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A propagation-dispersion equation is derived for the first passage distribution
function of a particle moving on a substrate with time delays. The equation is
obtained as the hydrodynamic limit of the first visit equation, an exact micro-
scopic finite difference equation describing the motion of a particle on a lattice
whose sites operate as time-delayers. The propagation-dispersion equation
should be contrasted with the advection-diffusion equation (or the classical
Fokker–Planck equation) as it describes a dispersion process in time (instead of
diffusion in space) with a drift expressed by a propagation speed with non-zero
bounded values. The temporal dispersion coefficient is shown to exhibit a form
analogous to Taylor’s dispersivity. Physical systems where the propagation-
dispersion equation applies are discussed.
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1. INTRODUCTION

Often to describe the microscopic mechanism of a diffusion process, one
considers a test particle executing a random walk on some substrate, and
one writes a mean-field equation in terms of the probabilities that the par-
ticle performs elementary displacements in given or arbitrary directions.
The question one then asks is: where will the particle be after some given
time (in the long-time limit)? The answer is given by the distribution func-
tion F(r, t), the probability that, given the particle was initially at r=0 at
t=0, it will be at position r at time t (for t large compared to the duration
of an elementary displacement). F(r, t) is obtained as the solution to the
Fokker–Planck equation for diffusion, and one finds that, in the the long-
time limit, F(r, t) is Gaussianly distributed in space. (1)



When there is an interactive process between the particle and the sub-
strate such that the particle undergoes directed motion subjected to time
delays, it is interesting to view the motion in terms of first passages, and
one expects that the long-time dynamics will be different from that
described by the usual diffusion equation. We obtain indeed a new equa-
tion for the long-time behavior of the first visit distribution function f(r, t)
of a particle whose dynamics is governed by a distribution of time delays.
The main results in this paper are (i) the propagation-dispersion equation

“

“r
f(r, t)+

1
c
“

“t
f(r, t)=

c

2
“
2

“t2
f(r, t),

where c is the propagation speed, and (ii) the expression for the time dis-
persion coefficient in terms of the covariance of the reciprocal velocity
fluctuations

c=t 17 1
v2
8− 1
c2
2 ,

where t is a characteristic correlation length. We first give a heuristic deri-
vation of the propagation-dispersion equation using multi-scale analysis
which is then further substantiated by a more mathematically rigorous
development. Using the latter method, we show that the above results
generalize to inhomogeneous systems with cQ c(r) and cQ c(r).

A characteristic example where the equation applies is particle disper-
sion in a granular medium as studied experimentally by Ippolito et al., (2) as
we shall discuss below. On the other hand, there are prototypical abstract
systems, for particle-substrate interactive dynamics, such as the automaton
known as Langton’s ant (3) and other simple automata, (4, 5) where particle-
substrate interactions produce time delays in the dynamics. These automa-
ton systems offer the advantage of explicit microscopic dynamics which can
be solved exactly. For instance Grosfils, Boon, Cohen, and Bunimovich (5)

developed a one-dimensional automaton for which they provided a math-
ematical analysis also applicable to the two-dimensional triangular lattice.

The one-dimensional case is particularly simple to describe. The
automaton universe is the one-dimensional lattice where, at each time step,
a particle moves from site to site, in the direction given by an indicator.
One may think of the indicator as a ‘‘spin’’ ( ‘ or a ) defining the state of
the site: when the particle arrives at a site with spin up, it moves to the next
neighboring site in the direction of its incoming velocity vector, whereas its
velocity is reversed if the spin is down. But the particle modifies the state of
the visited site ( ‘ . a ) so that on its next visit, the particle is deflected in
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the direction opposite to the scattering direction of its former visit. With
this specific microscopic dynamics, back-scattering produces time delay.
Grosfils et al. derived the equations describing the microscopic dynamics of
the particle on the one-dimensional lattice (and also on the triangular
lattice) under the general condition that the spins at the initial time can be
arbitrarily distributed. They proved that the particle will always go into a
propagation phase, regardless of the initial distribution of spins; they also
showed that the basic mechanism for propagation is a blocking process. (5)

It was shown by Boon (6) that the propagation equations in ref. 5 are
particular cases of a general equation describing the first visit of the particle
to a new site in the propagation phase. This equation, obtained in the
context of specific lattice dynamics, is a first passage equation which has
more general applicability, and will be our starting point in the present
work.

2. FIRST VISIT EQUATION

Consider a particle propagating in a D-dimensional channel; we
project its motion onto a one-dimensional lattice—the propagation line—
whose sites are labeled by integers l=0, 1, 2,... . The distance, in lattice
units, between neighboring sites on the propagation line is denoted by dr.
We set the clock at t0=0 when the particle is at site l=0 where it enters
the propagation channel. Its trajectory will intercept successively sites
l=1, 2, 3,... for the first time at times t1, t2, t3,... respectively. The ti’s are
integer multiples of the automaton time step dt. While sites 0, 1, 2, 3,...
are equally spaced, the time differences between first visits, ti+1−ti, are
(in general) not equally distributed.

