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Abstract
The equilibrium density distribution and thermodynamic properties of a Lennard-Jones fluid
confined to nanosized spherical cavities at a constant chemical potential was determined using
Monte Carlo simulations. The results describe both a single cavity with semi-permeable walls
as well as a collection of closed cavities formed at the constant chemical potential. The results
are compared to calculations using classical density functional theory (DFT). It is found that the
DFT calculations give a quantitatively accurate description of the pressure and structure of the
fluid. Both theory and simulation show the presence of a ‘reverse’ liquid–vapor transition
whereby the equilibrium state is a liquid at large volumes but becomes a vapor at small volumes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The current intense interest in nanoscale systems provides
strong motivation for developing simple means to predict the
properties of small systems. One possible approach to this
problem is the use of quantitatively accurate classical density
functional theory. Classical DFT has long been used to
study the properties of bulk liquid–vapor interfaces, solids
and liquids in confined geometries such as slit pores and near
walls [1–4]. However, there have been few quantitative tests
of the theories for truly small systems consisting of dozens
to hundreds of atoms. In this paper, we present one such test
in which DFT calculations are compared to simulation for the
case of a liquid confined to a small spherical cavity.

Density functional theory is most easily formulated in
the grand-canonical ensemble [5–8]. It can be applied to
other ensembles, but this requires further expansions and
approximations [9, 8, 10]. In the thermodynamic limit,
the difference between the ensembles is of little practical
importance. However, for finite systems—especially small

finite systems—the difference between the ensembles becomes
qualitative [11, 8]. For these reasons, we have chosen to work
in the grand-canonical ensemble where comparisons can be
made with the fewest assumptions. Physically, a finite-volume
system in the grand-canonical ensemble is not without interest
as it describes a single cavity with a hard, but semi-permeable
wall or the average properties of a collection of cavities of the
same size but with different numbers of particles [8].

We note that other approaches to the description of
confined fluids exist. In particular, integral equation methods
from liquid state theory have been used to study the structure
and thermodynamics of charged fluids in a charged spherical
pore [12] as well as that of hard-sphere fluids in slit and
cylindrical pores [13]. The latter work compares the results
of the calculations to simulations in the grand ensemble and is
therefore complementary to the present study.

In the following, we compare the results of Monte Carlo
simulations and DFT calculations performed in the grand-
canonical ensemble for a system consisting of point atoms
interacting via a Lennard-Jones potential and confined to a

0953-8984/10/035101+06$30.00 © 2010 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/22/3/035101
mailto:jlutsko@ulb.ac.be
http://stacks.iop.org/JPhysCM/22/035101


J. Phys.: Condens. Matter 22 (2010) 035101 J F Lutsko et al

spherical cavity by hard walls. In both the simulations and
the DFT calculations, the walls are instantiated by an applied
field which is zero for particles inside the cavity and large
(tending to infinity) for particles outside the cavity. Thus, the
variables characterizing the state of the system are temperature,
the chemical potential and the size of the cavity. We find that
for a value of the chemical potential corresponding to a stable
liquid phase in the bulk system, and a metastable vapor phase,
the system undergoes a ‘phase transition’ as the volume is
reduced whereby the vapor phase becomes the preferred state
for small volumes. Of course, in a finite system, we do not
observe a true phase transition in the thermodynamic sense, but
rather a hysteresis in the simulations. The calculations, since
they yield a free energy, do allow us to specify the location
of the transition in the sense of the volume at which the free
energies are equal.

In section 2, we briefly describe our simulation technique
and our calculations. The calculations are performed using
the modified-core van der Waals (MC-VDW) model DFT [4].
This model is based solely on properties of the bulk fluid and
the interaction potential and gives a quantitatively accurate
description of the fluid under a wide variety of pair potentials
and external fields. A comparison between theory and
simulation is presented in the third section where a transition
between the vapor phase at small volumes and the liquid phase
at large volumes is described. Our conclusions are summarized
in section 4.

