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The elastic moduli of a solid can be determined from the thermal fluctuations of the stress. The so-called
stress-fluctuation approach is useful in that it can provide insights into the molecular origin of a particular
mechanical response, and it leads to faster convergence than methods based on fluctuations of the strain.
Unfortunately the implementation of the stress-fluctuation approach is more demanding than that of the strain-
fluctuation approach, particularly for atomistic models involving intramolecular interactionsse.g., bending and
torsiond. In this study a simple numerical method is proposed to evaluate the elastic moduli of atomistic models
from knowledge of atomistic forces. It is shown that this approach leads to fast and reliable prediction of the
elastic moduli for two different classes of materials. In one example the elastic moduli of crystalline silicon are
compared to those reported in the literature. In the other example the elastic moduli of an atomistic polymer
model for polysmethyl methacrylated are shown to be in good agreement with experimental data.
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I. INTRODUCTION

Molecular simulations provide a powerful approach to
quantify the elastic properties of solids and the molecular
origins of particular constitutive behaviors. The elastic
moduli can be determined directly, by applying a load to a
system and observing its response, or indirectly, by comput-
ing the thermal fluctuations of the strains or stresses. The
latter approach is attractive in that it provides all of the com-
ponents of the elastic tensor from a single simulation, and it
makes a distinction between contributions to the moduli aris-
ing from different molecular interactions.1 Such a tensor can
subsequently be used to study a system’s anisotropy and me-
chanical stability.2

Several statistical formalisms are available for the calcu-
lation of elastic moduli.3–6 At constant temperatureT, vol-
ume V, and number of particlesN, an isothermal elastic
modulusCijkl can be determined from3,4

Cijkl = Cijkl
B + Cijkl

K − Cijkl
F , s1d

where

Cijkl
K = 2sdikd jl + dild jkdNkBT/V, s2d

Cijkl
F = sksi jskll − ksi jlksklldV/kBT. s3d

All the vectors and tensors in this study are expressed in
index notation; subscriptssi , j ,k, ld denote the Cartesian
componentssx,y,zd. The symboldi j is the identity tensor.
The bracketskl denote an ensemble average. The termsCijkl

B

and Cijkl
K represent the intrinsic elastic moduli of a system;

superscriptsB and K denote the Born term and the kinetic
contribution, respectively.3 The thermal fluctuation contribu-
tion to the elastic moduli,Cijkl

F , is determined from the stress
tensorsi j . It should be noted that the elastic modulus tensor
can also be calculated in a constant stress ensemble from the
corresponding fluctuations of the strain.5 We prefer to work
with stress fluctuations because Eq.s1d provides unique in-

sights into the intrinsic stiffness of a material and the effect
of thermal motion on the elastic moduli. In addition, the
stress-fluctuation approach often leads to faster convergence
of the elastic moduli in molecular simulations.6

Ray has derived a generalized formula for the Born term
of an arbitrary potential energy functionU:3

Cijkl
B =

1

V
o
a,b

o
c,d

kpsa,b,c,ddr i
abr j

abrk
cdrl

cdl s4d

where

psa,b,c,dd =
1

rabrcdS ]2U

]rab ] rcd −
1

rab

]U

]rabdacdbdD . s5d

The quantityrab represents the magnitude of the interparticle
vector r i

abs=r i
b−r i

ad. The sums overa,b sor c,dd count all
possible pairs amongN particles. By replacingc andd by a
and b in Eqs. s4d and s5d, one obtains the well-known for-
mula for the Born term of a pairwise additive potential en-
ergy functionU2 se.g., a Lennard-JonessLJd or a harmonic
spring potentiald;3,4,7

Cijkl
B2 =

1

V
o
a,b
KS ]2U2

]rab2 −
1

rab

]U2

]rabD r i
abr j

abrk
abrl

ab

rab2 L . s6d

In Eqs.s4d–s6d the potential must be an explicit function of
interatomic distances. While some applications of Eqs.
s4d–s6d to atomistic models have been reported in the litera-
ture; e.g., the Sutton-Chen model for transition metals,8 the
Stillinger-WebersSWd model,3 and the Tersoff model9 for
silicon, the use of the stress-fluctuation formula has generally
been limited by the ability to evaluate the Born term in ato-
mistic models that include non-pairwise interactions such as
bending and torsion.1,6

