of

gij (x) =
∫ ∞

0

1

4πr2ρ (r; x)

∂m (r; x)

∂xi

∂m (r; x)

∂xj

dr, (6)

where the cumulative mass is

m (r; x) = 4π

∫ r

0
ρ(r ′)r ′2dr ′. (7)

Another interpretation of Eq. (5) is that the MLP is deter-
mined by steepest descent on the free energy surface with the
matrix gij playing the role of a Riemannian metric.8, 9

The system is able to cross the free-energy barrier
separating the initial and final states due to the influence of
fluctuations. The general dynamics is therefore a combina-
tion of the deterministic dynamics of Eq. (5) and additional
fluctuating forces.8, 9 In the underlying Brownian dynamics
model, the fluctuations are modeled as Gaussian-distributed
white noise so that the probability of observing a given
sequence of fluctuations is a product of Gaussian factors. For
any path, the fluctuations required to realize it are determined
by the difference between the observed path velocity, dxi

dt
and

the deterministic driving force as given on the right hand side
of Eq. (5). Further details can be found in Ref. 9 and here it is
simply noted that, taken together, this leads to the expression
for the the probability density for any path, ρ (r; x (t)) for
0 ≤ t ≤ T, being given by

P [x] = N exp

(
−1

2
S [x]

)
, (8)

where the action is

S [x] =
∫ T

0
L(x, ẋ)dt, (9)

the Lagrangian is

L(x, ẋ) = 1

2

(
dxi

dt
− g−1

ij

∂�

∂xj

)
gil

(
dxl

dt
− g−1

lk

∂�

∂xk

)
,

(10)
and where the normalization constant, N , is independent
of the path but otherwise unknown. Given two paths, x (t)
and y (t), their relative probability can be calculated using
these expressions provided they are parametrized in the same
way. Note that Eq. (8) gives the probability density and not
the probability of the path. The latter would actually be
P [x] Dx where Dx is the path measure. For example, if time
were discretized using M + 1 values ti = i(T/M) and if the
parameters are then given by xij ≡ xi(tj) then the measure
would be Dx = ∏N

i=1

∏M
j=0 dxij . This factor is irrelevant for

computing the relative probability of two paths described by
the same parametrization since it would drop out of the ratio
leaving the ratio of the probability densities, P [x]/P [y]. On
the other hand, it is clear that one cannot meaningfully com-
pare two paths based on different parametrization schemes
since the measure and the normalization factor would in
general be different.

It may still be possible to compare the paths in an
approximate manner by approximately translating one
parametrization scheme into another. For example, a path
based on a discretization of the density on a set of N lattice
points, ri, cannot be directly compared to one based on a
discretization over 2N lattice points, r ′

i . However, one can
translate either parametrization into the language of the other
by, e.g., using cubic-spline interpolation over the N-point
profiles to evaluate the density at the lattice positions of the
2N-point discretization.

Another question is whether there is any way to com-
pare the probabilities of pathways that are not determined
from the dynamical model? In particular, one would like to
be able to evaluate the utility of the large number of exist-
ing heuristic approaches for the determination of nucleation
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pathways which typically give a path in terms of a reaction
coordinate, which will be called s, rather than the time. For
example, if the path is determined by minimizing the free en-
ergy at constant excess particle number, N, for different values
of N ranging from zero to the mass of the critical cluster, then
the reaction coordinate, s, would be N. It would seem that
the only physical meaning of such a path is that a real sys-
tem would follow it in the course of time so that if the path
x (s) goes from the initial state at s = 0 to the saddle point at
s = smax then, this must mean that the physical system begins
at ρ (r; t = 0) = ρ (r; x (s = 0)) and ends at the saddle point
at ρ (r; t = T ) = ρ (r; x (s = smax)). Since both time and the
reaction coordinate vary monotonically during this processes,
it must be that they are related, so that we can write

dρ

dt
= ds

dt

dρ

ds
≡ v(s)

dρ

ds
(11)

with v(s) ≡ ds/dt being the speed along the path. Substituting
this into the expression for the path probability we get