A given (arbitrary) spin configuration defines a set of first passage
times t1, t2,... . Let ir be the random variable which corresponds to the
number of steps required for the particle to reach position r=lr dr for the
first time. We define f(r, t) as the probability of finding the particle at
position r for the first time at time t=tr=ir dt; f(r, t) obeys the first visit
equation, i.e., the finite difference equation (6)

f(r, t)=C
n

j=0
pjf(r−dr, t−yj). (1)

Here pj is the probability that the particle propagates from r−dr to r in
yj/dt time steps, i.e., yj is the time between two successive first visits on the
propagation line. The sum is over all possible time delays, weighted by the
probability pj with ;n

j=0 pj=1, where n can be finite (6) or infinite. (7) The
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normalization is important because it is a necessary condition for propaga-
tion. For specific lattice dynamics, it is related to a blocking mechanism
(described in ref. 5), and an explicit expression can then be given for yj (see
Appendix A). Here we present a general derivation for which the specifica-
tion of yj is not necessary.

An alternative equivalent formulation of Eq. (1) reads

f(r, t)=C
.

j=0
p̃jf(r−dr, t− j dt), (2)

which we shall use in Section 6. The difference between the two formula-
tions is that the structure of the distribution of the delays is contained
either in the yj’s (Eq. (1)) or in the p̃j’s (Eq. (2)).

Equation (1)—or equivalently (2)—expresses the probability that the
particle be for the first time at position r at time t in terms of the probabil-
ity that it was visiting site r−dr at earlier time t−yj, where j=0, 1, 2,..., n.
Given a site r on the propagation line, the particle will infallibly reach that
site in the course of its displacements; the question then is: when will the
particle be at position r when r is large? Since the particle executes t/dt
displacements to cover the distance r, the answer will be given in terms of
the time distribution of the probability f(r, t) for large fixed value of r, i.e.,
for lr ± 1. This corresponds to taking the large distance (or hydrodynamic)
limit of equation (1) in a physically consistent way that we establish in
Section 3 and in a more mathematically rigorous way as shown in Section 6.

For one particular realization, the successive time delays are set by a
given spatial configuration of the time delayers, and the time taken by the
particle to perform a displacement from r−dr to r depends on that con-
figuration. For an ensemble of realizations, the distribution function of the
time delays defines the average displacement time

OyP=C
n

j=0
pjyj=C

n

j=0
mjpj dt=OmP dt, (3)

and the variance

Oy2P−OyP2=3 C
n

j=0
m2j pj−5C

n

j=0
mj pj6

24 (dt)2

=(Om2P−OmP2) (dt)2, (4)

where mj=yj/dt is the number of time steps during the time delay yj. The
general condition on the pj distribution is that its moments be finite (for
specific lattice dynamics, such as described in Appendix A, they are finite
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by virtue of the blocking mechanism discussed in ref. 5). Higher order
moments OyaP are defined similarly.

3. MULTI-SCALE ANALYSIS

Here we discuss how the hydrodynamic limit should be taken given
that the system exhibits two time scales which correspond to (i) a propaga-
tion process characterized by the average time necessary to complete a
finite number of displacements r/dr

E[tr]=OmP r
dt
dr
, (5)

and (ii) the dispersion around this average value characterized by the
variance

Var[tr]=(Om2P−OmP2) (dt)2
r
dr
. (6)

For finite r, these are finite quantities. Correspondingly we define the
following quantities that will be used in the hydrodynamic limit

1
c
=OmP

dt
dr
, (7)

and

c=(Om2P−OmP2)
(dt)2

dr
. (8)

c ( ] 0) will be identified as the propagation speed (see Section 4) and
c ( \ 0) will be identified as the dispersion coefficient (see Section 5).

We want to compute the hydrodynamic limit of the first visit equa-
tion (1), and obtain a partial differential equation for f(r, t). The proce-
dure must be performed in two successive steps according to the scale over
which one wants to probe the process when r is large. This is analogous to
multi-scale expansion in the derivation of the Fokker–Plank equation (8) or
of the Navier–Stokes equation. (9) Consider that, to measure first passages,
we use a detector with tunable resolution. The first visit time tr goes like r
(see (5)); so in order that the measure be performed with the same accuracy
at any position r, we need a resolution such that tr/r has always the same
order of magnitude. We can then measure first visit times at any position r
with a resolution which is appropriate to evaluate the average first passage
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time, i.e., to measure the propagation speed c. However, when performing
measurements over many realizations, the successive arrival times at posi-
tion r (the fluctuations around the average time) will be poorly resolved
(see insets in Fig. 1). In order to measure the dispersion around E[tr] with
sufficient accuracy, the detector must be adjusted so that dispersion mea-
surements at various positions r can be performed with the same resolu-
tion. Therefore we impose that the width DT=`Var[tr] of the dispersion
curve be measured with a resolution dT such that the curve always contains
about the same number of points, i.e., DT/dT has the same order of mag-
nitude for all positions. Since DT grows with the distance like `r (see (6)),
dT must also go ’`r in order to obtain an accurate measure of the
dispersion c (see (8)).