In this paper we propose a simple numerical method to
estimate the Born term using expressions originally derived
by Lutsko.4 This method does not require the transformation
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of a non-pairwise potential to an explicit function of inter-
atomic distances, and is easily implemented in molecular dy-
namicsMDd simulations. Results are presented for the elastic
moduli of the SW silicon model3 and an atomistic model of
polysmethyl methacrylated,10 referred to as PMMA. Our nu-
merical results for the SW silicon model are in good agree-
ment with those obtained analytically in the literature.3 For
the model of PMMA, which includes bending and torsion
interactions, simulated moduli are in good agreement with
experimental data. The molecular origins of those elastic
moduli are further discussed in Sec. III.

II. METHODOLOGY

A. Models

The SW silicon model is parametrized to yield a stable
tetrahedral structure in solids whose internal energyUS is
given by11

US= o
a,b

u2srabd + o
a,b,c

fu3sr i
ab,r i

acd + u3sr i
ba,r i

bcd

+ u3sr i
ca,r i

cbdg, s7d

wherea,b,c is a summation over all possible combina-
tions of three atoms in a system. The functionu2 is a pair-
wise potential

u2srabd = AfBsrabd−4 − 1ghg1srabd, s8d

andu3 is a three-body potential

u3sr i
ab,r i

acd = lhg2srabdhg2sracdgsubacd2, s9d

where

gsubacd = cosubac+ 1/3, s10d

hgsrabd =Heg/srab−zd, if rab . z,

0, if rab ø z.
J s11d

The symbolubac denotes the angle between the vectorsr i
ab

and r i
ac.

The united-atom model adopted for the simulations of
PMMA includes five contributions to the potential energy
UP:10

UP = o
a,b

Krsrab − reqd2 + o
a,b,c

Kusuabc− ueqd2

+ o
a,b,c,d

Vn

2
f1 + cossnfabcd− feqdg + o

a,b

QaQb

erab

+ o
a,b

FAabS 1

rabD12

− BabS 1

rabD6G . s12d

The first three terms correspond to bonding, bending, and
torsional interactions, respectively. In the third term,fabcd is
the dihedral angle between the planeshr i

ab,r i
acj andhr i

db,r i
dcj.

The fourth and fifth terms are pairwise contributions arising
from Coulombic and LJ interactions, respectively. The val-
ues of the parameters in Eqs.s8d–s12d are reported in the
literature.10,11

B. Theory

Following Lutsko, a generalized stress tensor for an arbi-
trary potential energy function is written as4

si j = si j
v + NkBTdi j /V, s13d

wheresi j
v is the symmetric virial tensor

si j
v =

− 1

2V
o
m=1

N Fr i
m ]U

]r j
m + r j

m ]U

]r i
mG . s14d

By evaluating the derivative ofsi j with respect to the La-
grangian strain tensor, a generalized Born term expression is
obtained as

Cijkl
B = 1/4sĈijkl

B + Ĉjikl
B + Ĉijlk

B + Ĉjilk
B d, s15d

where

Ĉijkl
B =

1

V
o
m=1

N

o
n=1

N Kr j
mrl

n ]2U

]rk
n ] r i

mL + dikks jl
v l. s16d

Equations16d can be transformed into other generalized for-
mulas, namely, Eqs.s4d and s5d ssee Appendix Ad. In this
study we rewrite Eq.s16d as

