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It is shown that diffusion-limited classical nucleation theory (CNT) can be recovered as a simple limit
of the recently proposed dynamical theory of nucleation based on fluctuating hydrodynamics [J. F.
Lutsko, J. Chem. Phys. 136, 034509 (2012)]. The same framework is also used to construct a more re-
alistic theory in which clusters have finite interfacial width. When applied to the dilute solution/dense
solution transition in globular proteins, it is found that the extension gives corrections to the nucle-
ation rate even for the case of small supersaturations due to changes in the monomer distribution
function and to the excess free energy. It is also found that the monomer attachment/detachment
picture breaks down at high supersaturations corresponding to clusters smaller than about 100
molecules. The results also confirm the usual assumption that most important corrections to CNT can
be achieved by means of improved estimates of the free energy barrier. The theory also illustrates two
topics that have received considerable attention in the recent literature on nucleation: the importance
sub-dominant corrections to the capillary model for the free energy and of the correct choice of the
reaction coordinate. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811490]

I. INTRODUCTION

The starting point for any discussion of nucleation is the
set of ideas collectively known as Classical Nucleation The-
ory (CNT).1 The aim of CNT is to describe the growth and
dissipation of clusters of a new phase forming within a bath
of the mother phase. (This paper will primarily address the
problem of homogeneous nucleation although the ideas dis-
cussed here, and indeed those of CNT, are easily extended
to the case of heterogeneous nucleation.) In CNT, the central
quantity is the concentration, cN, of clusters of the new phase
of a given size, N. (Note that since we will limit the present
discussion to phase transitions involving a single species, the
number of molecules in a cluster and the mass of the clus-
ter are equivalent and the terms will be used interchangeably
along with the generic term “size”.) The basic idea underlying
CNT is to write equations for the time evolution of the cluster
concentrations which are analogous in form to chemical rate
equations (the Becker-Döring equation1, 2). The physics of the
problem enters via the rate coefficients which depend on the
properties of the cluster (e.g., its size) as well as on those of
the mother phase (e.g., its pressure). These equations are then
used to extract a nucleation rate under the particular assump-
tion of a quasi-stationary distribution in which there is a con-
stant concentration of monomers and a steady production of
clusters up to the of the critical cluster: critical clusters are
removed and new monomers added thus allowing for the es-
tablishment of a steady state. This process is necessary since
the system is, by definition, not in an equilibrium state and so
the concept of an equilibrium distribution is not available.

a)Electronic mail: jlutsko@ulb.ac.be. URL: http://www.lutsko.com
b)Electronic mail: maduran@lec.csic.es

One important assumption that is made in CNT, even at
this level, is that the concept of a “cluster” is well defined.
Of course, one can always devise a definition of what consti-
tutes a cluster. For example, in their simulation studies of nu-
cleation, ten Wolde and Frenkel have defined a liquid cluster
forming in a vapor to be the collection of molecules for which
the number of molecules within a given difference exceeds
some threshold — i.e., that the local density in the neighbor-
hood of a molecule is above some value.3 The need for such
a definition highlights the underlying fact that clusters are
not physically distinct objects. Indeed, both simulation3 and
Density Functional Theory calculations4–7 show, e.g., that a
liquid cluster forming in a vapor has a broad and diffuse in-
terface with the surrounding vapor. In fact, for small clusters,
all molecules in the cluster could be classified as being part
of the interface with no bulk material present at all. It is only
when clusters are large, specifically when the radius of the
cluster is large compared to the width of the interface, that the
distinction between molecules being “within” a cluster and
“outside” a cluster makes sense. However, this is not a partic-
ular problem in the context of CNT as the assumption of large
clusters is usually made at some point in any case.

Another subtlety arises in the description of small clus-
ters (i.e., clusters that result from density fluctuations). Let us
consider for a moment an under-saturated solution for which
there is no difficulty in assuming an equilibrium distribution
of cluster sizes. In CNT, it is usually assumed that the prob-
ability density for observing a cluster of size N is propor-
tional to the Boltzmann factor P(N) ∼ exp (−β�(N)) where
β = 1/kBT, kB is Boltzmann’s constant, T is the temperature
and �(N) is the free energy (e.g., in the capillary approxima-
tion) of a cluster of size (mass) N. On the other hand, in the
capillary approximation, the free energy of a spherical cluster

0021-9606/2013/138(24)/244908/14/$30.00 © 2013 AIP Publishing LLC138, 244908-1
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is often expressed in terms of its radius, R, �̃(R) ≡ �(N (R))
and one could equally well suppose that the distribution of
cluster radii is P̃ (R) ∼ exp (−β�̃(R)). However, these two
expressions cannot both be true because, strictly speaking,
there is the exact relation P(N)dN = P̃ (R)dR from which
one would deduce, e.g., P̃ (R) = P (N (R)) dN

dR
or, more sug-

gestively, P̃ (R) ∼ exp (−β(�̃(R) + kBT ln dN(R)
dR

)). Alterna-
tively, one could take P̃ (R) as being more fundamental and
deduce P(N) from it with a corresponding shift of the ef-
fective free energy. Which of these is correct — or are they
both wrong? In the CNT limit, these distinctions are unim-
portant since ln dN(R)

dR
∼ ln R and so the correction to the free

energy is logarithmic and, hence, sub-dominant compared to
the volume (RD) and surface (RD−1) contributions that deter-
mine �̃(R) in D dimensions. However, in the description of
small clusters, even at low supersaturations, these distinctions
become important. One way to resolve this ambiguity would
be to formulate a Fokker-Planck equation for the probability
density and then to use this to determine the stationary (e.g.,
equilibrium) state. This is, in essence, the approach followed
here.

Recently, there has been considerable interest in the pos-
sibility of extending CNT in two different but related di-
rections. The first, discussed in detail by Prestipino et al.8

concerns the correction of the capillary model for the free
energy used in CNT whereas the second, discussed, e.g., by
Lechner et al.,9 concerns the choice of the reaction coordinate
used to characterize the nucleation pathway. In both cases, of
course, the quantity of most direct interest is the nucleation
rate. For example, in the former work it was pointed out that
sub-dominant terms in the expansion of the free energy as a
function of cluster size make non-negligible contributions to
the nucleation rate for small clusters. The goal of the present
paper is to demonstrate a similar analysis which has the ad-
vantage that the entire nucleation processes can be described
self-consistently. This is important because it turns out, as in-
dicated above, that the choice of reaction coordinate also in-
volves sub-dominant corrections to the nucleation rate so that
the two avenues of investigation mentioned above are actually
seen to come together.

The present analysis is based on a recently de-
veloped description of nucleation based on fluctuating
hydrodynamics.10–12 Its range of validity is restricted to sys-
tems governed by a diffusive dynamics typical of colloids or
of macromolecules in solution. The new formulation was mo-
tivated by difficulties in finding a consistent way to use the
tools of Density Functional Theory (an equilibrium theory)
to describe the process of nucleation (a nonequilibrium pro-
cess). In this approach, attention is focused on the formation
of a single cluster and the fundamental quantity is the spatial
density distribution that describes the cluster. One feature of
the theory is that the density distribution can be parametrized
in terms of a few physical quantities such as some measure
of the size of a cluster, the width of the interface, etc. and a
dynamical description of the evolution of these quantities re-
sults. When the cluster is parametrized by a single quantity, its
“size”, one makes contact with CNT and, indeed, one can re-
produce CNT in the appropriate limits as described in Ref. 11

and below (subject to the same approximations such including
that clusters are spherical). In this paper, the goal is to extend
this approach to allow for an extension CNT that includes the
finite width of the cluster interface in a self-consistent man-
ner. It proves relatively straightforward to extract a nucleation
rate from the formalism, essentially by following the devel-
opment from CNT, and a comparison between the predictions
of the extended theory and of CNT can be made (see, e.g.,
Eqs. (49), (50) and (73) and Table I below). The ambiguity
discussed above concerning the equilibrium distribution is re-
solved and it is in fact found that neither the size nor the radius
are the most natural reaction coordinate.

