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Diffusion in a granular fluid. I. Theory
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Many important properties of granular fluids can be represented by a system of hard spheres with inelastic
collisions. Traditional methods of nonequilibrium statistical mechanics are effective for analysis and descrip-
tion of the inelastic case as well. This is illustrated here for diffusion of an impurity particle in a fluid
undergoing homogeneous cooling. An appropriate scaling of the Liouville equation is described such that the
homogeneous cooling ensemble and associated time correlation functions map to those of a stationary state. In
this form the familiar methods of linear response can be applied, leading to Green-Kubo and Einstein repre-
sentations of diffusion in terms of the velocity and mean-square displacement correlation functions. These
correlation functions are evaluated approximately using a cumulant expansion and from kinetic theory, pro-
viding the diffusion coefficient as a function of the density and the restitution coefficients. Comparisons with
results from molecular-dynamics simulation are given in the following companion paper.
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I. INTRODUCTION

It has long been recognized that rapid flow granular me
have properties similar to those of ordinary fluids@1,2#. At-
tempts to sharpen this relationship have used idealized
tems of hard spheres with inelastic collisions. Remarka
the single feature of inelasticity allows reproduction of ma
qualitative features observed in real granular fluids. This
servation is based on the derivation of hydrodynamic eq
tions from kinetic theory@3–7#, direct Monte Carlo simula-
tion of kinetic equations @8,9#, molecular-dynamics
simulation of dense fluids@10#, and controlled experiment
on inelastic hard objects such as spherical beads@11–16#.
Consequently, there is a growing opinion that the traditio
methods of nonequilibrium statistical mechanics applied
such model systems provide the means to understand gr
lar media at the most fundamental microscopic level. T
objective here is to give further support for this opinion by
detailed application and test of linear response methods
plied to diffusion of an impurity particle in a fluid of inelasti
hard spheres. Some adaptation is required since the refer
states are inherently nonequilibrium, but the central idea
linear response for normal fluids are retained. A prelimin
report of some of these results presented here has been
in @17#.

Diffusion is the prototype transport process and the as
ciated diffusion equation is the prototype hydrodynamic
scription for macroscopic dynamics. For normal fluids, d
fusion in a system of hard elastic spheres also has been
testing ground for many-body methods in nonequilibriu
statistical mechanics~density dependence, correlated man
body collisions, mode coupling, percolation, glass tran
tion!. The benchmarks have been set by accurate molec
dynamics simulation for normal fluids@18# and fluidlike
1063-651X/2002/65~5!/051303~14!/$20.00 65 0513
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lattice-gas cellular automata@19#. In this way, the conditions
for macroscopic diffusion and the accuracy of methods
predicting the diffusion coefficient are known over a wid
range of densities. There is evidence based on kinetic the
and molecular-dynamics simulation that similar studies
relevant for the system of inelastic hard spheres@20–22#. On
the other hand, there are significant differences to confr
An isolated fluid of inelastic hard spheres does not suppo
Gibbs state or any other stationary state, since the collis
lead to a continual loss of energy or ‘‘cooling.’’ Instead, th
analog of the equilibrium state is a ’’homogeneous cool
state’’ ~HCS! whose time dependence is entirely given v
the mean-square kinetic energy of the particles@23,24,8,25#.
As shown below, the scaling property associated with t
state allows a change of variables in terms of which a s
tionary, but non-Gibbs, state results.

In the next section, the Liouville dynamics for inelast
hard spheres is reviewed@17,24,22#. The corresponding non
equilibrium statistical mechanics is given in terms of t
Liouville equation for the ensemble, and also in terms of
Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY! hierar-
chy for the associated reduced distribution functions. Nex
is shown that the Liouville equation supports a scaling so
tion describing the HCS. A time-dependent temperature
defined in terms of the mean-square velocity, in the sa
way as for elastic collisions, hence the terminology ‘‘hom
geneous cooling state.’’ A transformation to dimensionle
variables allows a representation of expectation values
time correlation functions in terms of stationary state av
ages, just as for the Gibbs state.

The probability density for the position of a tagged
impurity particle as a function of time is considered in Se
III. Linear-response methods~now inherently nonequilibrium
linear response! are applied to obtain a diffusionlike equatio
for long wavelengths, with a time-dependent diffusion co
©2002 The American Physical Society03-1
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JAMES W. DUFTY, J. JAVIER BREY, AND JAMES LUTSKO PHYSICAL REVIEW E65 051303
ficient. The analysis parallels closely that for fluids with ela
tic collisions, except that the dimensionless time~the colli-
sion number! required to accommodate the cooling
logarithmically stretched compared to real time. Con
quently, the mean-square displacement approaches line
in the collision number rather than real time. The diffusi
coefficient is expressed as a time integral of the veloc
autocorrelation function which becomes a Green-Kubo
pression for long times. This limit also establishes the ti
scale for the validity of the diffusion equation, and represe
a clear example of macroscopic hydrodynamics for a gra
lar system.