Ĉijkl
B =

− 1

V
o
m=1

N

o
n=1

N Kr j
mrl

n] f i
m

]rk
nL + dikks jl

v l, s17d

where f i
m is the force acting on an atom labeled bym:12

f i
m = −

]U

]r i
m . s18d

Atomistic force calculations are an intrinsic component of
any MD simulations.12 This facilitates the numerical imple-
mentation of the Born term through Eq.s17d rather than solv-
ing Eq. s16d or Eqs.s4d and s5d analytically. As an example
we consider the case of a three-body potential energy func-
tion u3 in Eqs.s9d–s11d. Using Eq.s18d the atomistic forces
on the three atomssa,b,cd are calculated from

f i
b =

u3

rabF gr i
ab

srab − zd2 −
2

g
S r i

ac

rac − cosubacri
ab

rabDG , s19d

f i
c =

u3

racF gr i
ac

srac − zd2 −
2

g
S r i

ab

rab − cosubacri
ac

racDG , s20d

f i
a = − sf i

b + f i
cd. s21d

By substituting Eq.s21d into Eq. s17d, the Born term for the

three-body interactionĈijkl
B3 is found to be

Ĉijkl
B3 =

− 1

V
Kr j

abr l
a] f i

b

]rk
a + r j

acr l
a] f i

c

]rk
a + r j

abr l
b] f i

b

]rk
b + r j

acr l
b] f i

c

]rk
b

+ r j
abr l

c] f i
b

]rk
c + r j

acr l
c] f i

c

]rk
cL +

dik

2V
kr j

abf l
b + r l

abf j
b + r j

acf l
c

+ r l
acf j

cl. s22d

The numerical calculation of Eq.s22d can be performed as
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follows. s1d Displace thex coordinate of atoma by an infini-
tesimal amountDrx

a, s2d Calculate changes of the forces as-
sociated with that displacement,Df i

b andDf i
c, s3d Ensure that

the displacement is sufficiently small so that the derivatives
Df i

b/Drx
a andDf i

c/Drx
a can be regarded as constants,s4d Dis-

placerx
a back to its original position,s5d Repeat stepss1d to

s4d for Dry
a, Drz

a, Drx
b, etc. If periodic boundary conditions

are applied tor i
ab, r i

b is the minimum-image position with
respect tor i

a.
One could also solve Eq.s22d by evaluating the force

derivative terms analytically. For example, the analytical ex-
pression for the derivative of the forcef i

b with respect to the
atom positionrk

a is given by

] f i
b

]rk
a =

u3

rabH g

srab − zd2F r i
abqk

a

g
+

2r i
abrk

ab

rabsrab − zd
− dikG

+ 2F dik

rac −
r i

acrk
ac

rac3 +
r i

abqk
a

rab + cosucabS dik

rab −
r i

abrk
ab

rab3 DGJ
+ f i

bHgF rk
ab

rabsrab − zd2 +
rk

ac

racsrac − zd2G +
rk

ab

rab2

−
1

gF rk
ab + rk

ac

rabrac − cosucabS rk
ab

rab2 +
rk

ac

rac2DGJ , s23d

where

qk
a = cosucabS rk

ab

rab2 +
rk

ac

rac2D −
rk

ab + rk
ac

rabrac . s24d

It is important to note that such analytical expressions can
be tedious and elaborate when written for a computer pro-
gram. One also needs to derive new analytical formulas
and recode them for each different model. The numerical
approach proposed in this study is flexible and easily
extended to any potential. For instance, Eq.s22d can be
used for different types of three-body interactions, such as
the bending term in Eq.s12d. It also has the advantage
of using directly the atomistic forces, rather than requiring
the transformation of non-pairwise potentials into a pairwise
formula, like Eqs.s4d and s5d. For three-body potentials,
such a transformation could be derived with the law of
cosines,3,9 but it becomes more demanding for other non-
pairwise interactions that include more than three atomssor
moleculesd; e.g., the torsion term in Eq.s12d. In Sec. III it is
shown that the results from our numerical method are the
same as those obtained from the analytical formulas, and that
the computational expense for the numerical calculations can
be minimized by decreasing the sampling frequency for the
Born term.

For brevity, in the remainder of this study fourth-order
tensors are represented in Voigt notation;13 e.g.,
C11=Cxxxx, C12=Cxxyy, C44=Cxyxy.

