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Statistical calculation of elastic moduli for atomistic models
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The elastic moduli of a solid can be determined from the thermal fluctuations of the stress. The so-called
stress-fluctuation approach is useful in that it can provide insights into the molecular origin of a particular
mechanical response, and it leads to faster convergence than methods based on fluctuations of the strain.
Unfortunately the implementation of the stress-fluctuation approach is more demanding than that of the strain-
fluctuation approach, particularly for atomistic models involving intramolecular interadiogs bending and
torsion. In this study a simple numerical method is proposed to evaluate the elastic moduli of atomistic models
from knowledge of atomistic forces. It is shown that this approach leads to fast and reliable prediction of the
elastic moduli for two different classes of materials. In one example the elastic moduli of crystalline silicon are
compared to those reported in the literature. In the other example the elastic moduli of an atomistic polymer
model for poly¥methyl methacrylageare shown to be in good agreement with experimental data.
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[. INTRODUCTION sights into the intrinsic stiffness of a material and the effect
of thermal motion on the elastic moduli. In addition, the

Molecular simulations provide a powerful approach to X
P b bp |stress—ﬂuctuatlon approach often leads to faster convergence

quantify the elastic properties of solids and the moleculal X o : .
origins of particular constitutive behaviors. The elasticOf the erllastlc mpduh n molec:lplar ?lmulaltlofﬁs. h
moduli can be determined directly, by applying a load to a f Ray b?ts derlvetd "’t‘. glenera 'Zid otr_g]h%a or the Born term
system and observing its response, or indirectly, by compth an aroitrary potential energy Tunctiai
ing the thermal fluctuations of the strains or stresses. The 1
latter approach is attractive in that it provides all of the com- Cha = v > 2 (pab,c,d)rfrPrid?) (4)
ponents of the elastic tensor from a single simulation, and it a<be<d
makes a distinction between contributions to the moduli arisyhere
ing from different molecular interactiodsSuch a tensor can
subsequently be used to study a system’s anisotropy and me- 1 #U 10U
chanical stability p(ab.c.d)= W( grabgped ~ ﬁﬁéacabd) )
Several statistical formalisms are available for the calcu- ] ) . )
lation of elastic modulf-® At constant temperaturg, vol- The quantityr®® represents the magnitude of the interparticle
ume V, and number of particlefN, an isothermal elastic vectqrrf‘b(:r'ib—rf‘). The sums ovea<b (or c<<d) count all
modulusCj, can be determined frotd p055|b_le pairs amonly particles. By_ replacing andd by a
B K . andb in Egs.(4) and (5), one obtains the well-known for-
Ciji = Cijia * Cijiu ~ Cija» (1) mula for the Born term of a pairwise additive potential en-
where ergy functionU, (e.g., a Lennard-Jond&J) or a harmonic
spring potentigt>4’

ety (2 Lt
C5k|:(<Uij0'k|>_<O'ij><0'k|>)V/kBT. (3) ijki R P o

All the vectors and tensors in this study are expressed iy Eqs.(4)—(6) the potential must be an explicit function of
index notation; subscriptsi, j,k,I) denote the Cartesian jnteratomic distances. While some applications of Egs.
componentsx,y,2). The symbolg; is the identity tensor. (4)~(6) to atomistic models have been reported in the litera-
The bracketg) denote an ensemble average. The te@}]ﬁ@ ture; e.g., the Sutton-Chen model for transition metdts

and Ci’J‘kI represent the intrinsic elastic moduli of a system;Stillinger-Weber(SW) model? and the Tersoff mod&Ifor
superscripts8 and K denote the Born term and the kinetic silicon, the use of the stress-fluctuation formula has generally
contribution, respectivel§The thermal fluctuation contribu- been limited by the ability to evaluate the Born term in ato-
tion to the elastic moduliCt,,, is determined from the stress mistic models that include non-pairwise interactions such as
tensoroy;. It should be noted that the elastic modulus tensoibending and torsioh®

can also be calculated in a constant stress ensemble from the In this paper we propose a simple numerical method to
corresponding fluctuations of the strdikVe prefer to work  estimate the Born term using expressions originally derived
with stress fluctuations because Ef) provides unique in- by Lutsko? This method does not require the transformation

Chi = 28k + 3 81 )NKsT/V, )
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of a non-pairwise potential to an explicit function of inter-
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B. Theory

atomic distances, and is easily implemented in molecular dy- Following Lutsko, a generalized stress tensor for an arbi-

namic(MD) simulations. Results are presented for the elasti
moduli of the SW silicon modéland an atomistic model of
poly(methyl methacrylate!® referred to as PMMA. Our nu-
merical results for the SW silicon model are in good agree
ment with those obtained analytically in the literatérgor
the model of PMMA, which includes bending and torsion

interactions, simulated moduli are in good agreement with
experimental data. The molecular origins of those elastic

moduli are further discussed in Sec. Ill.