P [ρ] = N exp

(
−1

4

∫ smax

0

(
v(s)

dxi

ds
− g−1

ij

∂�

∂xj

)
gil

×
(

v(s)
dxl

ds
− g−1

lk

∂�

∂xk

)
v−1(s)ds

)
. (12)

We can now maximize the probability with respect to varia-
tions in v(s) to find that

dxi

ds
gil

dxl

ds
− ∂�

∂xj

g−1
kj

∂�

∂xk

(v(s))−2 = 0 (13)

or √√√√ dxi

ds
gil

dxl

ds

∂�
∂xj

g−1
kj

∂�
∂xk

= v−1(s). (14)

This relation provides the desired expression for the speed the
system advances along the proposed path. Direct evaluation of
the second functional derivative of the path probability den-
sity shows that this is indeed a maximum. The explicit form
of the induced dynamics is

dxi

dt
=

√√√√ ∂�
∂xj

g−1
kj

∂�
∂xk

dxl

ds
glm

dxm

ds

dxi

ds
. (15)

The probability density itself becomes

P [ρ] = N exp

(
−1

2

∫ smax

0

[√
dxi

ds
gil

dxl

ds

√
∂�

∂xj

g−1
kj

∂�

∂xk

−dxi

ds

∂�

∂xi

]
ds

)
(16)

which, with the time eliminated, gives a method to compare
the probabilities for parametrized paths. Notice that this ex-
pression is invariant under a reparametrization of the reaction
coordinate, e.g., ds → u(s′)ds′, so that it is a purely geometric
quantity. In fact, if we further introduce the gradient force

bi = g−1
ij (x)

∂�

∂xj

(17)

it can be written as

P [ρ] = N exp

(
−

∫ smax

0

∣∣∣∣dx
ds

∣∣∣∣ |b| sin

(
θ

(
dx
ds

, b
)

2

)
ds

)
,

(18)
where |b| = √

bigilbj and where θ
(

dx
ds

, b
)

is the angle be-
tween dx

ds
and b. This form emphasizes the purely ge-

ometric nature of the optimized path. In particular, the
parametrization-invariance means that the result is indepen-
dent of the value of the upper limit, smax, so that any conve-
nient rescaling is allowed.

III. APPLICATIONS

The dynamical theory on which these results are based is
applicable to, e.g., globular proteins in solution which can be
modeled at the crudest level as spherical molecules interact-
ing via a short-ranged effective potential and subject to Brow-
nian forces due to the solvent. Here, the model potential of ten
Wolde and Frenkel consisting of a hard core and short-ranged
attraction,

V (r) =

⎧⎪⎨⎪⎩
∞, r < σ

4 ε
α2

( (
1

( r
σ

)2−1

)6
− α

(
1

( r
σ

)2−1

)3
)

, r ≥ σ

(19)
will be used. The energy scale is set by ε and the hard-core ra-
dius is σ while the parameter α determines the distance of the
attractive minimum from the hard core: the typical value for
globular proteins of α = 50 will be used. The bulk free energy
is approximated using thermodynamic perturbation theory.

In CNT, it is assumed that the material in the interior of
a cluster is in the bulk state: e.g., if a liquid phase is being
nucleated from a gas then it is assumed that the density inside
the cluster is always that of the bulk liquid and the cluster
grows simply by increasing its radius from zero. More mi-
croscopic density functional theory calculations allow for the
possibility of the interior density varying from the bulk value
and the typical behavior, as shown in Fig. 1, is for the den-
sity to begin at that of the background gas and to increase as
the radius increases until eventually reaching that of the bulk
when the cluster is very large. This is associated with the fact
that in contrast to CNT the interface between the cluster and
the gas is of finite extent so that when the cluster is small,
all molecules may be considered to be in an intermediate, in-
terfacial region. Recently, it has been shown that solving the
equations for the MLP yields an unexpected result: the cluster
does not begin with a small, localized increase in density but
rather it starts as a spatially extended density fluctuation with
the actual nucleation event occurring within this structure.8, 9