C. Simulations

All simulations of the SW silicon model comprise
216 atoms with periodic boundary conditions. To reproduce
literature results,3 the temperature and pressure were set to

0 Pa and 1477 K, respectively. A perfect diamond structure
was used for the initial configuration. First we performed
Nsi jT Monte CarlosMCd simulations to obtain the equilib-
rium density.7,12 We sampled the data at every 100 MC steps
over simulations of 23106 steps. The resulting averaged
density was 2297 kg/m3. Second, we ranNVT MC simula-
tions over 23106 steps at that density, and calculated the
elastic moduli from the stress-fluctuation formula, Eqs.
s1d–s3d. The Born term for the two-body potential,Cab

B2

sa ,b=1,2, …, 6d, was analytically calculated from Eq.s6d
since the potential energyu2 depends solely on an inter-
atomic distance. The Born term for the three-body potential
Cab

B3 was estimated both analytically and numerically from
Eq. s22d. All the trial displacementsDr i

m were set to 10−7 in
dimensionless units.

For the case of PMMA the initial configuration was
generated by placing 80 linear syndiotactic PMMA
molecules uniformly in a cubic simulation box. Each
molecule consists of 10 monomers. By performing
NPT MD simulations, we equilibrated the system at a high
temperatures500 Kd and cooled it down gradually until
room temperatures300 Kd was attained. The pressure and
time step were set at 0.1 MPa and 1 fs, respectively. The
resulting density of amorphous PMMA glass was approxi-
mately 1084 kg/m3. After the equilibration of the system, we
ran NVT MD simulations over 33105 time steps, sampling
the instantaneous Born terms and the stress tensor at every
100 time steps. The Born terms for LJ and bonding potentials
were calculated analytically from Eq.s6d, and those for
bending and torsion potentials were estimated numerically
from Eq. s17d. In order to evaluate Coulombic interactions,
the Ewald method was applied and its Born term was calcu-
lated analytically from expressions available in the
literature.14

III. RESULTS AND DISCUSSION

Table I summarizes our results for the Born term,
the kinetic term, the stress-fluctuation term, and the
elastic moduli of the SW silicon model atT=1477 K.
The three characteristic components of each term are listed;

C̄11=sC11+C22+C33d /3 , C̄12=sC12+C23+C31d /3 , C̄44=sC44

+C55+C66d /3. The error ofC̄ij indicates the standard devia-
tion of three indistinguishable components; e.g.,C11, C22,

andC33 for C̄11.
It is shown that all results are in good agreement with

the values in the literature,3 which were obtained analyti-
cally from Eqs.s4d and s5d. In addition our numerical re-
sults for Cab

B3 are found to be the same as those calculated

analytically from Eqs. s22d–s24d; C̄11=55.3 GPa,C̄12=

−9.4 GPa,C̄44=15.8 GPa. It should be emphasized that the
analytical calculations ofCab

B3 require newly derived, elabo-
rate formulas be coded for each different model, whereas our
numerical calculations can be implemented simply by using
an intrinsic component of MD simulations; i.e., the atomistic
forces.

It is interesting to observe in Table I that the contribution
of the thermal stress fluctuations to the elastic modulus,Cab

F ,
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is negligible forC̄11 andC̄12, but significant forC̄44. This is
mainly due to large shear displacements of atoms that arise
after a homogeneous deformation of diamond
structures.2,3,9,15Such microscopic motions decrease the sys-
tem’s free energy and are driven by the thermal fluctuations
at finite temperature,3 or by minimization of the energy at
zero temperature.2,9,15 The stress-fluctuation termCab

F im-
plicitly describes the effects of internal strains on a system’s
elastic modulus.3,9

The results for PMMA are shown in Table II. At room
temperatures300 Kd, simulated PMMA forms an amorphous
glass. It is found that the bonding interactionssCab

Br d contrib-
ute most to the overall Born termCab

B ; 68%, 102%, and 58%

for C̄11, C̄12, and C̄44, respectively. The spring constant of
the bonding potential in Eq.s12d is therefore an important
parameter that characterizes the instantaneous mechanical re-
sponse of this PMMA model. It is also observed that the
stress-fluctuation termCab

F has a magnitude comparable to
the corresponding Born termCab

B for all three components.
This finding suggests that the free energy of amorphous
polymer glasses exhibits a large decrease after a system’s
homogeneous deformation due to large rearrangements of

polymer molecules. The remaining values of elastic moduli
Cab for the PMMA are considerably smaller than those of
the SW crystalline silicon.