An approximate evaluation of the velocity correlatio
function of the tagged particle is carried out in Sec. IV
two different methods. The first is based on a leading cum
lant expansion, while the second is an evaluation by me
of kinetic theory. The two results are quite similar, and th
relationship is clearly identified. Also, it is confirmed in Ap
pendix B that the evaluation of the Green-Kubo express
by kinetic theory agrees with that obtained by the Chapm
Enskog solution to the Enskog kinetic equation for the d
tribution function. Moreover, for elastic collisions these a
proximations are known to give an accurate description
the diffusion coefficient over a wide range of densities. T
accuracy cannot be assumeda priori to apply for inelastic
collisions, since the stationary state is nonequilibrium. T
diffusion coefficient is given as a function of the densi
restitution coefficient, and ratio of temperatures for the flu
and impurity particles. This latter parameter is a peculia
of granular fluids for mixtures, where the lack of detail
balance leads to a HCS with all species having the sa
cooling rate but different temperatures@26#. The conse-
quences for impurity diffusion and mobility have been d
cussed elsewhere recently@27,28#. The last section contains
summary and discussion of the main results. The theore
developments presented here are tested and extended
companion paper by comparison with molecular dynam
simulation results over a wide range of densities and ine
ticies for the particular case of self diffusion@29#.

II. STATISTICAL MECHANICS AND HOMOGENEOUS
COOLING STATE

The system considered is composed of a fluid ofN iden-
tical hard disks or spheres~massm, diameters, and fluid-
fluid coefficient of normal restitutiona), and an additional
impurity particle~massm0, diameters0, and fluid-impurity
coefficient of normal restitutiona0). The position and veloc-
ity coordinates of the fluid particles will be denoted b
$qi ,vi ; i 51, . . . ,N%, while those for the impurity particle
are q0 ,v0. The dynamics consists of free streaming unti
given pair of fluid particles,i , j , or a fluid and impurity pair,
0,i , is in contact. At that point, the relative velocity of th
pair changes instantaneously according to the inelastic c
sion rules

g̃i j 5gi j 2~11a!~ŝ•gi j !ŝ,

g̃0i5g0i2~11a0!~ŝ•g0i !ŝ. ~1!

Here,gi j 5vi2vj andg0i5v02vi are the relative velocities
andŝ is a unit vector directed from the center of particlej to
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the center of particlei ( i to 0, respectively! through the point
of contact. The coefficients of restitution have values in
range 0,a,a0<1, measuring the degree of inelasticity. Th
special case of elastic particles is given bya5a051. The
center-of-mass velocity is unchanged so that the total m
and momentum of the pairs are conserved in such collisio
However, there is an energy loss for each fluid-fluid parti
collision

Ẽi j 2Ei j 52
m

4
~12a2!~ŝ•gi j !

2 ~2!

and for each fluid-impurity particle collision

Ẽ0i2E0i52
m

2
~12a0

2!~ŝ•g0i !
2, ~3!

wherem5m0m/(m01m). The state of the system at timet
is completely characterized by the positions and velocities
all particles at that time and is represented by a pointG t
[$q0(t), . . . ,qN(t),v0(t), . . . ,vN(t)% in the associated
2d(N11)-dimensional phase space, whered52 for hard
disks andd53 for hard spheres. The sequence of fr
streaming and binary collisions determines uniquely the
sitions and velocities of the hard particles at timet for given
initial conditions att8,t. A more complete notation express
ing this dependence on initial conditions isG t(G t8). Thus,
just as in the case of elastic collisions, the microdynamics
this system corresponds to a deterministic trajectory in ph
space.

Observables of interest are represented by the same p
functions as for elastic collisions,A(G t), and their average
for given statistical initial data att50 is defined by

^A~ t !;0&[E dGr~G!A@G t~G!#, ~4!

where r(G) is the probability density or ensemble for th
initial state, normalized to unity. An equivalent represen
tion of this average is obtained by changing variables
integrate overG t rather than overG. This change of variables
is possible since trajectories in phase space do not cross
G can be expressed in terms ofG t denoted byG t

21(G t). This
allows the time dependence in Eq.~4! to be expressed in
terms of the probability density

^A~ t !;0&5E dGr~G,t !A~G![^A;t&, ~5!

with the probability density at timet given by

r~G,t ![J@G t
21~G!,G#r@G t

21~G!#, ~6!

J(G,G t) being the Jacobian of the transformation.

A. Liouville dynamics

For practical purposes it is useful to identify the gene
tors L and L̄ for the two above representations, defined b
3-2
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DIFFUSION IN A GRANULAR FLUID. I. THEORY PHYSICAL REVIEW E65 051303
^A~ t !;0&5E dGr~G!etLA~G!5E dG@e2tL̄r~G!#A~G!.

~7!