The initial radius is infinite and the excess mass is finite so that
the density is that of the vapor. The first part of the process in-
volves the gradual decrease in the radius with the excess mass
remaining nearly constant so that the density increases slowly.
This represents the formation of a density fluctuation contain-
ing excess mass relative to the background. The second stage
of the process is the formation of a nucleus within this re-
gion of slightly enhanced density. The excess mass within the
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FIG. 1. The spherically symmetric concentration (density) distribution at
various points along the classical path, as determined from Eq. (20). The
initial state has uniform concentration, ρ(r) = 0.075, and the value of the
concentration at the origin increases monotonically along the nucleation
pathway.

density fluctuation is the basis for the formation of the cluster
which then goes on to grow as in the classical scenarios.

In order to make a quantitative comparison of these
different pathways, calculations of the most likely path
for the nucleation of high-concentration droplets in a low-
concentration protein solution were performed as described in
Ref. 9 and using a “classical” method which is known to give
a good quantitative description of constrained clusters.20 The
determination of the MLP amounts to the solution of Eq. (5).
The classical calculation takes a very similar form to the MLP
calculation despite the fact that it was proposed on purely
heuristic grounds prior to the MLP method: it involves gra-
dient descent on the free energy surface

dxi

ds
= − 1√

∂β��

∂xl
g̃−1

lk
∂β��

∂xk

g̃−1
ij

∂β��

∂xj

, (20)

but with a heuristic metric given by

g̃ij (x) =
∫

∂ρ (r; x)

∂xi

∂ρ (r; x)

∂xj

dr. (21)

Note that the first of these equations is equivalent to Eq. (5),
but with distance along the path used as the independent vari-
able rather than “time” (since, in the classical theories, there
is no dynamics and so no natural concept of time). The sim-
ilarity between these two calculations is striking and one of
the advantages of the dynamical approach is that it shows that
gradient descent on the free energy surface does indeed char-
acterize the nucleation pathway provided the correct metric
is used. The “correct” metric is basically defined in terms of
mass differences rather than density differences which can be
traced to the fact that the underlying theory is based on fluctu-
ating hydrodynamics in which mass is conserved. In contrast,
the heuristic metric was simply guessed based on the criterion
of simplicity and a prejudice towards the use of local density
as the fundamental variable and, so, no physical meaning can
be attached to the paths derived from it.

FIG. 2. Some aspects of the nucleation pathway as determined using a typ-
ical density functional theory method,20 left panel, and determined from
the dynamical theory, right panel. The figures show the central density,
ρ(r = 0), excess particle number, N, and excess free energy, ��, as functions
of distance along the nucleation pathway. The left panal, labeled “Classical”,
is the result of the heuristic theory, Eq. (20), whereas the right panel shows
the most likely path (MLP), as described in the text. All quantities, including
the ordinate, have been scaled by their values at the critical cluster. (Note that
despite the differences in the paths, the critical cluster is uniquely determined
by the free energy and so is the same for both paths.)

In all calculations, spherical symmetry was assumed so
that the configuration at any given instant is characterized by
the variation of density as a function of distance from the
origin. Figure 1 shows the density distribution taken from a
sequence of points along the classical pathway. The concen-
tration begins as a constant, equal to the concentration of the
solution. The formation of a cluster involves a monotonic in-
crease in density near the origin until a density close to that of
the bulk high-concentration solution is obtained. Beyond this
point, the cluster grows via a monotonic increase in its radius.