In Sec. II, the elements of Classical Nucleation Theory
are reviewed with a particular focus on the assumptions that
go into it. The formulation derived from fluctuating hydro-
dynamics is then described. It is noted that the formulation
possesses a type of covariance with respect to the choice of
reaction coordinate so that the ambiguities discussed above
are resolved. An expression for the nucleation rate is also de-
rived. Section III shows how the capillary model for a cluster
can be used in conjunction with the dynamical theory to re-
produce familiar results from CNT such as the expression for
the monomer attachment rate, the nucleation rate, and the rate
of growth of super-critical clusters. A model for clusters that
allows for a finite interfacial width is described in Sec. IV.
Section V presents comparisons between the models as well
as tests of the assumptions underlying them. Finally, our re-
sults are summarized in Sec. VI.

II. THEORY

A. Classical nucleation theory

In CNT, one begins by assuming that clusters of a given
size can grow by the addition of monomers, or can dissipate
by spontaneously giving up a monomer to the surrounding so-
lution. Processes involving the interaction of clusters which
are both larger than monomers are ignored. Then, the concen-
tration of clusters of size N, cN, is determined by a set of rate
equations of the form

dcN

dt
= fN−1cN−1 − gNcN + gN+1cN+1 − fNcN, (1)

where fN is the monomer attachment rate for a cluster of size
N and gN is the monomer detachment rate for a cluster of size
N. This is known as the Becker-Döring model.1, 2 For conden-
sation of a droplet from a diffuse solution, the monomer at-
tachment rate is clearly going to be proportional to the rate at
which monomers impinge on the cluster and so can be writ-
ten as fN = γNjN (4πR2

N ) where RN is the radius of a clus-
ter of size N, jN is the rate per unit area at which molecules
collide with the cluster and γ N is a phenomenological fac-
tor describing the probability that a colliding molecule actu-
ally sticks to the cluster. The rate at which molecules in solu-
tion collide with the cluster can be determined by solving the
diffusion equation with adsorbing boundary conditions with
the result that in the long time (quasi-static approximation)
jN = Dc1/RN where D is the monomer diffusion constant, so
that fN = γ N(4πDRN)c1.1 The monomer detachment rate is
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much harder to estimate since it depends on the same phys-
ical details that are accounted for phenomenologically in the
sticking constant (i.e., details concerning intermolecular in-
teractions in the condensed phase). Kashchiev1 gives a gen-
eral argument for a relation between the monomer attach-
ment frequency and the monomer detachment frequency for
an equilibrium (i.e., under-saturated) system: namely, that in
this case detailed balance demands that fN−1c

(e)
N−1 = gNc

(e)
N

so that, if we can assume a Boltzmann distribution c
(e)
N

∝ exp (−β��N ) then it follows that gN = fN−1 exp (β��N

− β��N−1). Note that this argument only holds for the
under-saturated, equilibrium solution and that employing it
for the supersaturated, nonequilibrium solution is a further
assumption.

In the limit of large (N � 1) clusters, Eq. (1) can be ap-
proximated by treating cN(t) → C(N; t) as a continuous func-
tion and expanding to get

dC(N, t)

dt
=
(

f (N )C(N ; t) − ε
∂f (N )C(N ; t)

∂N

+ 1

2
ε2 ∂2f (N )C(N ; t)

∂N2
+ ...

)
− g(N )C(N ; t)

+
(

g(N )C(N ; t) + ε
∂g(N )C(N ; t)

∂N

+ 1

2
ε2 ∂2g(N )C(N ; t)

∂N2
+ ...

)
− f (N )C(N ; t),

(2)

where a formal ordering parameter, ε, has been introduced: it
will, at the end of the calculation, be set to one. Simplifying
gives the Tunitskii equation,1

dC(N, t)

dt
= ∂

∂N

(
ε(g(N ) − f (N ))C(N ; t)

+ 1

2
ε2 ∂

∂N
(f (N ) + g(N ))C(N ; t)

)
+ O(ε3),

(3)

once we set ε = 1 and dropping the third and higher order
contributions. Similarly, expanding the approximation for the
detachment rate gives

g(N ) = f (N − 1) exp (β��(N ) − β��(N − 1))

= f (N ) − ε
∂f (N )

∂N
+ εf (N )

∂β��(N )

∂N
+ O(ε2) (4)

and combing with the Tunitskii equation results in

dC(N, t)

dt
= ε2 ∂

∂N

((
− ∂f (N )

∂N
+f (N )

∂β��(N )

∂N

)
C(N ; t)

+ ∂

∂N
f (N )C(N ; t)

)
+ O(ε3)

= ε2 ∂

∂N

(
f (N )

∂β��(N )

∂N
C(N ; t)

+ f (N )
∂

∂N
C(N ; t)

)
+ O(ε3), (5)

which is the well-known Zeldovich equation.1

Although these manipulations are formally correct, there
is in fact an additional assumption being made. Although the
derivative ∂f (N)

∂N
∼ f

N
can be considered to be small for large

N, it is not clear that the same is true of the free energy since
in fact ��(N) − β��(N − 1) ∼ O(1). Taking only the first
term in the expansion of the exponential in Eq. (4) is therefore
only justified if it can be assumed that ∂β��(N)

∂N
� 1: in other

words, in the vicinity of the critical cluster. It is therefore clear
that the Zeldovich equation is, strictly speaking, only applica-
ble for large N and for N near the critical size.

Noting that the probability to observe a cluster of size N,
P (N ) ≡ n(N)∑

N ′ n(N ′) where n(N) is the number of clusters of size
N, it is easily seen that C(N; t) = Ctot(t)P(N; t) where Ctot(t)
= ∑

NC(N; t) is the total number of molecules per unit vol-
ume, i.e., the average concentration. So, the Zeldovich equa-
tion implies a Fokker-Planck equation for P(N; t)

dP (N, t)

dt
= ∂

∂N

(
f (N )

∂β��(N )

∂N
P (N ; t)

+ f (N )
∂

∂N
P (N ; t)

)
− P (N ; t)

∂ ln Ctot (t)

∂t
,

(6)

where the source term vanishes if the total number of
molecules is constant.