II. METHODOLOGY
A. Models

The SW silicon model is parametrized to yield a stable

tetrahedral structure in solids whose internal enddjyis
given byt

US= 2 up(r®) + X [ug(rf®r®) +ug(rP2 rP
a<b a<b<c
+Ug(rea red)], (7)

wherea<b<c is a summation over all possible combina-
tions of three atoms in a system. The functionis a pair-
wise potential

Up(r®) = A[B(r*) ™ = 1]h,4(r™), (8)
andus is a three-body potential
Us(rf2, ) = h,o(r2)h,o(r*9g (6792, ©)
where
9(6°2) = costP°+ 1/3, (10)
ab_p
(%) = {gy’m R i :: i (10

The symbol° denotes the angle between the vectdts
andric,

The united-atom model adopted for the simulations of

PMMA includes five contributions to the potential energy
UP::LO

UP= 3 K (0= ro9%4 3 K (6= 67

a<b a<b<c

5%

> %[ucosndﬁbw— ¢+ 2

%rary potential energy function is written‘as

O'ij = O'ﬁ + NkBT5|J/V, (13)
Whereoﬁ is the symmetric virial tensor
N
-1 Z]V] U
U= — rm— +rM— . 14
7 2V,Z‘1{ "orm Jar{“} (9

By evaluating the derivative of;; with respect to the La-
grangian strain tensor, a generalized Born term expression is
obtained as

B
jik

B

Cﬁm = 1/4(Ci?kl +Cjiy + G

m.n
<I‘j r

Equation(16) can be transformed into other generalized for-
mulas, namely, Eq94) and (5) (see Appendix A In this
study we rewrite Eq(16) as

N N

> 2\
m=1n=1

wheref" is the force acting on an atom labeled ioy!?

Ju
ar™

Kkt é?nk), (15

where

>

m=1n=1

m
i

- 1
Cha = v > + 8 of).  (16)

g ar

of"
arg

A -1
Cﬁ‘k| = 7 > + 5|k<0-;)|>1 (17)

fm

(18

Atomistic force calculations are an intrinsic component of
any MD simulationg? This facilitates the numerical imple-
mentation of the Born term through E@d.7) rather than solv-

ing Eq. (16) or Egs.(4) and(5) analytically. As an example
we consider the case of a three-body potential energy func-
tion u; in Egs.(9)—<11). Using Eq.(18) the atomistic forces

on the three atom&,b,c) are calculated from

ab

Cug| g 2fr®e r
ib_ﬁ’[(rab——lé’)z_é j—cosﬁbacrﬁ) ., (19
Cug| oy 2 rac
ic_ﬁ{—(rac_lg)z —é(rlgj—cosﬁbacr';: , (20)
== (fP+ 1), (2D)

rab - .
a<b<c<d a<b € By substituting Eq(21) into Eq.(17), the Born term for the
.S [Aab(ib)lz— Bab<ib)6} (12) three-body interactio@ﬁﬁ is found to be
a al :
a<b ' ' fps afP ofe P ofe
. . . Chy = -1 roPra—L 4 (2P —L 4 P — 4 2P —
The first three terms correspond to bonding, bending, and " v \"! a2 7 tard ! oy N arg
torsional interactions, respectively. In the third tegdcis b e 5
the dihedral angle between the pl_arﬁ_l%’,rfc} a_nd{_ridb, d . + f?brf&_ic 41 Ic‘9_|C + S b . pagh , pacge
The fourth and fifth terms are pairwise contributions arising arg arg 2v
from Coulombic and LJ interactions, respectively. The val- + 13%f9) (22)
0

ues of the parameters in Eq®8)—(12) are reported in the
literature01

The numerical calculation of E422) can be performed as
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follows. (1) Displace thex coordinate of atona by an infini- 0 Pa and 1477 K, respectively. A perfect diamond structure
tesimal amount\rg, (2) Calculate changes of the forces as-was used for the initial configuration. First we performed
sociated with that displacemelzm‘ib andAff, (3) Ensure that  Noy T Monte Carlo(MC) simulations to obtain the equilib-
the displacement is sufficiently small so that the derivativesium density’'> We sampled the data at every 100 MC steps
AfP/Ar2 and AfS/Ar? can be regarded as constari®®,Dis-  over simulations of X 10° steps. The resulting averaged
placer? back to its original position(5) Repeat stepél) to  density was 2297 kg/f Second, we ralNVT MC simula-
(4) for Ary, Arg, Ar®, etc. If periodic boundary conditions tions over 2<1(° steps at that density, and calculated the
are applied tor?b, rié is the minimum-image position with elastic moduli from the stress-fluctuation formula, Egs.
respect tarf. (1)~3). The Born term for the two-body potentia Sé