Using the results ofCab in Table II, the Young’s modulus
E, shear modulusG, and Poisson’s ration of PMMA can be
obtained as follows:13

E =
s3C̄12 + 2C̄44dC̄44

C̄12 + C̄44

= 3.3 GPa, s25d

G = C̄44 = 1.2 GPa, s26d

n =
C̄12

2sC̄12 + C̄44d
= 0.36. s27d

These values are consistent with available bulk experimental
data at room temperature:E.3.0 GPa,G.1.0 GPa, and
n.0.35.16,17 Although the elastic properties of PMMA are
time or frequency dependent, they remain nearly constant
below the glass transition temperatures=400 Kd.17

The Born terms,C̄12
B3 in Table I andC̄12

Bu in Table II, are
largely negative; both terms are associated with an angle
potential including three atoms. Based on Eq.s27d a negative

value of C̄12 could correspond to a negative Poisson’s ratio

if C̄12+C̄44.0. In such a case the material would exhibit a
transverse expansion under longitudinal extension.18

For a three-body potential the middle atom would vertically
move up to maintain an angle when two edge atoms
are laterally pulled out. Due to other internal constraints of
the molecular configurationsse.g., bond lengthsd, however,

the overall C̄12 becomes strongly positive; the negative
Poisson’s effect does not show up in the deformation of our
systems.

Figure 1 shows the convergence of the Born term
and the stress-fluctuation term for the SW silicon and the
PMMA models. In both cases the running average of
C11

B attains a stable value shortly after the simulation
begins, whereasC11

F fluctuates around the equilibrium value
with a relatively long period. These results are expected
since the Born term is an averaged quantity, but the

TABLE I. Two-body and three-body Born terms, kinetic term, stress-fluctuation term, and elastic moduli

of SW silicon atT=1477 K. The sum ofCab
B2 and Cab

B3 is denoted byCab
B . The right column for eachC̄ij

represents the analytical values reported in the literature3 ssee Appendix B for data conversiond. In NVT MC
simulations, the kinetic contributions are constant.

Term C̄11sGPad C̄12sGPad C̄44sGPad

Ref. 3 Ref. 3 Ref. 3

Cab
B2 81.2±0.0 80.0 84.0±0.0 83.4 84.0±0.0 83.4

Cab
B3 55.3±0.0 56.5 −9.4±0.0 −8.9 15.8±0.0 16.4

Cab
B 136.5±0.0 136.5 74.6±0.0 74.5 99.8±0.0 99.8

Cab
K 4.0 4.0 0.0 0.0 2.0 2.0

Cab
F 5.5±0.0 7.3 0.8±0.1 0.6 55.3±1.4 59.8

Cab 135.1±0.0 133.2±0.1 73.8±0.1 73.9±0.4 46.5±1.4 42.0±8.3

TABLE II. Born terms, kinetic term, stress-fluctuation term, and
elastic moduli of an atomistic PMMA model atT=300 K.
Cab

BQ, Cab
BLJ, Cab

Br , Cab
Bu , andCab

Bf denote the Born term arising from
Coulombic, LJ, bonding, bending, and torsion potential energy con-
tributions in Eq.s12d, respectively.