We may summarize by saying that we first obtain the average first
passage time (which gives a measure of the propagation velocity c), and
second, we measure the first passage dispersion in the moving reference

2.95×10
5

3.00×10
5

3.05×10
5

0.0005

0.001

0 1×10
5

2×10
5

3×10
5

0 1×10
5

2×10
5

3×10
5

2.25×10
5

2.30×10
5

2.35×10
5

2.40×10
5

t

0.0004

0.0008

Fig. 1. Probability distribution f(r=3×104, t) based on general equation (1). Here mj=
1+2j, so c=[(1+2OjP)]−1. (a) time delays equally distributed for j=0, 1,..., 9, with
pj=0.1; c=0.1 and c=33; half-width=`2cr 4 1.41×103. (b) time delays exponentially dis-
tributed: pj=C exp−bj, with j=0, 1,..., 9, b=0.25, and C=[;9

j=0 j]
−1=1/45; c=0.128

and c=52.7; half-width=`2cr 4 1.78×103. The numerical simulation data and the analyti-
cal expression (Eq. (19); solid line, not visible) coincide perfectly. Insets: see text. In this and
subsequent figures, time unit is the automaton time step.
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frame (i.e., around E[tr]). The first step will yield an Euler type equation
and the second step the propagation-dispersion equation. Mathematically,
these two steps materialize in the two successive orders, O(E1) and O(E2), of
the development in Section 4, where E is a smallness parameter defined as
dt/tobs, the ratio of the microscopic time to the macroscopic observation
time. The hydrodynamic limit corresponds to E° 1. It follows from the
above discussion that there are two length scales: (i) the first one corre-
sponds to propagation

tobsc=tobs
1

OmP

dr
dt
=OmP−1 E−1 dr, (9)

for which the measurement unit is E−1dr; (ii) the second length scale corre-
sponds to dispersion

t2obs
1
c
=t2obs

1
Om2P−OmP2

dr
(dt)2

=(Om2P−OmP2)−1 E−2 dr, (10)

which is thus measured in units E−2 dr. It is therefore natural to introduce
two space variables, r1=Er and r2=E2r, and correspondingly two time
variables, t1=Et and t2=E2t. Note that r1 and r2 are merely two expres-
sions of the space variable rwith different scalings, and similarly for t1 and t2.
Consequently the space and time derivative operators must be rescaled as

“r Q E“r1+E
2
“r2 ; “t Q E“t1+E

2
“t2 . (11)

Accordingly f(r, t) is expanded as f=f(0)+Ef (1)+O(E2), where f (0) is the
distribution function in the absence of dispersion (f (0) plays the same role
as the local equilibrium distribution function in the derivation of the
Navier–Stokes equation (9)).

4. PROPAGATION-DISPERSION EQUATION

In order to compute the hydrodynamic limit of Eq. (1), it is convenient
to rewrite the equation as

f(r+dr, t)=C
n

j=0
pjf(r, t−yj), (12)

to which we now apply the multi-scale expansion (in Section 6 we give an
alternative derivation which is more mathematically rigorous).
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To first order, we obtain

O(E1): “r1 f
(0)=−

OyP

dr
“t1 f

(0)=−OmP
dt
dr
“t1f

(0), (13)

or, with (7),

“r1f
(0)+
1
c
“t1f

(0)=0, (14)

which is an Euler equation.
To second order, we have

O(E2): “r2f
(0)+“r1f

(1)+
1
2
dr “2r1f

(0)=−
OyP

dr
(“t2f

(0)+“t1f
(1))+

1
2
Oy2P

dr
“
2
t1f

(0),
(15)

where we will inject the first order result (13). This substitution can be per-
formed either in the last term on the l.h.s. or in the last term on the r.h.s.
with two different results of which only one can be correct. In fact there is
no ambiguity as to which is the legal procedure: Eq. (12) is local in space
(not in time) which indicates that in the hydrodynamic limit we must
obtain a partial differential equation with a spatial derivative not exceeding
first order. The correct substitution of (13) into (15) gives

“r2f
(0)+“r1f

(1)=−
1
c
(“t2f

(0)+“t1f
(1))+

1
2
1Oy2P
dr
−
dr
c2
2 “2t1f (0), (16)

where the quantity in parentheses in the second term of the r.h.s. is equal to
(Om2P−OmP2)(dt)2/dr — c.