One could also solve Eq22) by evaluating the force («,8=1,2,..., 6), was analytically calculated from E¢6)
derivative terms analytically. For example, the analytical ex-since the potential energy, depends solely on an inter-
pression for the derivative of the fordf with respect to the ~atomic distance. The Born term for the three-body potential
atom positionr is given by C3 was estimated both analytically and numerically from

b ab.a ab.ab Eq. (22). All the trial displacementar!" were set to 10 in
ﬂ_ﬁ{ Y |:ri Q | 2riTy k}

|

= + -5 dimensionless units.
o ra(rh-p?l g -y For the case of PMMA the initial configuration was

generated by placing 80 linear syndiotactic PMMA
S raceac r_abqa S r_abrab . : . . .

N I LI e " 0 B L molecules uniformly in a cubic simulation box. Each

rac ac3 ab

rab b’ molecule consists of 10 monomers. By performing
NPT MD simulations, we equilibrated the system at a high
rab rac rab X .
+fb y k + K T temperature(500 K) and cooled it down gradually until
! rab(rab— /)2 * racrac— )2 | jat? room temperaturé300 K) was attained. The pressure and
ab . ac b ac time step were set at 0.1 MPa and 1 fs, respectively. The
i res cosgeab NN (23) resulting density of amorphous PMMA glass was approxi-
g| rarac pab® - pa ’ mately 1084 kg/rh After the equilibration of the system, we

ran NVT MD simulations over X 10° time steps, sampling
where the instantaneous Born terms and the stress tensor at every

(ab  jac pab . pac 100 time steps. The Bom terms for LJ and bonding potentials
2= cos ah Lb2+icz —%, (24)  were calculated analytically from Eq6), and those for
rav  ra rer bending and torsion potentials were estimated numerically

It is important to note that such analytical expressions carﬁrom Eq. (17). In order to ev_aluate C;oulombm Interactions,
the Ewald method was applied and its Born term was calcu-

be tedious and elaborate when written for a computer PrOhted analvtically from  expressions available in  the
gram. One also needs to derive new analytical formula 14 y y P

and recode them for each different model. The numerica'terature'

approach proposed in this study is flexible and easily

extended to any potential. For instance, Eg2) can be Ill. RESULTS AND DISCUSSION

used for Qifferent types of three-body interactions, such as Table | summarizes our results for the Born term,
the pendlng term in Eq(;Z).. It also has the ad"a”té?ge the kinetic term, the stress-fluctuation term, and the
of using directly the atomistic forces, rather than requirind, astic moduli of the SW silicon model af=1477 K.

the transformation of non-pairwise potentials into a pairwiseryq yree characteristic components of each term are listed:;
formula, like Eqgs.(4) and (5). For three-body potentials, — —

such a transformation could be derived with the law of C11=(Ci1+Cas*Csd)/3, C1p=(Cro+ Cog* Ca1)/3, Cas=(Cas
cosines}® but it becomes more demanding for other non-+Css+Cgg)/3. The error ofC;; indicates the standard devia-
pairwise interactions that include more than three atéons tion of three indistinguishable components; €@, C,,,
molecule$; e.g., the torsion term in Eq12). In Sec. lllitis  and Ca, for 611-

shown that the results from our numerical method are the |t ijs shown that all results are in good agreement with
same as those obtained from the analytical formulas, and th@ge values in the literatufewhich were obtained analyti-
the computational expense for the numerical calculations cagally from Egs.(4) and (5). In addition our numerical re-
be minimized by decreasing the sampling frequency for theyits for C23 are found to be the same as those calculated

Q,

Born term. ; .= —
For brevity, in the remainder of this study fourth-order analytically_from Egs. (22+24); C1,=55.3 G_Pa,Clz—
tensors are represented in \oigt notatidn;e.g., -9.4 GPaC,,=15.8 GPa. It should be emphasized that the

C11= Cuo C12=Cryyr C14=Crgny analytical calculations 06‘23 require newly derived, elabo-

rate formulas be coded for each different model, whereas our

numerical calculations can be implemented simply by using

an intrinsic component of MD simulations; i.e., the atomistic
All simulations of the SW silicon model comprise forces.