2. Simulation and calculations

2.1. Simulations

We have carried out simulations in the grand-canonical
ensemble of particles of mass m and positions ri and momenta
pi . The N-particle Hamiltonian is

H =
N∑

i=1

p2
i

2m
+

∑

i< j

v(ri j ) +
N∑

i=1

φ(ri ), (1)

where the pair potential is the Lennard-Jones interaction,

v(r) = 4ε

((
σ

r

)12

−
(

σ

r

)6)
(2)

and where the external field, φ(r) is taken to be zero for r < R
and infinite for r > R. Since the available volume is finite, no
truncation of the potential is necessary. Our simulations follow
the procedure described in [14]. Each simulation consists of a
large number of ‘cycles’ consisting of 0.9N attempts to move
a particle together with 0.05N attempts to add a particle and
0.05N attempts to remove a particle for a total of N attempted
changes. Particle moves consist of choosing a random vector
of maximum length � which is added to the coordinates of a
randomly chosen particle. The move is then evaluated using
the usual Metropolis algorithm [14]. The effect of the external
field is that all moves resulting in particles being outside the
spherical cavity of radius R are rejected. Insertions consist
of adding a particle at a random position within a cube with
sides of length 2R and accepting or rejecting according to the

Metropolis algorithm based on the total energy E = H − μN ,
where μ is the imposed chemical potential. Deletions are
attempted in the obvious way. The parameter � is chosen to
give an acceptance rate on the order of 50%.

Note that in our simulations, the particles are treated as
points relative to the boundary. Our results apply equally well
to particles that behave as hard spheres when interacting with
the wall. If the hard-sphere diameter is d then the properties of
the system with cavity radius Rd will correspond to one with
d = 0 and cavity radius R = Rd − d/2.

The simulations begin with a random distribution of
particles that is allowed to equilibrate for several million
cycles. Then, statistics including the average number of
particles, total energy, virial pressure and density profile are
accumulated over a run of five million cycles. The density
profiles were calculated by tracking the number of particles in
equal volume shells both relative to the center of the cavity and
relative to the center of mass. We found little difference in the
two profiles and report the former here.

2.2. Density functional theory

In DFT, the properties of the system are expressed in terms
of the local density ρ(r). For example, the average number
of particles is 〈N〉 = ∫

ρ(r) dr. The equilibrium density is
determined by minimizing the functional �[ρ] ≡ F[ρ] −
mu〈N〉, where F[ρ] plays the role of the Helmholtz free
energy and is not, in general, known exactly. The equilibrium
grand potential is then equal to �[ρ] evaluated at the
equilibrium density. Our DFT calculations were performed
using the MC-VDW model [4]. This model is an extension of
the simplest hard-core plus mean-field tail model which gives
quantitatively accurate predictions for surface tension [4], fluid
structure in slit pores [4], nucleation barriers [15], etc. Since
the aim here is to compare directly to simulation, quantitative
accuracy of the DFT calculations is a necessity. The model is
written as a sum of four contributions,

F[ρ] = Fid[ρ] + Fhs[ρ] + Fcore[ρ] + Ftail[ρ]. (3)

The first contribution is the ideal gas term which is given by

Fid[ρ] =
∫

(ρ(r) log(ρ(r)) − ρ(r))dr. (4)

Next is a hard-sphere contribution, Fhs[ρ], for which the
‘White Bear’ fundamental measure theory (FMT) model was
used [16, 17] along with the Barker–Henderson hard-sphere
diameter [18, 6]. The third contribution, the ‘core correction’
Fcore[ρ], is similar to a FMT model but is constructed so that
the total free energy functional reproduces a given equation
of state in the bulk phase as well as certain other conditions
concerning the direct correlation function in the bulk fluid [4].
The final term is a mean-field treatment of the long-range
attraction,

Ftail[ρ] =
∫

�(r12 − d)ρ(r1)ρ(r2)v(r12) dr1 dr2, (5)

where �(x) is the step function, d is the Barker–Henderson
hard-sphere diameter and v(r) is the pair potential. The DFT
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Figure 1. The phase diagram of the LJ fluid as calculated using the
JZG equation of state. The full line is the binodal and the dashed line
the spinodal. The large spots correspond to the chemical potential
μ = −3 and the smaller spots are the states sampled when the
chemical potential is varied.

model requires as input the bulk equation of state. Since
the object of the calculations was to model the LJ system
as accurately as possible, the empirical equation of state of
Johnson et al [19] was used.