B. Generalization based on fluctuating
hydrodynamics

In general, nucleation is a fluctuation-driven phenomena
limited by the rate of transport of mass, heat, etc. within the
system. In fluid systems, it is therefore naturally described
by Landau’s fluctuating hydrodynamics which includes both
transport and thermal fluctuations.13, 14 The description of nu-
cleation via fluctuating hydrodynamics has been described
in Refs. 10–12. A particularly simple description is possible
when the system is diffusion limited and over-damped, as is
an appropriate description for colloids and macromolecules
in solution. The dynamics can be reduced to an equation for
the time-dependent spatial density and a reduced description
is possible when the density field is parametrized in the form

ρ(r; t) → ρ (r; X1(t), X2(t)...XN (t)) , (7)

so that the time dependence occurs via a set of N parameters
which could include, e.g., the size of the cluster, the width
of the interface, the density at the center of the cluster, etc.
Here, we will be interested in the case that there is a sin-
gle parameter. Then, it was shown10–12 that the evolution of
the order parameter may, in the case of an infinite system,
be approximated by a stochastic differential equation of the
form

dX

dt
= −Dg−1(X)

∂β�

∂X
− D

1

2
g−2(X)

∂g(X)

∂X

+
√

2Dg−1(X)ξ (t), (8)

where D is the diffusion constant, �(X) = F(x) − μN(X), is
the grand potential for chemical potential μ and where N(X)
is the total number of molecules. The last term on the right
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is proportional to ξ (t) which is a delta-function correlated
fluctuating force with mean zero and variance equal to one.
The quantity g(X) that determines the kinetic coefficient of
the SDE as well as the amplitude of the noise is given by

g(X) =
∫ ∞

0

1

4πr2ρ(r; X)

(
∂m(r; X)

∂X

)2

dr, (9)

where the cumulative mass is

m(r; X) = 4π

∫ r

0
ρ(r ′; X)r ′2dr ′. (10)

Since the amplitude of the noise in the SDE is state-
dependent, it is important to note that the equation is given
according to the Ito interpretation. The function g(X) will be
called “the metric” as it can be used to define a meaningful
length in the general theory,11 although it will not be used for
that purpose here.

1. Fokker-Planck equation

It is useful to also consider the equivalent Fokker-Planck
equation which is15

∂P (X, t)

∂t
= D

∂

∂X

(
g−1(X)

∂β�(X)

∂X

+ g−1/2(X)
∂

∂X
g−1/2(X)

)
P (X, t). (11)

Note that this can be written as

∂P (X, t)

∂t
= D

∂

∂X

(
g−1(X)

∂(β�(X) − ln g1/2(X))

∂X

+ g−1(X)
∂

∂X

)
P (X, t), (12)

so that comparison with Eq. (6) shows that these are formally
the same with the monomer attachment frequency replaced by
g−1(X) and with the free energy shifted by a term logarithmic
in g(X). From the expression for g(X), Eq. (9), it is evident
that this function varies as the volume of the cluster so that
the shift to the free energy will go like the log of the radius of
the cluster.

Let us look for a stationary solution determined, for some
constant Js , from

−D

(
g−1(X)

∂β�(X)

∂X
+ g−1/2(X)

∂

∂X
g−1/2(X)

)
Ps(X)=Js,

(13)
giving

Ps(X) = Ag1/2(X) exp (−β�(X)) − D−1Jsg
1/2(X)

× exp (−β�(X))
∫ X

g1/2(X′) exp (β�(X′))dX′

(14)

for some constant A. Now, if we note that for some change of
variables X → Y(X), we have that

g̃(Y ) = g(X(Y ))

(
dX

dY

)2

(15)

and so

P̃s(Y ) = Ag̃1/2(Y ) exp (−β�(Y )) − D−1Jsg̃
1/2(Y )

× exp (−β�(Y ))
∫ Y

g̃1/2(Y ′) exp (β�(Y ′))dY ′

= Ag1/2(X)
dX

dY
exp (−β�(X))

−D−1Jsg
1/2(X)

dX

dY
exp (−β�(X))

×
∫ X

g1/2(X′)
dX′

dY ′ exp (β�(X′))dY ′

= Ps(X)
dX

dY
. (16)

Hence, this solution is completely covariant — there is not
ambiguity as to which variable is used. If the system is stable
(i.e., under-saturated), then it makes sense to seek an equilib-
rium (J = 0) solution which is

Peq(X) = Ag1/2(X) exp (−β�(X))

= A exp

(
−β

(
�(X) − 1

2
kBT ln g(X)

))
, (17)

where the constant A is fixed by normalization. Note that this
has the form of a canonical distribution in terms of the shifted
free energy.

2. A canonical variable

In the present, single-variable, case there is always a spe-
cial variable for which these expressions simplify. Given any
variable, X, it is defined via

dY =
√

g(X)dX (18)

and an arbitrary boundary condition that will be taken to be
Y(0) = 0. In terms of this variable, the Langevin equation
becomes

dY

dt
= −D

∂β�̃(Y )

∂Y
+

√
2Dξ (t), (19)

where �̃(Y ) = �(X(Y )). The corresponding Fokker-Planck
equation is

∂P̃ (Y, t)

∂t
= D

∂

∂Y

(
∂β�̃(Y )

∂Y
+ ∂

∂Y

)
P̃ (Y, t). (20)

These are equations that might have been written down on
phenomenological grounds but they would have been ambigu-
ous since there is no a priori reason to use the mass as the in-
dependent variable rather than, say, the equimolar radius. This
illustrates the way in which grounding the theory on a more
fundamental description serves to remove such ambiguities.

3. Nucleation rate

The standard argument to obtain the nucleation rate has a
long history, as discussed by Hanggi et al.,16 and is based on
boundary conditions according to which (a) the distribution is
stationary and (b) the distribution goes to zero at some point
beyond the critical cluster, say at X = X+(see also Refs. 1
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and 17). The latter condition represents the physical fact that
once a cluster is slightly larger than the critical cluster, it
will almost certainly grow forever and so plays no role in the
stochastic part of the process. One therefore imagines estab-
lishing a steady state by removing clusters once they reach
size X = X+ and simultaneously re-injecting the removed ma-
terial in the form of monomers. Here, since we are only inter-
ested in the case of one-dimensional barrier-crossing, this rate
is easily evaluated from the exact solution for the steady-state
distribution. (For multivariate problems, further approxima-
tions are necessary as described in Refs. 16, 18, and 19.)

First, the nucleation rate, J, is the rate of production of
super-critical nuclei per unit volume and is therefore

J = d

dt

∫ ∞

N∗

1

V
n(N ; t)dN = d

dt

∫ ∞

N∗

Nc(t)

V
P (N ; t)dN,

(21)
where Nc(t) = ∫∞

0 n(N ; t)dN is the total number of clusters.
Making use of the Fokker-Planck equation, this becomes

J = 1

V

dNc(t

dt

∫ ∞

N∗
P (N, t)dN

−D
Nc(t)

V

(
g−1(N )

∂β�(N )

∂N
P (N, t)

+ g−1/2(N )
∂

∂N
g−1/2(N )P (N, t)

)
N=N∗

. (22)

In the artificially imposed stationary state, the first term on the
right does not contribute leaving

J = −D
Nc

V

(
g−1(N )

∂β�(N )

∂N
Ps(N )

+ g−1/2(N )
∂

∂N
g−1/2(N )Ps(N )

)
N=N∗

. (23)

Since we remove clusters of size X+ as they form, we need a
steady-state distribution that satisfies P(X+) = 0. When this
is imposed, the general steady-state distribution, Eq. (14),
becomes

Ps(X) = D−1Jsg
1/2(X) exp (−β�(X))

×
∫ X+

X

g1/2(X′) exp (β�(X′))dX′. (24)

Substitution into the expression for the nucleation rate gives

J = Nc

V
Js. (25)

The remainder of the development concerns the relation be-
tween the imposed stationary flux, Js, and real properties of

the system. Zeldovich, as described by Kashchiev1 requires
that the concentration of monomers be fixed at the “equilib-
rium” value