216 atoms with periodic boundary conditions. To reproduce It is interesting to observe in Table | that the contribution

literature results, the temperature and pressure were set taf the thermal stress fluctuations to the elastic modtﬂlﬁg,

C. Simulations
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TABLE |. Two-body and three-body Born terms, kinetic term, stress-fluctuation term, and elastic moduli
of SW silicon atT=1477 K. The sum ofc}7 and C; is denoted byC%,. The right column for eaciT;
represents the analytical values reported in the literaiisee Appendix B for data conversjonn NVTMC
simulations, the kinetic contributions are constant.

Term C11(GPa C1,(GPa C.(GPa

Ref. 3 Ref. 3 Ref. 3
ce 81.2+0.0 80.0 84.0+0.0 83.4 84.0+0.0 83.4
c® 55.3+0.0 56.5 -9.4+0.0 -8.9 15.8+0.0 16.4
ct, 136.5+0.0 136.5 74.6+0.0 745 99.8+0.0 99.8
ck, 4.0 4.0 0.0 0.0 2.0 2.0
chy 5.5+0.0 7.3 0.8+0.1 0.6 55.3+1.4 59.8
Cup 135.1+0.0 133.2+0.1 73.8+0.1 73.9£0.4 46.5+1.4 42.0+8.3

is negligible forC,, andC,,, but significant forC,,. Thisis ~ Polymer molecules. The rem_aining values of elastic moduli
mainly due to large shear displacements of atoms that ariseas for the PMMA are considerably smaller than those of
after a homogeneous deformation of diamondthe SW crystalline silicon.

structure<:3°15Such microscopic motions decrease the sys- Using the results o€, in Table Il, the Young’s modulus
tem’s free energy and are driven by the thermal fluctuation&: shear modulu&, and Poisson’s ratie of PMMA can be

at finite temperaturg,or by minimization of the energy at obtained as follows?

zero temperaturé®'® The stress-fluctuation terr@ , im-

plicitly describes the effects of internal strains on a system’s E= (:gclf—% =3.3GPa, (25)
elastic modulus:® Cip+Cyy

The results for PMMA are shown in Table Il. At room
temperaturd300 K), simulated PMMA forms an amorphous e =
glass. It is found that the bonding interactidi@s}}) contrib- G=Cu=1.2GPa, (26)
ute most to the overall Born termgﬁ; 68%, 102%, and 58% c
for Cq1, Cy5 and C,,, respectively. The spring constant of p=—22 _ -0.36. (27)
the bonding potential in Eq12) is therefore an important 2(Cyp+Cyy)

parameter that characterizes the instantaneous mechanicalrﬁ{ | istent with lable bulk . tal
sponse of this PMMA model. It is also observed that the €s€ values are consistent with avaliable bulk experimenta

; ; data at room temperaturé&&=3.0 GPa,G=1.0 GPa, and
stress-fluctuation tern€” ., has a magnitude comparable to : ™. ’
the corresponding Borr {en?, for g" hroe Com‘:)on onts. v=0.351517 Although the elastic properties of PMMA are

This finding suggests that the free energy of amorpho:%me or frequency dependent, they remain nearly constant

> 17
polymer glasses exhibits a large decrease after a syste Selow the glass traﬂgéu_on temperatujpe_ﬂfé‘)go_ K).
homogeneous deformation due to large rearrangements of The Born termsCy; in Table | andCy; in Table II, are
largely negative; both terms are associated with an angle
TABLE II. Born terms, kinetic term, stress-fluctuation term, and Potential including three atoms. Based on EZf) a negative
elastic moduli of an atomistic PMMA model aT=300 K. value ofC;, could correspond to a negative Poisson’s ratio
B BLJ B Bo B el e o~ e . S
Cag: Cap Cap: Chp andCZf denote the Born term arising from it ¢ ,+C,,>0. In such a case the material would exhibit a
C_oulc_)mblt_:, LJ, bonding, ben_dlng, and torsion potential energy conyrgnsverse expansion under longitudinal extengon.
tributions in Eq.(12), respectively. For a three-body potential the middle atom would vertically
move up to maintain an angle when two edge atoms