The DFT calculations were performed assuming a
spherically symmetric density profile which was discretized as
a function of distance from the center, r with 160 points per
hard-sphere diameter. This rather fine grid was necessary so as
to minimize the discretization effects at the discontinuity at the
boundary of the cavity.

2.3. Theory: exact results

For small volumes, it is very unlikely that there will be more
than one or two particles present due to the divergent repulsion
at small distances. In this case, the grand partition function can
be approximated by

	 =
∞∑

N=0

exp(βμN)Z N

= 1 + exp(βμ)Z1 + exp(2βμ)Z2 + · · ·
= 1 + z Z1 + z2 Z2 + · · · , (6)

where Z N is the canonical partition function for a system of N
particles. For the cases N = 1, 2 straightforward calculation
taking into account the finite volume of radius R gives

Z1 = �−3V

Z2 = 1

2
�−6V

π

4

∫ 2R

0

(
16 − 12

r

R
+

(
r

R

)3)

× r 2 exp(−βv(r)) dr

(7)

with the thermal wavelength

� =
√

h2

2πmkBT
. (8)

From these expressions, the grand potential, � = −kBT ln 	

can be calculated and thermodynamic properties such as the

Figure 2. The average number of particles as a function of volume at
a fixed chemical potential μ = −3.0 and temperature kBT = 0.71 as
determined from equation (6), simulation and DFT.

average number of particles, the pressure, etc determined by
differentiation. This result gives a further check on the DFT
calculations as well as a consistency check for the simulations.

3. Results

In the following, we take ε and σ to be the units of energy
and length, respectively, so all quantities can be considered
to be dimensionless. Figure 1 shows the bulk phase diagram
of the Lennard-Jones fluid with the thermodynamic states
investigated here indicated. We work at a temperature of
kBT = 0.71ε which is approximately the triple point of the
LJ potential. In the first set of investigations, the volume is
varied with the chemical potential fixed at a value of μ = −3ε

corresponding to a stable liquid with density ρσ 3 = 0.899
and a vapor in the metastable region. In the second set
of investigations, the chemical potential is varied so as to
move the liquid phase towards the binodal (i.e. decreasing the
chemical potential) and the volume is held fixed.

3.1. Variation of volume

We now consider the variation of the volume at a constant
chemical potential, μ = −3.0. Figure 2 shows the
number of particles as a function of volume for small
volumes as determined by simulation, DFT and via the usual
thermodynamic relation

〈N〉 = ∂�

∂μ
(9)

using the small volume approximation given in equation (6).
The DFT calculations are in good agreement with the
simulations and both approach the analytic small volume limit
for V � 5. Figure 3 shows the average number of atoms and
the density for a wide range of volumes as determined from
both DFT calculations and simulation. As seen in the figures,
there are two phases possible, depending on the volume: at low
volumes, the system is always a low-density gas while at high
volumes it is always a high-density liquid. This is therefore
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Figure 3. The left panel shows the average number of particles as a
function of volume at a fixed chemical potential μ = −3.0 and
temperature kBT = 0.71 as determined from simulation and DFT.
The panel on the right shows the average density as a function of
volume.

Figure 4. The pressure as a function of volume at a fixed chemical
potential μ = −3.0 and temperature kBT = 0.71 as determined from
simulation and DFT.

the inverse of the expected behavior in a canonical ensemble
where we expect a condensed phase to occur at low volumes
and a gas at high volumes. In the present case, this is not a true
thermodynamic phase transition because of the finite size of the
systems, so at intermediate volumes both phases are stable over
the timescale of the simulation. The same behavior is observed
in the calculations where it is possible to stabilize both phases
for 100 < V < 200 (the ‘two phase region’) while otherwise,
only the liquid (vapor) is stable at higher (lower) volumes.