Summing Eqs. (14) and (16) after multiplication by E and by E2

respectively, we obtain

E “r1 (f
(0)+Ef (1))+E2 “r2f

(0)

=−
1
c
E “t1 (f

(0)+E f (1))−
1
c
E2 “t2 f

(0)+
c

2
E2 “2t1 f

(0). (17)

Rearranging terms (incorporating terms of negligible higher order) and
going back to the original variables yields

“rf(r, t)+
1
c
“tf(r, t)=

1
2
c “2tf(r, t), (18)
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where terms of order E > 2 are omitted. With the initial condition that at
the origin, say at r=0, f(0, t)=d(t), the solution to Eq. (18) is

f(r, t)== 1
2p
(cr)−

1
2 exp 1 −(t−

r
c)
2

2cr
2 . (19)

These results are confirmed by the more mathematically rigorous deriva-
tion given in Section 6. Note that in the case that all pj’s are zero except
one (mj — m, e.g., for Langton’s ant), then c=0, and (18) reduces to the
Euler equation (14) with c=dr/(m dt) (see ref. 6).

It is clear from (18), that c is a propagation speed, and c is a transport
coefficient expressing dispersion in time (instead of space like in the classi-
cal Fokker–Planck equation for diffusion). Equation (18) is the propaga-
tion-dispersion equation governing the first-passage distribution function
of a propagating particle subject to time delays. Propagation is guaranteed
because c is non-zero (OmP is finite); c has a finite maximum value for n=0
(i.e., j=0 and p0=1), in which case c=0 (see (4)), and there is propaga-
tion without dispersion.

In Fig. 1 we show that the above analytical results are in perfect
agreement with the numerical solution of the general equation, Eq. (1). We
used delay times equally distributed (Fig. 1a) and exponentially distributed
(Fig. 1b); explicit values of the quantities c and c are given in the figure
caption.

5. DISPERSION AND CORRELATIONS

(i) The Dispersion Coefficient. It follows from Eqs. (6) and (8),
that c is given by

c=
Ot2rP−OtrP

2

r
(20)

which, for large r, is reminiscent of the classical expression for the diffusion
coefficient: D=limtQ.Or2(t)P/2t. Comparison of the two expressions
shows interchange of space and time, a feature which is illustrated in
Figs. 2 and 3. In Fig. 2, we show three typical runs on the 1-D spin-lattice
by plotting the first passage time (minus the mean time of arrival
OtrP=r/c) as a function of distance r. One observes that [t−OtrP] as a
function of r exhibits fluctuations of the same nature as those obtained
when plotting the position of a random walker as a function of time. In
Fig. 3 we present simulation data illustrating Eq. (20). From measurements
performed in the 1-D lattice, the variance Ot2rP−OtrP

2 is seen to be a linear
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Fig. 2. Displacement time (t−OtrP=t−r/c) as a function of distance r for three different
realizations in the 1-D lattice (see Appendix A: q=0.5, and j=0, 1). Vertical axis: time in
automaton time steps; horizontal axis: distance in lattice unit lengths.

function of distance (see inset) with a slope equal to c (main frame) in the
same way as the diffusion coefficient is obtained as the slope of the mean-
square displacement versus time in the long-time limit of the classical
random walk.

(ii) The Correlation Function. From Eqs. (5) and (7), we have
1
c=

OtrP
r . Here tr can be expressed in terms of the local propagation velocity v(r),

a fluctuating quantity with average value c. In fact it is the reciprocal local
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Fig. 3. Dispersion coefficient, see Eq. (20), in 1−D lattice (see Appendix A: q=0.5,
j=0, 1, p0=q, p1=1−q, and mj=1+2j). Inset shows Ot2rP−OtrP

2 as a function of r, for one
single realization, and main frame shows c measured from the slope in inset; the horizontal
dashed line is the theoretical value: c=(Om2P−OmP2)=q+(1−q) 32−(3−2q)2=4q(1−q)=1.
r is in lattice unit lengths and c is in automaton time steps squared per lattice unit length.
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velocity which is physically relevant: it is the time taken by the particle to
propagate from position r to r+dr (divided by dr). Then indeed

OtrP=7F
r

0
drŒ

1
v(rŒ)
8=F

r

0
drŒ 7 1

v(rŒ)
8=r
c
, (21)

which is consistent with the definition of the propagation speed.
Expressing the time tr in terms of the local velocity v(r), we have

Ot2rP=7F
r

0
drŒ

1
v(rŒ)

F
r

0
drœ

1
v(rœ)
8=F

r

0
drŒ F

r

0
drœ 7 1

v(rŒ)
1
v(rœ)
8 , (22)

and

Ot2rP−OtrP
2=F

r

0
drŒ F

r

0
drœ 71 1

v(rŒ)
−71
v
82 1 1

v(rœ)
−71
v
828 . (23)

In terms of the reciprocal velocity fluctuations dv−1(r)=v−1(r)−Ov−1P=
v−1(r)−c−1, (23) reads