Term C̄11sGPad C̄12sGPad C̄44sGPad

Cab
BQ −0.2±0.0 −0.1±0.0 −0.1±0.0

Cab
BLJ 11.1±0.7 3.8±0.2 3.8±0.2

Cab
Br 41.6±0.7 14.0±0.3 14.0±0.3

Cab
Bu 7.7±0.6 −3.8±0.4 5.8±0.4

Cab
Bf 0.5±0.1 −0.3±0.1 0.4±0.1

Cab
B 60.8±0.8 13.7±0.2 23.9±0.3

Cab
K 0.7±0.1 0.0±0.0 0.3±0.1

Cab
F 55.5±0.5 10.5±0.7 23.0±0.4

Cab 6.0±1.2 3.2±0.8 1.2±0.1
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stress-fluctuation term is a correlation function.3 It is there-
fore not necessary to calculate the Born term as frequently
as the stress-fluctuation term, which helps reduce the
computational demands of numerical calculations.

IV. CONCLUSIONS

In this study a simple numerical approach has been
proposed for calculation of elastic moduli from stress-
fluctuation formulae. By using the atomistic forces calcu-
lated routinely in MD simulations, it has been shown that our
numerical results for the elastic moduli of the SW silicon
model agree with analytical values reported in the literature.
Unlike past analytical calculations, our numerical method
does not require the derivation or coding of tedious and
elaborate expressions for the Born terms. We have also
shown that the computational expense of numerical calcula-
tions can be minimized by sampling the Born term less fre-
quently. Our numerical approach is particularly useful for
atomistic models that comprise various types of non-pairwise
interactions. As an example, we have applied this numerical
method to an atomistic PMMA model that includes bending

and torsion interactions. The resulting elastic moduli are
shown to be in good agreement with experimental results.
We have observed that the magnitude of the stress-
fluctuation terms is relatively large for amorphous PMMA,
causing the elastic moduli of PMMA to be much smaller
than those of crystalline silicon.
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APPENDIX A: CONNECTION BETWEEN EQUATIONS (4)
and (16)

Using chain rules the virial stress tensor in Eq.s14d can be
written in pairwise form.4

skl
v =

− 1

V
o
n,s

rk
nsr l

ns

rns

]U

]rns. sA1d

From Eq.sA1d and the following identity,

]2U

]rk
n ] r i

m =
]

]r i
mSr l

n]U

]rk
nD − dmndil

]U

]rk
n , sA2d

Eq. s16d is transformed into

Ĉijkl
B = kDijkll + dilks jk

v l + dikks jl
v l, sA3d

where

Dijkl =
1

V
o
m=1

N

r j
m ]

]r i
mSo

n,s

rk
nsr l

ns

rns

]U

]rnsD . sA4d

EquationsA4d can be further expanded to

VDijkl = o
n,s

sdil r j
nsrk

ns+ dikr j
nsr l

nsd
1

rns

]U

]rns

+ o
m,t

o
n,s

psm,t,n,sdr i
mtr j

mtr l
nsrk

ns

= − sdils jk
v + diks jl

v d + o
m,t

o
n,s

psm,t,n,sdr i
mtr j

mtr l
nsrk

ns.

sA5d

After substituting Eq.sA5d into Eq. sA3d the pairwise for-
mula in Eq.s4d can be derived.

APPENDIX B: RELATION BETWEEN ISOTHERMAL AND
ADIABATIC ELASTIC MODULUS

Literature values3 reported for the SW silicon model
correspond to the adiabatic elastic moduliscalculated at
constant enthalpy, as opposed to constant temperatured. The
thermodynamic relation between the adiabatic Young’s
modulus EA and the isothermal Young’s modulusE is
given by,13

FIG. 1. Running average of the Born termsdotted lined and
stress-fluctuationsSFd term ssolid lined normalized by their values
at the end of the simulation. The top and the bottom figure show
results for silicon and PMMA, respectively. Although only one ten-
sorial component is shown here, a similar behavior was observed
for all other components.
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EA/E = 1 +l2TEA/rCp sB1d

where r , l, and Cp are the density, thermal expansion
coefficient, and specific heat at constant pressure, respec-
tively. For bulk silicon diamond,l.4310−6s1/Kd and

Cp.700 J/skg Kd at T=1477 K.19 After substituting these
values in Eq.sB1d, the last term is found to be negligibly
small. The isothermal elastic moduli are therefore assumed
the same as the adiabatic moduli for the conditions relevant
to this study.
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