ρ∞ = Nc

V
Ps(X1), (26)

where X1 is the value of the parameter X that fixes the number
of molecules in the cluster to be 1. (The notation chosen here
is motivated by the fact that one expects that ρ∞ is the density
far from a cluster.) This then gives

JCNT

= Dρ∞
g1/2(X1) exp (−β�(X1))

∫ X+
X1

g1/2(X′) exp (β�(X′))dX′

= Dρ∞∫ X+
X1

exp
(
�β�(X′) − 1

2 ln g(X′)
g(X1)

)
dX′

. (27)

The second equality gives the result written in terms of the
adjusted free energy. A saddle-point evaluation for the choice
of number of molecules as the variable gives

JCNT � Dρ∞g−1(N∗∗)

√
1

2π

√∣∣�β�′′∗∗
∣∣ exp (−�β�∗∗),

(28)

where the adjusted critical size is determined from

�β�′(N∗∗) − 1

2

g′(N∗∗)

g(N∗∗)
= 0 (29)

and where

�β�∗∗ ≡ �β�(N∗∗) − 1

2
ln

g(N∗∗)

g(1)
. (30)

The problem with this expression is that it is not covariant and
the result will depend on the choice of X. This is due to the fact
that the condition, fixing the fraction of monomers, is itself
not covariant since only the combination Ps(X)dX is invariant
under a change of variables. We stress that within the context
of CNT this fact is irrelevant since the assumption of large
N means that the lack of covariance is due to sub-dominant
terms in the distribution. However, within the context of the
general theory, this lack of covariance indicates unnecessary
ambiguity since different results will be obtained for different
choices of the variable X appearing in the boundary condition,
Eq. (26).

The first step to solving this problem is to note that, as
defined here, Ps(X) is normalized so that we can immediately
fix the unknown coefficient giving

Ps(X) = g1/2(X) exp (−β�(X))
∫ X+
X

g1/2(X′) exp (β�(X′))dX′∫ X+
0 dX g1/2(X) exp (−β�(X))

∫ X+
X

g1/2(X′) exp (β�(X′))dX′
(31)

and

J = Nc

V

D∫ X+
0 dX g1/2(X) exp (−β�(X))

∫ X+
X

g1/2(X′) exp (β�(X′))dX′
. (32)

This still leaves the question of determining the overall concentration of clusters. We do this following the general idea used in
CNT but being careful to preserve covariance by imposing a condition on the total number of molecules, N (N0) in clusters up
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to size N0,

N (N0) =
∫ N0

0
Nn(N )dN = Nc

∫ N0

0
NPs(N )dN, (33)

so that

Nc = N (N0)

∫ X+
0 dXg1/2(X) exp (−β�(X))

∫ X+
X

g1/2(X′) exp (β�(X′))dX′∫ X(N0)
0 dX N(X)g1/2(X) exp (−β�(X))

∫ X+
X

g1/2(X′) exp (β�(X′))dX′
(34)

giving the nucleation rate as

J (N0) = Dρ(N0)∫ X(N0)
0 dX N(X)g1/2(X) exp (−β�(X))

∫ X(N+)
X

g1/2(X′) exp (β�(X′))dX′
, (35)

where the average density is ρ(N0) = N (N0)
V

and where we
have indicated that the boundary condition makes the nucle-
ation rate a function of N0. If N0 is chosen to be large, say
the size of the critical cluster N∗, then N (N∗) is the total
population in the initial (i.e., precritical) state and this is es-
sentially the standard expression for the reaction rate derived
from one-dimensional barrier crossing (the “flux over popu-
lation” expression, see, e.g., Hanggi et al.16) except that an
extra factor of N occurs in the integral in the denominator,
which is meant to count the population in the initial state, be-
cause each cluster contains many molecules. If N0 is chosen
to be on the order of one, then we are essentially counting
the number of monomers. Importantly, if most of the mate-
rial exists in the form of small clusters (monomers, dimers,
etc.) then these estimates will be the same. If they are not the
same, then a significant amount of mass is present in the form
of clusters and the implicit assumption (made here as well as
in CNT) that clusters do not interact is probably invalid. One
of the goals below will therefore be to monitor the validity of
this assumption.

Assuming that the bulk of the material is in the form
of small clusters and that N0 is chosen sufficiently large, an
approximation to the exact expression, Eq. (35), can be de-
veloped as described in Appendix A. Assuming that the free
energy and number of molecules as functions of the canoni-
cal variable Y have the expansions �β�̃(Y ) = �̃0Y

α + ... and
N(Y) = n0Yβ + ... for small Y, it turns out that the approxima-
tion implies that, for small X, the stationary distribution can
be approximated by

Ps(X) ∼ α�̃
1/α

0

�
(

1
α

) g1/2(X) exp (−�β�(X)) (36)

and in which case the nucleation rate is approximated by

J ∼ 1√
2π

ρ∞D
α�̃

β+1
α

0

�
(

β+1
α

)
n0

×
√∣∣β�′′(X∗)g−1(X∗)

∣∣ exp (−�β�∗). (37)

III. CAPILLARY MODEL: CLASSICAL
NUCLEATION THEORY

The process we will describe is the nucleation of a liq-
uid, with bulk density ρ l, from a vapor with bulk density ρv

at some temperature T and chemical potential μ. Let ω(ρ) be
the free energy (grand potential) per unit volume, so that ω(ρ)
= f (ρ) − μρ, where f (ρ) is the Helmholtz free energy per unit
volume. Then, the liquid and vapor densities are determined
by the imposed chemical potential via ω′(ρl) = ω′(ρv) = 0
and since we choose thermodynamic conditions such that the
vapor is metastable, ω(ρl) < ω(ρv). To recover CNT it is only
necessary to use the capillary model for the density

ρ(r) =
{

ρ0, r < R

ρ∞, R < r
, (38)

where we take ρ0 = ρ l for the density inside the cluster and
ρ∞ = ρv for the density outside the cluster. The capillary-
theory expression for the free energy of the cluster is

�β�(R) = 4π

3
R3�βω(ρ0) + 4πR2γ, (39)

where the second term represents the effect of surface tension.
Note that the only parameter that is allowed to vary is the
radius of the cluster.

The model for the density gives the cumulative mass den-
sity

m(r) =
{ 4π

3 r3ρ0, r < R

4π
3 R3ρ0 + 4π

3 (r3 − R3)ρ∞, R < r
(40)

and the metric

g(R) =
∫ ∞

R

1

4πr2ρ∞
(4πR2(ρ0 − ρ∞))2dr

= (ρ0 − ρ∞)2

ρ∞
4πR3. (41)

The excess number of molecules in the cluster is

�N = 4π

3
R3(ρ0 − ρ∞) (42)

Downloaded 18 Sep 2013 to 164.15.129.45. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



244908-7 J. F. Lutsko and M. A. Durán-Olivencia J. Chem. Phys. 138, 244908 (2013)

and the metric in terms of the number of molecules is

g(�N ) = g(R)

(
dR

d�N

)2

= 1

4πρ∞R(�N )
. (43)

The canonical variable is

Y =
∫ R

0

√
(ρ0 − ρ∞)2

ρ∞
4πR′3dR′ = 2

5

√
4π

(ρ0 − ρ∞)2

ρ∞
R5/2.