Ot2rP−OtrP
2=F

r

0
drŒ F

r

0
drœ Odv−1(rŒ) dv−1(rœ)P. (24)

The dynamics of the propagating particle implies that the correlation
function on the r.h.s. of (24) is d-correlated, i.e., Odv−1(rŒ) dv−1(rœ)P=
f0 d(

rŒ
t−

rœ
t ) with f0=O(dv−1)2P=O 1

v2
P− 1

c2
, and where t is the elementary

correlation length. So it follows from (20) and (24) that

c=t(Ov−2P−c−2), (25)

that is c is the covariance of the reciprocal velocity fluctuations multiplied
by the correlation length (here equal to one lattice unit length). This result
is analogous to Taylor’s formula of hydrodynamic dispersivity which is
expressed as the product of the covariance of the velocity fluctuations with
a characteristic correlation time. (10) We call c the temporal dispersion coef-
ficient. Evidently, there is no dispersion (c=0) in the absence of velocity
fluctuations (f0=0).

From these results, the explicit computation of the dispersion coeffi-
cient is straightforward. For instance for the one-dimensional spin-lattice
(see Appendix A; Fig. 4a), the local velocity is either 1, with probability q,
or 1/3, with probability (1−q), and the reciprocal mean velocity is c−1=
q+3(1−q); so

c=q+32(1−q)−c−2=4q(1−q), (26)
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Fig. 4. Propagation channels in one- and two-dimensional lattices. Heavy lines with arrows
show particle displacements in elementary loop (a=2, 3, 4) and minimal trajectory between
two consecutive sites on the propagation line (m=1, 2, 8). Propagation in the one-dimen-
sional lattice (a) and in the triangular lattice (b) is discussed in ref. 5; (c) refers to Langton’s
ant (see refs. 3 and 6).

which is exactly the value of c evaluated for the 1-D spin lattice in Appen-
dix A and in ref. 5. A similar computation for the triangular lattice (see
Fig. 4b) yields the value c=72q(1−q) in accordance with the result
obtained in ref. 5.

(iii) The Time Current. Writing Eq. (18) as

1“r+
1
c
“t
2 f(r, t)+“t j(r, t)=0, (27)

with j(r, t)=−c2 “tf(r, t), shows formal analogy with the classical mass
conservation equation

(“t+c ·N) r(r, t)+N · j(r, t)=0, (28)

with space and time variables interchanged. So in (27), j(r, t) can be inter-
preted as a ‘‘current in time.’’

(iv) The Control Parameter. In classical advection-diffusion phe-
nomena, the control parameter is the Péclet number P=UL/2D, where U
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denotes the mean advection speed, L, the characteristic macroscopic length,
and D, the diffusion coefficient (see, e.g., ref. 11). The analogue for propa-
gation-dispersion follows by casting Eq. (18) in non-dimensional form

“rf(r, t)+“tf(r, t)=B−1 “
2
tf(r, t); B=

2T
cc
. (29)

Here r and t are the dimensionless space and time variables: r=r(cT)−1

and t=tT−1, where T is a characteristic macroscopic time. B is the control
parameter for propagation-dispersion: it is a measure of the relative
importance of propagation with respect to dispersion. Indeed, B=2T

cc=
2T2

c
1
cT=LD/LP, i.e., the ratio of the characteristic dispersion length LD to

the characteristic propagation length LP. At high values of B, i.e.,
LD ± LP, the distribution function is very narrow, and transport over large
distances (r \ cT) is dominated by propagation.

(iv) The Power Spectrum. The propagation-dispersion equation
(18), subject to the initial condition f(r=0, t)=d(t), describes an initial
value problem with initial value fixed in space; so we can solve the equation
by spatial Laplace transformation. Using o as the conjugate space variable,
we obtain

o f̃(o, w)−f(r=0, w)=−
ıw
c
f̃(o, w)−

c

2
w2f̃(o, w), (30)

where f(w) denotes the time Fourier transform. With the initial condition
f(r=0, t)=d(t), i.e., f(r=0, w)= 1

2p , (30) yields

f̃(o, w)=
1
2p
1o+ıw

c
+
c

2
w22

−1

. (31)

This result shows that the system dynamics is described by one single mode:
o=−ıwc −

c
2 w

2. The corresponding spectrum S(k, w)=2 Re f̃(o=ık, w)
is given by

S(k, w)=
1
2p

cw2

(k+w /c )2+14 (c w
2 )2
, (32)

with >.0 S(k, w) dk=1. The spectrum (32) (which can also be obtained by
double Fourier transformation of (19)) exhibits a single Lorentzian line
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typical of a diffusive phenomenon, but there are two essential differences
with the spectrum obtained from the classical advection-diffusion equation:
(i) the spectrum is a Lorentzian in k (rather than in w) with half-width
at half-height Dk=1

2 cw
2, indicating that dispersion is diffusive in time

(instead of space); (ii) the Lorentzian is shifted by a quantity proportional
to the reciprocal of the propagation speed.