For the MLP, it is known that the path probability (using
either Eqs. (8) or (16)) is simply given by

PMLP = N e−β��, (22)

where �� is the difference in free energy between the be-
ginning and end points.8, 9 Numerical evaluation of Eqs. (8)–
(16) confirms this relation to a high degrees of numerical
accuracy. The “classical” model gives the sequence of pro-
files shown in Fig. 1. A comparison of the classical path
and the MLP is given in Figs. 2 and 3. The log of the path
probability generated by this ansatz is shown in Fig. 4. The
energy barrier in these calculations is β�� ∼ 78, so that
PMLP 
 N e−78. In contrast, the probability of the heuristic
path is Pclassical 
 N e−480 so that it is as if the energy barrier
were 480kBT rather than 78kBT. The relative probability is

Pclassical = e−402PMLP , (23)

so that the heuristic path is very unlikely compared to the
MLP. This simple comparison illustrates the fact that the path
probability is quite sensitive to the path and is not determined
solely by the free-energy barrier.

Finally, the variation of the relative path probabilities as
a function of the supersaturation is illustrated in Fig. 5 which
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FIG. 3. The same as Fig. (2) but showing the equimolar radius, Req and the
“total” radius, Rtotal, as a function of distance along the nucleation pathway
for the path determined from DFT gradient descent, left panel, and from the
dynamical theory, right panel.

FIG. 4. The action for the classical and MLP nucleation pathways shown as
a function of excess free energy. Note that in both cases, the path probability
density is related to the action by P ∼ e−S. Also, both paths end at the critical
cluster which is the same for all paths. The curve for the MLP is trivial as one
knows9 that SMLP = −��.

FIG. 5. The difference in action between the classical path and the MLP,
�S = Sclassical − SMLP, for different values of supersaturation corresponding
to different critical cluster sizes. The relative path probability for the two
paths is Pclassical/PMLP = e−�S. A linear fit to the calculated points gives �S
≈ 0.34Nc.

shows the difference in the action as a function of size of the
critical cluster. At least for the range of cluster-sizes shown in
the figure, there is an almost linear relation which implies the
relation Pclassical ≈ e−Ncritical /3PMLP .

IV. CONCLUSIONS

Based on the recently proposed dynamical approach to
nucleation, a method has been derived for determining the
maximum probability of observing any given nucleation path-
way. The method is applicable to all pathways without re-
gard to how they are constructed. This allows one to then
ask whether heuristically derived pathways are reasonable ap-
proximations to the most likely pathway. The formalism has
been illustrated for the problem of the nucleation of high-
concentration droplets from a low-concentration solution of
globular proteins. It was shown that the probability for a
“classical” nucleation pathway, which begins with a small,
localized cluster, compared to that of the most likely path,
which invokes a two-step mechanism whereby nucleation be-
gins with a spatially extended, small-amplitude density fluc-
tuation, scales like e−Ncritical /3 so that for all but the smallest
clusters, it is extremely small. This comparison serves to show
that classical paths, even though intuitively appealing, can
have very low probability of occurrence. Contrary to the ex-
pectation that all that matters for nucleation is the free-energy
barrier, these results show that there is a dramatic quantitative
difference in the likelihood of observing the classical scenario
compared to the non-classical one. Of course, only one family
of “classical” pathways has been investigated here and there
are many alternatives such as those found in Refs. 10, 13, 14,
and 16. It is possible that some of these compare more favor-
ably with the non-classical most likely path, but this can only
be resolved by direct calculations.

The results presented here were obtained for an idealized,
infinite system modeled via Brownian dynamics and an ef-
fective pair interaction. This puts these calculations on a par
with many developments of classical nucleation theory and
of related density functional theory calculations. There are
many factors such as hydrodynamic effects of the solvent,
anisotropy of real protein interactions, and the finiteness of
real systems which are neglected and which, if important,
would invalidate the simple picture assumed here. At high-
protein concentrations and/or low temperatures, structural ar-
rest might invalidate the assumption of fluidized molecules.
On the other hand, it is hoped that Brownian dynamics sim-
ulations of nucleation could be performed with a view of
observing the revised picture of cluster formation described
here. To my knowledge, no such study looking for these ef-
fects has been carried out.
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