(44)
In comparing the Fokker-Planck equation for the general-

ized theory, Eq. (12), to that of Zeldovitch, Eq. (6), one finds
that agreement provided that the logarithmic corrections to
the free energy are neglected and the effective monomer at-
tachment frequency is identified as

f (N ) = g−1(�N ) = 4πρ∞R(�N ), (45)

which is the usual result for diffusion-limited nucleation in the
case that the phenomenological “sticking constant” is equal to
one.1 The stochastic differential equation for the radius is

dR

dt
= −D

ρ∞
(ρ0 − ρ∞)24πR3

∂(β� + ln g1/2(R))

∂R

+
√

2Dg−1(R)ξ (t). (46)

When the cluster is large (i.e., when it is super-critical), the
noise becomes unimportant and the radius grows as

dR

dt
= Dρ∞|�βω(ρ0)|

(ρ0 − ρ∞)2
R−1 + O(R−2), (47)

which gives the classical result R ∼ t1/2 when the higher order
terms are neglected.20 In the weak liquid limit, ρ∞ � ρ0, the
coefficient of R−1 agrees with that given by Lifshitz et al.17

The (non-covariant) CNT-like nucleation rate, from
Eq. (28), is

JCNT ∼ 2
√

2πDρ2
∞R(�N∗∗)

√
|�β�′′(�N∗∗)|

× exp(−�β�∗∗) (48)

and in the limit that the logarithmic corrections to the free
energy are negligible, this agrees with the result from CNT.
In the following, we will use as a reference the usual CNT
result that is obtained by ignoring the logarithmic shift in the
free energy,

JCNT ∼ 2
√

2πDρ2
∞R(�N∗)

√
|�β�′′(�N∗)|

× exp
(− �β�CNT

∗
)

= Dρ2
∞

ρ0

|�βω|√
γ

exp
(− �β�CNT

∗
)
, (49)

�β�CNT
∗ = 16π

3

γ 3

(�βω)2
.

The approximate nucleation rate based on a condition of fixed
mass, Eq. (37), is

J

JCNT

∼ 3ρ0

√
2(4π )

3
4

�
(

11
4

)√
ρ∞ |�βω| (ρ0 − ρ∞)2

× γ
13
4 |β�′′(R∗)g−1(R∗)|1/2

= 3
√

2 (4π )
3
4

�
(

11
4

) ρ0

(ρ0 − ρ∞)3 γ
9
4 |�βω(ρ0)|1/2. (50)

Note that in all cases, we are assuming that the average con-
centration of material in the (hypothetical) steady state, ρ, is
the same as the background density, ρ∞.

IV. EXTENDED MODEL: FINITE CLUSTER WIDTH

A. The cluster structure and the metric

A significant short coming of the capillary model is that
the width of the cluster’s interface is zero. A more realistic
model will have a finite width which, from various simula-
tions and Density Functional Theory calculations, might be
expected to be two or three molecular diameters in width. A
simple extension of the capillary model to take account of a
finite width is the piecewise-linear profile,

ρ(r) =

⎧⎪⎨⎪⎩
ρ0, r < R − w

ρ0 − (ρ0 − ρ∞) r−(R−w)
w

, R − w < r < R

ρ∞, R < r

.

(51)
The corresponding cumulative mass distribution for 0 ≤ R

≤ w is

m(r) = �(R − r)
π

3w
(ρ0 − ρ∞)r3(4R − 3r)

+�(r − R)
π

3w
(ρ0 − ρ∞)R4 + V (r)ρ∞, (52)

while for R > w it becomes

m(r) = (ρ0 − ρ∞)V (r)�(R − w − r)

+�(r − (R − w))�(R − r)

× π

3w
(ρ0 − ρ∞)(r3(4R − 3r) − (R − w)4)

+�(r − R)
π

3w
(ρ0 − ρ∞)(R4 − (R − w)4)

+V (r)ρ∞. (53)

Calculation of the metric is then straightforward with the
result that for 0 ≤ R ≤ w,

g(r) = 4π

(
ρ0 − ρ∞

3w

)2[
wR4

(ρ0 − ρ∞)

[
a4 ln

(
a

a − 1

)

−
(

a3 + 1

2
a2 + 1

3
a + 1

4

)]
+ 1

ρ∞
R5

]
(54)

with

a = 1 + wρ∞
R(ρ0 − ρ∞)

. (55)
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Note that for small clusters, R � w, this gives

g(r) = 8π

15

(
ρ0 − ρ∞

w

)2
R5

ρ∞

[
1 − (ρ0 − ρ∞)

36ρ∞

R

w
+ O

((
R

w

)2)]
. (56)

For larger radii, R > w, the result is

g(r) = 4π

9

(ρ0 − ρ∞)2

ρ∞

(R3 − (R − w)3)2

w2R

+ 4π

9

(
ρ0 − ρ∞

w

)(
(R − w)6

R2a2
ln

R

R − w
− ((R − w)3 − R3a3)2

R2a2
ln

(
ρ∞
ρ0

))

− 4π

9

(
ρ0 − ρ∞

w

)⎛⎝ −w (R−w)5

R2a
− (

2(R − w)3 − R3a3
)
w

+ 1
2R2a2(R2 − (R − w)2) + 1

3Ra(R3 − (R − w)3) + 1
4 (R4 − (R − w)4)

⎞⎠ . (57)

One can again define a canonical variable using

dY

dR
=
√

g(r) (58)

and for small clusters one finds

Y = 2

7

(
ρ0 − ρ∞

w

)√
8π

15ρ∞
R

7
2 (1 + O(r)) . (59)

B. Free energy model

It would be somewhat inconsistent to use the capillary
approximation for the free energy given that the assumed pro-
file now has finite width. We therefore consider a simple, but
more fundamental free energy model based on the squared-
gradient approximation,

�[ρ] =
∫ (

ω(ρ(r)) + 1

2
K(∇ρ(r))2

)
dr, (60)

where ω(ρ) = f (ρ) − μρ is the grand potential per unit vol-
ume, f (ρ) is the Helmholtz free energy per unit volume for
a bulk system with uniform density ρ which can be deter-
mined based on a given pair potential using thermodynamic
perturbation theory or liquid state integral equation methods.
The squared-gradient coefficient, K, can be estimated from a
model interaction potential using the results of Ref. 21. For
the assumed density profile, this becomes

�(R; w) − �∞

= 4π

3
(max(R − w, 0))3�ω(ρ0)

+ 4π

∫ R

max(0,R−w)
�ω

(
ρ0 − (ρ0 − ρ∞)

r − (R − w)

w

)
r2dr

+1

2
K

4π

3

(
R3 − max(R − w, 0)3

) (ρ0 − ρ∞
w

)2

. (61)

The result for R > w, can also be written as

�(R; w) − �∞ = 4π

3
(R − w)3�ω(ρ0)

+ 4π

(
ω0w + K

(ρ0 − ρ∞)2

2w

)
R2

− 4π

(
2ω1w + K

(ρ0 − ρ∞)2

2w

)
Rw

+ 4π

(
ω2w + K

(ρ0 − ρ∞)2

6w

)
w2, (62)

where the density moments of the excess free energy per unit
volume are

ωn = 1

(ρ0 − ρ∞)n+1

∫ ρ0

ρ∞
(ω(x) − ω(ρ∞))(x − ρ∞)ndx,

(63)
thus showing how, for large clusters (in the w

R
→ 0 limit), one

recovers something like the capillary approximation but with
a variable width. Minimizing with respect to the width at con-
stant radius and solving as an expansion in the radius (i.e.,
assuming R � w) gives (see Appendix B)

wmin = w0

(
1 + �ω(ρ0) − 2ω1

�ω(ρ0) − ω0

w0

R
+ ...