Figure 4 shows the pressure (P = −∂�/∂V ) where
the agreement between DFT and simulation is again quite
good. At the largest volumes shown, the pressure is still far
below the bulk limit. As the volume decreases towards the
two phase region, there is a sharp drop in pressure and it is
here that the largest differences between DFT and simulation
occur. The free energies of both phases, as determined from the
calculations, is shown in figure 5 where the crossover occurs at
V ∼ 132. Figure 5 also shows that at large volumes, the free
energy has the expected form of a bulk contribution, linear in
the volume, and a surface term that varies as V 2/3. It is the

Figure 5. Free energies of the liquid and gas phases as functions of
the volume at a fixed chemical potential μ = −3.0 and temperature
kBT = 0.71 as determined from DFT. In the main figure, the
calculated values are shown as symbols and the best fit to a function
of the form F = aV + bV 2/3 + cV 1/3 is shown as the full line
(where the first coefficient, a, is fixed by the bulk limit). The inset
shows that the free energies of the liquid (solid line) and vapor
(dashed line) phases are equal at about V = 132.

surface term that gives rise to a very slow V −1/3 convergence
of the pressure to the bulk limit, as is seen in figure 4. In fact,
fitting the simulation data for the pressure for V > 200 to the
function P = a + bV −1/3 gives an estimate a = 1.196 for the
bulk pressure which is very close to the value of p0 = 1.178
given by the JZG equation of state.

Based on this behavior, the observed transition can be
understood with a simple capillary model. For a sufficiently
large system, the free energy will consist of two contributions:
the free energy of the fluid far from the wall, which will be in
the bulk state, and a contribution from the interaction between
the fluid and the wall. The latter has the effect of a surface
tension so that, in the simplest, capillary approximation, the
grand potential of the fluid will be

β� = 4π

3
R3( f (ρ) − μρ) + 4π R2lρτ, (10)

where ρ is the average density, f (ρ) is the bulk phase
Helmholtz free energy per unit volume, τ represents the excess
free energy per particle due to the interaction with the wall
and l is the penetration depth of the effect of the wall. This
corresponds to the empirical variation with radius observed
above. Minimizing this with respect to the density gives

d f (ρ)

dρ
= μ − 3l

R
τ. (11)

For large cavities, the second term on the right is negligible
and this simply says that the density is that of a bulk fluid at
the chemical potential μ (which picks out the liquid phase for
the chemical potential used here). The effect of the wall is to
shift the chemical potential to lower values until for sufficiently
small R, the effective chemical potential favors the vapor phase
thus giving rise to the transition. (Note that a more realistic
model would include the density-dependence of τ but we do
not expect this to give rise to any qualitative differences.)
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Figure 6. The density profile for V = 200, 400 and 800 at a fixed chemical potential μ = −3.0 and temperature kBT = 0.71 as determined
from simulation and DFT. The density profile from simulation (the circles) is calculated using 150 equal volume shells. The DFT calculation
is shown as the dotted line and the average of the DFT calculation over equal volume shells is shown as the thick line. Note that in each panel,
the wall of the cavity corresponds to the right-most data point.

As a further test of the ability of DFT to accurately
described such small systems, we show in figure 6 some
examples of density profiles determined in the simulations
compared to those calculated from DFT. For all of these
systems, the fluid exhibits a shell structure which is accurately
predicted by the DFT. In some cases, the density in the center
of the cavity is very high (see the third panel of figure 6) but
this simply indicates a high probability density of an atom
occupying the center of the cavity and the physical quantity,
which is the average number of atoms in a volume of given
radius about the origin, is always finite. The greatest errors
appear near the wall where the DFT tends to overestimate
the density. Since the particles interact with the wall as hard
points—i.e. as ideal gas particles—the pressure exerted on the
system by the wall must be the same as it would exert on an
ideal gas at the same density (i.e. the density of the real fluid
adjacent to the wall). The role of the wall is to confine the
fluid which means, if the pressure is positive, to balance the
pressure so we conclude that the fluid pressure must be equal
to that of an ideal gas at the density of the fluid at the wall
(P = ρ(R)kBT ). For planar interfaces, this is called the ‘wall
theorem’ [20, 1]. Taking into account that what is measured
in the simulation is the density in a small shell near the wall,
and not the actual density at the wall, this relation is in fact
confirmed in the simulations. For example for V = 800,
the density at the wall is found to be ρ(R) = 0.944 and the
prediction P = 0.944 × 0.71 = 0.67 is consistent with the
virial pressure which is found to be 0.669. The discrepancy
near the wall can therefore be traced to the overestimate of the
pressure by the DFT as is seen in figure 4.