6. EXACT SOLUTION OF THE FIRST-VISIT EQUATION

In order to emphasize the discrete nature of the problem, we introduce
the notation

g(l, i)=(dt) f(l dr, i dt), (33)

where here, and below, Latin arguments (l, i, j,...) always indicate integers.
The first visit equation, Eq. (2), is then

g(l, i)=C
.

j=0
p̃ (l−1)j g(l−1, i−j). (34)

Here we consider the general case where the transition probabilities p (l)j
depend on the lattice position l as indicated by the superscript (for sim-
plicity we omit the tilde notation). It is convenient to introduce the gener-
ating function for the distribution which is defined to be

hl(x) — C
.

i=0
x ig(l, i), (35)

and from which the distribution is obtained via

g(l, i)=lim
xQ 0

1
i!
d i

dx i
hl(x). (36)

Temporal moments of the distribution can be calculated as

OjaP=C
.

j=0
jag(l, j)=lim

zQ 0

da

dza
hl(ez), (37)

so that Ml(z)=hl(ez) is the generating function for moments of the first
passage time at lattice position l. The boundary condition that the particle
starts at lattice site l=0 at time i=0 implies that g(0, i)=di0, or equiva-
lently h0(x)=1.
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Substituting Eq. (34) into Eq. (35) gives

hl(x) — C
.

i=0
x i C

.

j=0
p (l−1)j g(l−1, i−j)

=hl−1(x) C
.

j=0
p (l−1)j x j, (38)

so that the general solution is

hl(x)=h0(x) D
l

k=1

1 C
.

j=0
p (k−1)j x j2. (39)

Using this solution and Eq. (37), exact moments may be easily calculated;
with the normalization ;.

j=0 p
(k)
j =1, we obtain

Oj; lP=lOmPl , (40)

Oj2; lP−Oj; lP2=ls2l , (41)

where

OmPl=
1
l
C
l

k=1
C
.

j=0
p (k−1)j j, (42)

s2l=
1
l
C
l

k=1

5C
.

j=1
p (k−1)j j2−1 C

.

j=1
p (k−1)j j2

26 , (43)

are just averages over the elementary process. In order to develop the
limiting form of the distribution for large l, we assume that OmPl and s2l are
of order 1 for all l as is certainly true if the elementary probabilities are
independent of lattice position. We then introduce a new stochastic vari-
able which measures deviations away from the expected waiting time as

wl=
(j−lOmPl)

`ls2l
. (44)

The moment generating function Nl(z) for this new variable is related to
that for the original variable by

Nl(z)=exp 1 −lOmPl z
`ls2l
2Ml
1 z
`ls2l
2 , (45)
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or, using (39) with the boundary condition h0(x)=1,

lnNl(z)=−
lOmPl z

`ls2l
+C

l

k=1
ln 1 C

.

j=0
p (k−1)j exp 1 zj

`ls2l
22 . (46)

By double expansion of the second term on the r.h.s. of (46), we obtain

lnNl(z) 4
1
2
z2+O 1 1

`l
2 . (47)

So in the limit of large l=r/dr, the generating function for the moments of
wl is just Nl(z)=exp(z2/2) which is recognized as the generating function
for a Gaussian distributed variable with unit variance. We conclude that in
this limit the distribution for the original (temporal) variable becomes

g(l, j)l± 1=
1

`2pls2l
exp 1 −1

2
1 (j− lOmPl)
`ls2l
222 , (48)

from which the distribution for the physical quantities (for r± dr) reads

f(r, t)== 1
2p
(C(r) r)−

1
2 exp 1 −(t−

1
C(r) r)

2

2 C(r) r
2 , (49)

with

1
C(r)

—
1

C(l dr)
=OmPl

dt
dr
=
1
r
C
r/dr

k=1
OtPk−1, (50)

C(r) — C(l dr)=s2l
(dt)2

dr
=
1
r
C
r/dr

k=1
[Ot2Pk−1−OtP

2
k−1], (51)

where the definition of OtPk−1 and Ot2Pk−1 follows straightforwardly from
(42) and (43).