)
(64)

with

w0 =
√

K(ρ0 − ρ∞)2

2(ω0 − �ω(ρ0))
(65)

and the free energy becomes

�(R; w) − �∞

=
(

4

3
πR3

)
�ω (ρ0)

+ (4πR2)

(
1

2
�ω(ρ0)w0 + K(ρ0 − ρ∞)2

w0

)
+ O(R1).

(66)
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The higher order terms are a simple illustration of the post-
CNT corrections to the free energy barrier recently discussed
by Prestipino et al.8 At lowest order, the implied capillary-like
model is

�(R; w) − �∞ =
(

4π

3
R3

)
�ω(ρ0) + (4πR2)γ (67)

with

γ = 1

2
�ω(ρ0)w0 + K(ρ0 − ρ∞)2

w0

=
(

1 + �ω(ρ0)

4(ω0 − �ω(ρ0))

)
×
√

2K(ρ0 − ρ∞)2(ω0 − �ω(ρ0)). (68)

Note that the coefficient γ depends on the supersaturation im-
plicitly via its dependence on the densities. In CNT, it is more
common to ignore the state dependence of this coefficient and
to fix its value to that which gives the correct value of the
planar surface tension at coexistence. Here, “correct” will be
taken to mean that it gives the same value as the full model
with finite width. Since at coexistence the free energies of the
two phases are equal, this is

γCNT = (
ρcoex

0 − ρcoex
∞

)√
2Kωcoex

0 , (69)

where the superscripts indicate that the densities are those at
coexistence.

One peculiarity of this model is that the value of the width
that minimizes the free energy undergoes a bifurcation as the
radius increases. This is due to the fact that for w > R, the
free energy is

�(R; w) − �∞

= 4π

∫ R

0
�ω

(
ρ0 − (ρ0 − ρ∞)

r − (R − w)

w

)
r2dr

+ 2π

3
KR3

(
ρ0 − ρ∞

w

)2

(70)

and it is clear that the free energy difference decreases mono-
tonically to zero as the width increases.

Expanding in R one has that

�(R; w) − �∞

= 2π

3
K

(
ρ0 − ρ∞

w

)2

R3

+ 8π

5!
�ω′′(ρ∞)

(
ρ0 − ρ∞

w

)2

R5 + O(R6) (71)

and in terms of the canonical variable

�(Y ; w) − �∞

= 2π

3
K

(
ρ0 − ρ∞

w

)2

×
(

7

2

(
w

ρ0 − ρ∞

)√
15ρ∞

8π

) 6
7

Y
6
7 + O

(
Y

10
7

)
, (72)

which can be used to evaluate the approximate nucleation
rate

Jext ∼ Zext |β�′′(R∗)|1/2 exp (−β�∗) (73)

with the prefactor

Zext =D

√
5

�
(

13
6

) (9π

2

) 1
6√

Kρ∞(ω0 − �ω(ρ0))
5
3 g−1/2 (R∗) .

(74)

V. RESULTS AND COMPARISONS

In order to illustrate the theory developed above, we have
performed detailed calculations for a model globular protein.
We assume that the solvent can be approximated, crudely, by
assuming Brownian dynamics of the (large) solute molecules
which also experience an effective pair interaction for which
we use the ten Wolde-Frenkel interaction potential

v(r) =

⎧⎪⎨⎪⎩
∞, r ≤ σ

4 ε
α2

((
1

( r
σ

)2−1

)6
− α

(
1

( r
σ

)2−1

)3
)

, r ≥ σ

(75)
with α = 50 which is then cutoff at rc = 2.5σ and shifted so
that v(rc) = 0. The temperature is fixed at kBT = 0.375ε and
the equation of state computed using thermodynamic pertur-
bation theory. The transition we study is that between the di-
lute phase and the dense protein phase which, in the present
simplified picture, is completely analogous to the vapor-liquid
transition for particles interacting under the given pair poten-
tial. Throughout this section, the supersaturation will be de-
fined as the ratio of the density of the vapor phase to that of the
vapor at coexistence, S ≡ ρv/ρvc. The gradient coefficient, K,
is calculated from the pair potential using the approximation
given in Ref. 21,

βK � −2π

45
d5βv(d) + 2π

15

∫ ∞

d

(2d2 − 5r2)βv(r)r2dr,

(76)
where d is the effective hard-sphere diameter for which we
use the Barker-Henderson approximation. For the tempera-
ture used here we get βK = 1.80322σ 5.

In the following, we will characterize the size of a clus-
ter by either the total excess number of molecules in the
cluster,

�N ≡
∫

(ρ(r) − ρ∞)dr, (77)

or by its equimolar radius, RE, which is related to �N by

�N = 4π

3
R3

E(ρ0 − ρ∞). (78)

For the simple capillary model, one has that �N

= 4π
3 R3(ρ0 − ρ∞) and RE = R. For the extended model, a

simple calculation gives

�N = π

3w
(R4 − (max(R − w, 0))4)(ρ0 − ρ∞). (79)

Downloaded 18 Sep 2013 to 164.15.129.45. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



244908-10 J. F. Lutsko and M. A. Durán-Olivencia J. Chem. Phys. 138, 244908 (2013)

FIG. 1. The phase diagram for the model globular protein. The full lines
show the dilute/dense solution coexistence, the broken lines are the spinodal
and the horizontal line shows the temperature used in the calculations.

A. Energy of formation of a cluster

The dilute-solution/dense-solution phase diagram is
shown in Fig. 1. By definition, the coexistence concentrations
correspond to saturation S = 1 and at the spinodal the super-
saturation is found to be S = 2.99. We will therefore illustrate
the results of the models for supersaturations from S = 1.025
to S = 2.5 corresponding, as will be seen, to quite large and
very small critical clusters, respectively.

Figure 2 shows the energy of formation of a cluster as
a function of its size for different values of supersaturation.

The figures show the energy as determined using CNT (cap-
illary model with the value of γ = γ CNT fixed to give the
correct surface tension at coexistence (S = 1), Eq. (69)), the
same model but with a supersaturation-dependent value of γ

(Eq. (68)), the extended model with fixed width and the ex-
tended model minimized with respect to the width. It is clear
in all cases that the capillary model with fixed γ gives lower
free energies than when γ is allowed to vary and that it is
also in closer agreement with the finite-width model. This
is somewhat counter intuitive. On the other hand, the ex-
tended model with fixed width gives virtually the same re-
sults as when the energy is minimized with respect to the
width, showing that the simple fixed-width model is ade-
quate. For these reasons, only the capillary model with fixed
γ = γ CNT and the extended model with fixed width will be
used below.

B. The stationary distribution

The exact stationary distribution is given in Eq. (24). Al-
though both the capillary model and the extended model de-
pend on a single variable, a “radius” denoted R in both cases,
the meaning of the parameter is not the same. In order to
make a meaningful comparison, we therefore give the station-
ary distribution using the equimolar radius as the independent
variable and noting that

P̄ (RE) = P (R)
dR

dRE

. (80)

FIG. 2. The free energy as a function of cluster size (excess number of molecules in cluster) at S = 1.025, 1.175, and 2.5 as calculated using the capillary model
with fixed γ , Eqs. (39) and (69), the capillary model with variable γ (Eq. (68)), the extended model with fixed width, Eqs. (61) and (65), and the extended
model minimized with respect to the width.
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FIG. 3. The stationary distribution for S = 1.025 (left panel) and S = 2.5 (right panel). Exact results, i.e., evaluations of Eq. (24) are shown for the capillary and
extended models in units such that σ = 1. Also shown is the approximation, Eq. (36), and the approximate distribution scaled so as to have the same maximum
as the exact result.