Term C11(GPa C12GPa C.(GP3  are laterally pulled out. Due to other internal constraints of
Cig 02400 01400 01400 the molecular configurationge.g., bond I.e.ngths however,.
CE[L;J 11.1+0.7 3.840.2 3.840.2 tF?e" ove'rallf(fllz zecomes itrongly'posltl\ée;f the .nega]'Elve
cs, 416407 14.040.3 14.040.3 S;Slfesr%r;s effect does not show up in the deformation of our
ng 7.7£06 —3.8+0.4 8204 Figure 1 shows the convergence of the Born term
Cop 0.5+0.1 -0.320.1 0.4+0.1 and the stress-fluctuation term for the SW silicon and the
CS,; 60.8+0.8 13.7+0.2 23.9+0.3 PMMA models. In both cases the running average of
Cﬁﬁ 0.7+0.1 0.0+0.0 0.3+0.1 CP attains a stable value shortly after the simulation
Czﬁ 55.5+0.5 10.5+0.7 23.0+0.4 begins, Whe_reaﬁfl fluctuates around the equilibrium value
Cup 6.0+1.2 32+0.8 1.2+0.1 With a relatively long period. These results are expected

since the Born term is an averaged quantity, but the
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—
<
w

and torsion interactions. The resulting elastic moduli are
Silicon shown to be in good agreement with experimental results.
We have observed that the magnitude of the stress-
fluctuation terms is relatively large for amorphous PMMA,
causing the elastic moduli of PMMA to be much smaller
than those of crystalline silicon.
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Running averaged Born and SF term
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1.25 . . APPENDIX A: CONNECTION BETWEEN EQUATIONS (4)
and (16)

Using chain rules the virial stress tensor in Etf) can be
written in pairwise fornt:

Running averaged Born and SF term

1 S aU
o= —> S — (A1)
vV = (s grns
B From Eqg.(Al) and the following identity,
11
#U ] ( au) ou
—cC == ] - dti = A2
0.75 : : = ; grfar™ grm\arn) T gep (A2)
MD time steps (1 10%) Eq. (16) is transformed into
~B _ v v
FIG. 1. Running average of the Born terfdotted ling@ and Cijki = (Dijia) + Gi{aji + iy, (A3)
stress-fluctuatioiSF) term (solid line) normalized by their values \yhere
at the end of the simulation. The top and the bottom figure show
results for silicon and PMMA, respectively. Although only one ten- 1 N 9 NSNS sy
. . o . m N
sorial component is shown here, a similar behavior was observed Diju = v="i o > (s s |- (A4)
for all other components. me1 T \n<s
Equation(A4) can be further expanded to
stress-fluctuation term is a correlation functfbl.is there-
fore not necessary to (_:alculate the E_Sorn term as frequently VDjjq = s ((Sllr]_nerer &kr?srlns)_is‘;_i
as the stress-fluctuation term, which helps reduce the n<s rsar
computational demands of numerical calculations.
+ 2 2 pmt,ng)r"r T
m<t n<s
IV. CONCLUSIONS
== (8o + o) + 2 2 p(mt,n,9rM M.
In this study a simple numerical approach has been m<t n<s
proposed for calculation of elastic moduli from stress- (A5)

fluctuation formulae. By using the atomistic forces calcu- o ) o

lated routinely in MD simulations, it has been shown that ourAfter substituting Eq(A5) into Eq. (A3) the pairwise for-
numerical results for the elastic moduli of the SW silicon Mula in Eq.(4) can be derived.

model agree with analytical values reported in the literature.

Unlike past aqalytical calpulgtions, our_numerical_ method PPENDIX B: RELATION BETWEEN ISOTHERMAL AND
does not require Fhe derivation or coding of tedious an ADIABATIC ELASTIC MODULUS

elaborate expressions for the Born terms. We have also

shown that the computational expense of numerical calcula- Literature value$ reported for the SW silicon model
tions can be minimized by sampling the Born term less frecorrespond to the adiabatic elastic mod(talculated at
quently. Our numerical approach is particularly useful forconstant enthalpy, as opposed to constant tempejafiie
atomistic models that comprise various types of non-pairwis¢hermodynamic relation between the adiabatic Young’s
interactions. As an example, we have applied this numericahodulus E* and the isothermal Young's modulug is
method to an atomistic PMMA model that includes bendinggiven by!®
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EAE=1+N\*TEYpC, (B1)

PHYSICAL REVIEW B 71, 184108(2005

Cp,=700 Jlkg K) at T=1477 K19 After substituting these
values in Eq.(B1), the last term is found to be negligibly

where p, \, and C, are the density, thermal expansion small. The isothermal elastic moduli are therefore assumed

coefficient, and specific heat at constant pressure, respethiie same as the adiabatic moduli for the conditions relevant

tively. For bulk silicon diamond\=4x10%1/K) and

to this study.
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