This result, (49), is just a realization of the central limit theorem.
Notice that the development depends only on taking the limit of large l,
i.e., the large distance limit, and is completely independent of any assump-
tions on the magnitudes of dr and dt. Because of the linearity of Eq. (2),
the solution for an arbitrary initial condition, g(0, i)=c(i), will be a linear
superposition of the form ;.

j=−. c(j) g0(l, i− j) where g0(l, i) is the solu-
tion found above for c(i)=di0. The analogous comment applies to the
large distance limit of this solution. We therefore expect that the large dis-
tance limit of Eq. (2) should be linear in f(r, t) with coefficients that may
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depend on r, but not t. The simplest such equation is found to be the gen-
eralized propagation-dispersion equation

“

“r
f(r, t)+

1
c(r)

“

“t
f(r, t)=

1
2
c(r)

“
2

“t2
f(r, t), (52)

with

1
c(r)
=

OtPr
dr
=C

.

j=1
p (r)j j

dt
dr
, (53)

and

c(r)=[Ot2Pr−OtP
2
r]
1
dr
=5C

.

j=1
p (r)j j

2−1 C
.

j=1
p (r)j j2

26 dt2
dr
. (54)

Notice the difference between c(r) and c(r) in (52) and C(r) and C(r)
in (49): lowercase symbols denote local quantities whereas capitals indicate
integrated quantities (i.e. space-averaged over the covered distance r).
When the waiting time probabilities are space-independent, c(r)Q c and
c(r)Q c, and the generalized equation (52) reduces to Eq. (18). An example
of microscopic dynamics whose hydrodynamic limit is described by the
generalized equation is discussed in Appendix A.

7. COMMENTS

There is an algebraic similarity in the structure of the propagation-
dispersion equation (18) and of the classical advection-diffusion equation (1)

which can be formally transformed into each other by interchanging space
and time variables. It should be clear that the two equations describe dif-
ferent, but complementary aspects of the dynamics of a moving particle.
Solving the propagation-dispersion equation answers the question of the
time of arrival and of the time distribution around the average arrival time
in a propagation process. It is also legitimate to ask the complementary
question ‘‘where should we expect to find the particle after some given time ?’’
which should be long compared to the elementary time step, but short with
respect to the average time of arrival. We will then observe spatial disper-
sion around some average position which can be evaluated from the solu-
tion of the advection-diffusion equation. This observation stresses the
complementarity of the two equations.

Because the propagation-dispersion equation describes the space-time
behavior of the first passage distribution function f(r, t), i.e., the probability
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that a particle be for the first time at some position, it describes transport
where a first passage mechanism plays an important role. So the equation
should be applicable to the class of front-type propagation phenomena
where any location ahead of the front will necessarily be visited, the ques-
tion being: when will a given point be reached?

A most interesting case is the ‘‘Diffusion of a single particle in a 3D
random packing of spheres’’ to quote the title of an article by Ippolito
et al. (2) where the authors describe an experimental study of the motion of
a particle through an idealized granular medium. They measure particulate
transport and ‘‘dispersivity’’ which corresponds precisely to the quantity c
computed in the present paper. In particular the experimental data pre-
sented by Ippolito et al. show that the mean square transit time of the
particle through the medium is a linear function of the mean transit time
(Figs. 10 and 11 in ref. 2) itself a linear function of the percolating distance
(Fig. 2 in ref. 2); this observation is an experimental illustration of the fea-
tures described in the present paper (see, e.g., inset of Fig. 5). This experi-
mental study also shows that the particle transit time is Gaussianly dis-
tributed in time (see Fig. 9 in ref. 2) in accordance with the solution (19) of
Eq. (18) (see Fig. 1).

Front-type dynamics is also encountered in shock propagation in
homogeneous or inhomogeneous media (12) or packet transport in the
Internet. (13) As the propagation-dispersion equation is for the first-passage
time distribution, it should also be suited for the description of transport
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(b)

Fig. 5. Probability distribution f(r=300, t) for propagation in 1−D and 2−D lattices.
Comparison between numerical simulation results (dots) and theory, Eq. (19) (solid line).
(a) 1−D lattice (see Fig. 2a) with q=0.5: c=(3−2 q)−1=0.5 and c=4q(1−q)=1; half-
width=`2cr=10`6 4 24.5. (b) 2−D triangular lattice (see Fig. 2b) with q=0.5: c=1/8
and c=72q(1−q)=18 (see ref. 5); half-width=`2cr=60`3 4 104.
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driven by an input current in a disordered random medium. (14) In the area
of traffic flow, there are typical situations where cars moving on a highway
from location A to location B, are subject to time delays along the way,
and—with the assumption that all cars arrive at destination—one wants to
evaluate the time of arrival. (15) Financial series as in the time evolution of
stock values are another example: (16) over long periods of time (typically
years) one observes a definite trend of increase of, for instance, the value of
the dollar. So any preset reachable value will necessarily be attained, the
questions being: when? and what is the time distribution around the
average time for the preset value? While the classical question is: after such
or such period of time, which value can one expect?, there might be
instances where the reciprocal question should be considered. Because of
the generality of the propagation-dispersion equation, it should be expected
that, either in its simple form (18) or in its generalized form (52), the equa-
tion will be applicable to a large class of first-passage type problems in
physics and related domains.