For the capillary model R = RE, so that P̄ (RE) = P (R). For
the extended model, we find that

dRE

dR
= R3 − (max(R − w, 0))3

3wR2
E

. (81)

Figure 3 shows the stationary distributions as calculated
in CNT and using the extended model for different values of
the supersaturation. Also shown are the approximate distribu-
tion used to evaluate the nucleation rate. It is apparent that the
approximate distribution has the right shape so that it is indeed
the case that the stationary distribution is well approximated
by the “equilibrium” distribution, g(X)e−β��. However, in the
case of the extended model, the approximate evaluation of the
normalization of the distribution is poor due to the rapidly
changing analytic structure of the free energy as a function
of cluster radius for small clusters. A surprising result is that
the distributions for the capillary model and for the extended
model differ even for small supersaturation. This is simply a
reflection of the fact that the differences induced by the two
models are most pronounced for small clusters regardless of
the supersaturation.

The approximate forms for the nucleation rates given in
Eqs. (50) and (73) are not calculated from the exact station-
ary distribution but, rather, from the approximation given in
Eq. (A6). The figures show that for CNT this approximation is

quite good at low supersaturations but is in considerable error
for small clusters. The reason for the increasing error is illus-
trated in Fig. 4 which shows the convergence of the “exact”
expression, Eq. (35), as a function of the domain of integra-
tion. For large supersaturations, the convergence is slow indi-
cating that larger clusters are contributing significantly to the
evaluation of the nucleation rate. That is to say, that there is a
substantial population of larger clusters in contradiction to the
assumption that the population is dominated by monomers.
For large supersaturations, this calls into question both the
monomer attachment picture that underlies CNT and the as-
sumption of non-interacting clusters that is tacitly used in both
CNT and the dynamical theory thus pointing to the internal
inconsistency of the theory. The main conclusion to be drawn
from this result is that even if one could accurately calculate
the free energy and distribution of clusters at large supersat-
urations, it is most likely the case that cluster-cluster interac-
tions would invalidate the assumptions necessary to calculate
the nucleation rate, both in CNT and in the general framework
described here.

C. The nucleation rate

Table I gives the nucleation rate as calculated for the two
models. For the lowest supersaturation, the extended model

FIG. 4. The convergence of J(N), Eq. (35), as a function of N for the capillary model (left panel) and the extended model (right panel) for different values of
the supersaturation. Note that in the case of the highest supersaturations, the nucleation rate does not reach a stable value before the integral extends up to the
size of the critical cluster, N∗.
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TABLE I. Properties of the capillary and extended cluster models as functions of the supersaturation, S. The classical nucleation rate, JCNT is given followed
by the critical equimolar radius, R∗E, the excess mass, �N∗, and excess free energy, ��∗, of the critical cluster. Also given are the nucleation rates as calculated
from the “exact” expression, Eq. (35), and the approximate expression, Eq. (37), J and Japp, respectively. Lengths are in units of σ and times are in units of
σ 2/D.

Capillary Extended model

S JCNTeβ�� R∗E �N∗ �β�∗ J
JCNT

Japp

JCNT
R∗E �N∗ �β�∗ J

JCNT

Japp

JCNT

1.025 1.7 × 10−4 49.5 300741 3205 0.4 0.37 49.5 300297 3195 6396 5564
1.175 1.5 × 10−3 7.8 1149 79 0.84 0.93 7.9 1188 80 0.09 0.11
1.5 5.7 × 10−3 3.27 83.6 14.0 1.03 1.45 3.39 92.9 14.9 0.22 0.40
2.0 1.5 × 10−2 2.1 21.6 5.9 0.7 1.9 2.2 22.9 5.9 0.5 1.6
2.5 2.8 × 10−2 1.8 12.6 4.3 0.9 2.2 1.7 11 3.5 1.1 3.8

gives a much higher nucleation rate. This is almost entirely
attributable to the fact that the free energy of the critical clus-
ter is about 10kBT lower in the extended model than in the
capillary model (and, indeed, the log of the ratio of the nucle-
ation rates is about 9.7). In all other cases, the nucleation rates
of the two models are comparable and similar to that given by
the classical CNT formula.

VI. CONCLUSIONS

In this paper, an alternative approach to the semi-
phenomenological description of nucleation has been
presented that is based on a systematic development
of the nonequilibrium dynamics describing thermal
fluctuations.10–12 The theory admits of a reduced de-
scription whereby density fluctuations, which is to say
unstable clusters, are characterized by one or more order
paramters and one of the goals of the present work has
been to demonstrate that in the simplest limit, when clusters
are characterized by a single order parameter, one recovers
Classical Nucleation Theory. Another goal has been to
show that, because the theory is the result of a systematic
development some seemingly arbitrary choices made in the
heuristic development of CNT, such as the choice of reaction
coordinate, are resolved. For the example of the reaction
coordinate, the systematic theory is a priori covariant making
the physical results independent of the chosen reaction
coordinate.

Furthermore, because the theory is based on a more gen-
eral framework, it is straightforward to go beyond the as-
sumptions underlying CNT. One could, e.g., allow for mul-
tiple order parameters so that aside from cluster size, the in-
terfacial width and the density within the cluster could be
treated dynamically. We intend to discuss such generaliza-
tions at a later time. Here, working within the spirit of CNT,
we have explored a simpler generalization whereby clusters
are allowed to have a finite interfacial width. This gives rise
to sub-dominant corrections to the free energy of the type de-
scribed by Prestipino et al.8 It was, nevertheless, not surpris-
ing that we found the dominant effect on the nucleation rate
was simply due to the difference in the free energy of the crit-
ical cluster in the different models (i.e., with zero and finite
interfacial width), see, e.g., Table I. Thus, despite the fact that
the model for the structure of a cluster affects all aspects of

the dynamics in our general approach, it was found that, as
is commonly assumed, only the correction to the free energy
barrier is really important in determining the nucleation rate.
This provides post hoc justification for the combination of the
framework of CNT with the use, e.g., of Density Functional
Theory to get better estimates for the free energy barrier.

The nucleation rates were evaluated under the usual sce-
nario of a steady state whereby post-critical clusters above a
certain size are removed and replaced my monomers. We ex-
plicitly calculated the stationary distribution of cluster sizes
and it was shown that the stationary distribution is well ap-
proximated, for small clusters, by the “equilibrium” distribu-
tion as is usually assumed in the determination of nucleation
rates. However, at high supersaturations, it was found that the
stationary distribution becomes quite broad and that the nu-
cleation rate becomes dependent on the domain of integra-
tion over the cluster sizes. This indicates that the assumption
of cluster growth by monomer attachment and detachment is
probably invalid as is the assumption of non-interacting clus-
ters. It is therefore the case that quantitative prediction of nu-
cleation rates is not really possible with the theory discussed
here. For the conditions considered here, the breakdown oc-
curs when the critical cluster contains between 20 and 100
molecules. A cluster of 100 molecules is still very small and
our results illustrate, in some detail, the fact that Classical Nu-
cleation Theory is remarkably robust given the crude assump-
tions that go into it.