Figure 7 shows the density in the metastable region
(the case V = 150) for both the vapor and liquid phases.
In the vapor phase, the DFT calculations are in reasonable
agreement with the simulations (away from the metastable
region, agreement in the vapor phase is even better) but in
the liquid phase the DFT is less accurate than elsewhere. This

Figure 7. The same as figure 6 for V = 150. Panel (a) shows the
density distribution in the vapor phase and panel (b) shows the
density distribution in the liquid phase.

accords with the thermodynamic properties shown previously,
which vary rapidly with volume and deviate most strongly
from the DFT calculations in the metastable region and can
be attributed to a small error in predicting the precise location
of the ‘phase transition’.

3.2. Variation of chemical potential

We have also performed simulations and calculations at a fixed
volume (V = 800) and temperature (kBT = 0.71) and with a
varying chemical potential. The results are briefly summarized
here.

Figure 8 shows the liquid and vapor densities as a function
of the chemical potential. At a very low chemical potential, the
vapor is the stable phase and at higher chemical potentials, the
liquid is the stable phase. A transition occurs at intermediate
chemical potentials as signaled by the rapid drop in the average
liquid density. DFT calculations of the free energies of the two
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Figure 8. The average density in the vapor (panel (a)) and liquid
(panel (b)) phases as a function of the chemical potential at V = 800
and kBT = 0.71.

phases indicate a transition at μ = −3.6 which is consistent
with the observed behavior in the simulations. A comparison
of the density profiles is similar to that found at the constant
chemical potential: the DFT works well in both phases with
the largest errors occurring for values of the chemical potential
near the transition region.

4. Conclusions

In summary, we have performed Monte Carlo simulations and
DFT calculations of the thermodynamic properties and density
profiles of a Lennard-Jones liquid confined to a spherical
cavity with hard walls. At a fixed chemical potential, we find
a ‘reverse’ liquid–vapor transition whereby the vapor is the
stable phase at small volumes and the liquid is the stable phase
at large volumes. Since the chemical potential corresponds to
that of a stable liquid in the bulk limit, it is expected that the
liquid is the stable phase at large, although finite, volumes. For
any cavity, the particles near the wall have fewer neighbors
than particles in the bulk do giving rise to a surface tension
(or, more precisely, a surface excess free energy) as evidenced,
e.g., by the fact that the free energy is well described by a
function of the form F = aV + BV 2/3 at large volume. For
small volumes, this surface tension dominates (i.e. a significant
fraction of the system has lower coordination than in the bulk)
so that the free energy is driven up until it exceeds that of the
vapor (which is dominated by entropy and little affected by
the boundaries). This competition between bulk and surface
effects is completely analogous to the physics underlying
classical nucleation theory (CNT). Thus, the instability of the
liquid at small volumes is analogous to the instability of sub-
critical clusters in CNT. Varying the chemical potential at fixed
volume produces a standard liquid–vapor transition whereby
the vapor is stable at very negative chemical potentials and the
liquid at larger chemical potentials.

Finally, one question motivating this study was whether
DFT, which is based on properties of the bulk systems,
is sufficiently versatile so as to be useful in predicting
the properties of small, nanoscale systems. The answer
is clearly affirmative for the particular model (MC-VDW)
used here, with DFT giving a good description of the
average (thermodynamic) properties as well as quantitatively
reasonable predictions for the density distributions within the
cavities. Since this model has been shown to work for a
variety of semi-infinite systems [4, 15] as well as for different
potentials [21], it is likely to be a useful tool in understanding
the properties of more relevant nanosystems such as micro-
plasmas and fluids in small pores and cavities in the canonical
ensemble.
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