APPENDIX A: SPECIFIC MICROSCOPIC DYNAMICS

The y j’s in the first visit equation, Eq. (1), are known explicitly for
specific microscopic dynamics of a particle on a lattice. (6) Two parameters
are used to characterize the trajectory of the particle in the propagation
channel. First, as the propagation line is not necessarily along one of the
lattice axes, we define m ( \ 1) as the minimum number of time steps
required to travel from site l to the neighboring site l+1, i.e., to perform a
displacement dr along the propagation line. The second parameter, a, is the
length of an ‘‘elementary loop,’’ i.e., the minimum number of displace-
ments necessary to return to a site. Typical values of m and a are shown in
Fig. 4 for various channel geometries. The expression for the time delays
then reads (6)

yj — mj dt=(1+aj) m dt. (55)

For instance, in the one-dimensional lattice (where n=1, a=2, and
m=1; see Fig. 4a) (5) j=0 corresponds to straightforward motion from site
l to site l+1 in one time step, and j=1 corresponds to one step backwards
followed by two forward steps. In the square lattice, a=4, and m=8 (see
Fig. 4c) for Langton’s ant dynamics. (3, 6) The value m=8 follows from the
fact that when the particle arrives at site 1 for the first time, the shortest
possible path to the next first visited site on the edge of the propagation
channel goes to site 2 as shown in Fig. 4c. Indeed, for Langton’s ant
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dynamics, all sites are initially in the same state (here scattering of the par-
ticle to the left). So when the particle visits site 1 for the first time, the site
located immediately North of site 1 has not yet been visited and is therefore
in the left-scattering state. It is then easy to figure out that for any path
different from the path shown with heavy solid line in Fig. 4c, the particle
will make a longer excursion to arrive at site 2.

With the specification of the time delays in (55), we can give an expli-
cit formulation of the quantities which appear in the hydrodynamic limit
equation. The average displacement time and the variance read respectively

OyP=C
n

j=0
(1+aj) pjm dt=(1+a OjP) m dt, (56)

and

Oy2P−OyP2=3 C
n

j=0
(1+aj)2 pj−5C

n

j=0
(1+aj) pj6

24 m2(dt)2

=3 C
n

j=0
j2 pj−5C

n

j=0
jpj6

24 a2 m2(dt)2

=(Oj2P−OjP2) a2m2(dt)2, (57)

where from it follows that

1
c
=(1+aOjP) m

dt
dr
, (58)

and

c=(Oj2P−OjP2) (am)2
(dt)2

dr
. (59)

The value of c and of c depends on the spin orientation probability q, the
probability that a site be in the ‘ state at the initial time. The derivation of
the propagation-dispersion equation proceeds exactly along the lines of
Section 4 and yields Eq. (18) with c and c given by (58) and (59) respec-
tively. Figure 5 shows the agreement of the analytical results with the
simulation data for the 1-D and 2-D lattices. For instance, for the 1-D
spin-lattice whose dynamics is described in the introductory section,
m=1, a=2 (see Fig. 4a), j=0, 1, and OjP=; j jpj=1−q and Oj2P−OjP2

=; j j2pj−(; j jpj)2=q(1−q); so c=(3−2q)−1 and c=4q(1−q). The
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corresponding numerical values are given in the figure caption for both the
1-D lattice (Fig. 5a) and the 2-D triangular lattice (Fig. 5b).

In a recent paper, (7) Bunimovich and Khlabystova, referring to a
preliminary version of the present work, (17) obtain the same propagation-
dispersion equation for the case of a particle moving in a rigid environ-
ment, (18) allowing for an infinite number of possible time delays. The
rigidity factor r̃ is defined as the number of visits of the particle to a site
necessary to flip its state ( ‘ . a ). The time delay probabilities are then
space-dependent. For odd rigidity (NOS model in ref. 7), there is no quali-
tative difference for c and c with the simple 1-D case (r̃=1) discussed
above (compare the expressions given in the previous paragraph with those
in Section 4.1 of ref. 7). However when the rigidity factor takes even
values, the propagation speed and the dispersion coefficient become space-
dependent (see Section 4.2 in ref. 7). So the microscopic dynamics of the
(NOS) model with even rigidity offers an example where the hydrodynamic
limit is given by the generalized propagation-dispersion equation (52).

The explicit expression (55) for yj based on the automaton dynamics
yields analytical expressions for c and c in terms of the spin-lattice charac-
teristics and there from in terms of the probability q. Concomitantly there
is an explicit reference to a feed-back mechanism where the dynamics
modifies locally the substrate which in turn modifies the dynamics, and
there are systems where this mechanism should be important. However we
emphasize that the specification (55) of the delay time yj is not indispens-
able. The propagation-dispersion equation (18) is general as it follows from
the hydrodynamic limit of the first visit equation (1) without recourse to
(55) as shown in Section 4. It suffices that there exists a distribution of time
delays with ;n

j=0 pj=1 and with finite moments OyaP, to obtain (18) from
(1). This establishes the validity of the propagation-dispersion equation for
a class of systems whose dynamics is subject to time-delays independently
of the underlying microscopic mechanism responsible for the delays.
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