There are, of course, many other important physical ef-
fects that we have ignored, as they are in Classical Nucle-
ation Theory. These include the variation of the density within
a cluster with cluster size, variation of surface tension with
cluster size, the non-spherical shape of small clusters, capil-
lary waves, etc. Most of these can in fact be addressed within
the context of the more general field theory that underlies the
reduced description in terms of order parameters used here
(see, e.g., Ref. 22). The point of the present study has been a
critical and detailed examination of the limits placed by the
requirement of internal consistency of CNT and of CNT-like
theories. If these break down beyond a certain point — e.g.,
for sufficiently high supersaturations — then it is not nec-
essary to invoke additional physics — such as nonspherical
clusters — to say that these theories are inadequate. Instead,
the present results provide an additional criterion to be con-
sidered when arguing for or against the applicability of CNT
to a particular system.
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APPENDIX A: APPROXIMATE NUCLEATION RATE

The nucleation rate is

J−1 = ρ−1
∞ D−1

∫ X∗

0
N (X)g1/2(X) exp (−β�(X))

×
(∫ X+

X

g1/2(X′) exp (β�(X′))dX′
)

dX (A1)

and is the exact expression for the nucleation rate given the
assumptions of the theory. In order to develop an approxima-
tion it is convenient to switch to the canonical variable so that
the nucleation rate becomes

J−1 = ρ−1
∞ D−1

∫ Y∗

0
N (Y ) exp(−β�̃(Y ))

×
(∫ Y+

Y

exp
(
β�̃(Y ′)

)
dY ′

)
dY. (A2)

The first step is to assume that the free energy has a maximum
at Y∗ which is defined by

∂�̃(Y )

∂Y

∣∣∣∣
Y∗

= 0, (A3)

so that we can evaluate the inner integral by expanding

exp
(
β�̃(Y ′)

) ∼ exp

(
β�̃ (Y∗) + 1

2
β�̃′′ (Y∗)

(
Y ′ − Y∗

)2
)

(A4)
giving

J−1 ∼ ρ−1
∞ D−1 exp (β�̃(Y∗))

√
2π∣∣β�̃′′ (Y∗)

∣∣
∫ Y∗

0
N (Y )

× exp (−β�̃(Y ))dY. (A5)

Before proceeding, note that this is really an approximation
to the stationary distribution of

P̃ (Y ) ∼ JD−1 exp
(
β�̃ (Y∗)

)√ 2π∣∣β�̃′′(Y∗)
∣∣ exp (−β�̃(Y )),

(A6)
or, in general,

P (X)∼JD−1 exp (β�(X∗))

√
2πg(X)g(X∗)

|β�′′(X∗)| exp (−β�(X)).

(A7)
To further simplify, we assume that the free energy has a
minimum at Y = 0 and that β��̃(Y ) = aY α + ... and N(Y)

= N0Yβ + ... for some values of α, β > 0 giving

J−1 ∼ ρ−1
∞ D−1 exp

(
β�̃ (Y∗)

)√ 2π∣∣β�̃′′ (Y∗)
∣∣

×
∫ Y∗

0
N0Y

β exp (−aY α) dY

∼ ρ−1
∞ D−1 exp

(
β��̃ (Y∗)

)√ 2π∣∣β�̃′′ (Y∗)
∣∣N0

1

α
a− β+1

α

×
∫ ∞

0
Z

β+1−α

α exp (−Z) dZ

= ρ−1
∞ D−1 exp

(
β��̃ (Y∗)

)√ 2π∣∣β�̃′′ (Y∗)
∣∣

×N0
1

α
a− β+1

α �

(
β + 1

α

)
(A8)

or

J ∼ Dρ∞

√
1

2π
a

1+β

α
αN−1

0

�
(

1+β

α

) ∣∣β�̃′′ (Y∗)
∣∣1/2

exp
(−β��̃ (Y∗)

)
.

(A9)
It is easy to translate into the original variables to find

J ∼ Dρ∞

√
1

2π
a

1+β

α
αN−1

0

�
(

1+β

α

) ∣∣β�′′ (R∗) g−1 (R∗)
∣∣1/2

× exp (−β��̃(R∗)). (A10)

APPENDIX B: EXPANSION OF THE FREE ENERGY

Beginning with the model expression for the free energy,

�(R; w) − �∞ = 4π

3
(R − w)3�ω(ρ0)

+ 2π

(
2ω0w + K

(ρ0 − ρ∞)2

w

)
R2

− 2π

(
4ω1w + K

(ρ0 − ρ∞)2

w

)
Rw

+ 2π

(
2ω2w + 1

3
K

(ρ0 − ρ∞)2

w

)
w2,

(B1)

we minimize by setting the derivative with respect to the
width, w, equal to zero giving

0 = −2(R − w)2�ω(ρ0) +
(

2ω0 − K
(ρ0 − ρ∞)2

w2

)

×R2 − 8ω1wR + 6ω2w
2 + 1

3
K(ρ0 − ρ∞)2, (B2)
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or, after dividing by R3 and rearranging,

0 = ((−2�ω(ρ0) + 2ω0)w2 − K(ρ0 − ρ∞)2)

+ (4�ω (ρ0) − 8ω1) w2 w

R

+
(

−2�ω(ρ0)w2 + 6ω2w
2+ 1

3
K(ρ0 − ρ∞)2

)(w

R

)2
.

(B3)

We now expand in inverse powers of the radius,

w = w0

(
1 + a1

w0

R
+ a2

(w0

R

)2
+ ...

)
(B4)

and solve order by order in w0
R

giving

w2
0 = K (ρ0 − ρ∞)2

2 (−�ω (ρ0) + ω0)

a1 = �ω (ρ0) − 2ω1

�ω (ρ0) − ω0
(B5)

a2 = 1

6 (�ω (ρ0) − ω0)2

(
11 (�ω (ρ0))2

+�ω(ρ0)(5ω0 − 60ω1 + 9ω2)−9ω0ω2−ω2
0+60ω2

1

)
and

�(R; w) − �∞

=
(

4

3
πR3

)
�ω (ρ0) + (

4πR2
) K (ρ0 − ρ∞)2

w0

+ (4πR) w2
0 (2�ω (ρ0) − ω0 − 2ω1) + O(R0). (B6)

Of course, we could solve the equation for the width exactly
since it is simply a fourth order polynomial in w,

0 = −K(ρ0−ρ∞)2 +
[

K (ρ0−ρ∞)2

3R2
+2ω0 − 2�ω(ρ0)

]
w2

+
[

4
�ω (ρ0) − 2ω1

R

]
w3 +

[
6ω2 − 2�ω (ρ0)

R2

]
w4.

(B7)

We can also express the free energy in terms of the
equimolar radius

RE =
(

1

4w

(
R4 − (R − w)4))1/3

= R − 1

2
w0 + w0

12
(1 − 6a1)

w0

R

+ w0

24
(4a1 − 12a2 + 1)

(w0

R

)2
+ O

(w0

R

)3
, (B8)

we find that

R = RE + w0

2
+ w0

12
(6a1 − 1)

w0

RE

+ w0 (6a2 − 5a1)

12

(
w0

RE

)2

+ O

((
w0

RE

)3
)

(B9)

giving

�(RE ; w) − �∞

= �ω (ρ0)

(
4π

3
R3

E

)

+w0

(
K (ρ0 − ρ∞)2

w2
0

+ �ω (ρ0)

2

) (
4πR2

E

)
+w2

0

(
6
K(ρ0 − ρ∞)2

w2
0

+ (13 + 3a1)�ω

− 6ω0 − 12ω1

)
2π

3
RE + O(R0). (B10)
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