The last equality is consistent with the adjoint relations
implied by Eqs.~4! and ~5!. These are not the usual gener
tors of Hamilton’s equations for continuous forces, but a
somewhat more complex due to the singular nature of h
particles. Such generators have been discussed in deta
the case of elastic collisions and the analysis extends q
naturally to the inelastic case as well@24,30,17,22#, with the
results

L5L f1v0•“01(
i 51

N

T~0,i !,

L̄5L̄ f1v0•“02(
i 51

N

T̄~0,i !. ~8!

Here, L f and L̄ f are the generators for the fluid particle
alone

L f5(
i 51

N

vi•“ i1
1

2 (
i 51

N

(
j Þ i

N

T~ i , j !,

L̄ f5(
i 51

N

vi•“ i2
1

2 (
i 51

N

(
j Þ i

N

T̄~ i , j !. ~9!

The terms involving spatial gradients generate free stream
while the others describe velocity changes. The binary co
sion operatorsT( i , j ) and T̄( i , j ) for particlesi and j are

T~ i , j !5sd21E dVQ~2gi j •ŝ!ugi j •ŝud~qi j 2s!~bi j 21!,

~10!

T̄~ i , j !5sd21E dVQ~gi j •ŝ!ugi j •ŝu

3@a22d~qi j 2s!bi j
212d~qi j 1s!#, ~11!

wheredV denotes the solid angle element for the unit vec
ŝ, s5sŝ, qi j is the relative position vector of the tw
particles,Q is the Heaviside step function, andbi j is a sub-
stitution operator,bi j F(gi j )5F(g̃i j ), which changes the rela
tive velocitygi j into its scattered valueg̃i j , given by Eq.~1!.
On the other hand, it does not change the velocity of
center of mass of the two particles. The operatorbi j

21 is the
inverse ofbi j and characterizes the ‘‘restituting’’ collision
The binary operators for collisions between fluid partic
and the impurity are similar to those for collisions amo
fluid particles,

T~0,i !5s̄d21E dVQ~2g0i•ŝ!ug0i•ŝud~q0i2s̄!~b0i21!,

~12!
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T̄~0,i !5s̄d21E dVQ~g0i•ŝ!ug0i•ŝu

3@a0
22d~q0i2s̄!b0i

212d~q0i1s̄!#, ~13!

with s̄5(s1s0)/2 ands̄5s̄ŝ. The explicit forms forbi j
21

andb0i
21 are

bi j
21gi j 5gi j 2

11a

a
~ŝ•gi j !ŝ, ~14!

b0i
21g0i5g0i2

11a0

a0
~ŝ•g0i !ŝ. ~15!

The dynamics for the phase functions and the equiva
Liouville equation distribution function,r(G,t), follow di-
rectly from Eq.~7!:

~] t2L !A~G,t !50, ~16!

~] t1L̄ !r~G,t !50. ~17!

The BBGKY hierarchy of equations for the reduced d
tribution functions is obtained by partial integration of th
Liouville equation over the position and velocities ofN2 l
fluid particles,

@] t1L̄~x0 , . . . ,xl !# f ( l 11)~x0 , . . . ,xl ;t !

5(
i 50

l E dxl 11T̄~ i ,l 11! f ( l 12)~x0 , . . . ,xl 11 ;t !, ~18!

with the reduced distribution functions defined by

f ( l 11)~x0 , . . . ,xl ;t ![NlE dxl 11 . . . dxNr~$xi%;t !,

~19!

wherexi[$qi ,vi% denotes the position and velocity for pa
ticle i and L̄(x0 , . . . ,xl) is the Liouville operator for a sys
tem of l fluid particles and the impurity particle. Moreove
the limit of largeN has been considered. The above results
this section provide the basic tools and definitions of no
equilibrium statistical mechanics for granular media@24#.

B. Homogeneous cooling state„HCS…

Stationary solutions to the Liouville Eq.~17! are expected
when suitable external forces or boundary conditions are
posed. However, there is no stationary solution for an i
lated system, corresponding to the spatially homogene
Gibbs state, due to the inherent time dependence follow
from loss of energy in collisions. This can be seen by cal
lating the rate of change of the mean-square velocity o
fluid particle in an isolated state. For purposes below,
latter is used to define a kinetic temperature according to

T~ t ![
1

d
^mv1

2 ;t&[
1

2
mv2~ t !. ~20!
3-3
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JAMES W. DUFTY, J. JAVIER BREY, AND JAMES LUTSKO PHYSICAL REVIEW E65 051303
In addition toT(t), Eq. ~20! defines the associated therm
velocity v(t) ~a factor of Boltzmann’s constant usual in ela
tic systems has been deleted since there is no zeroth la
thermodynamics for granular media; alternatively, to inc
porate the elastic limita51 the temperature should unde
stood as defined in units such thatkB51). The time depen-
dence of these quantities can be calculated using
Liouville dynamics to get

] tT~ t !52z~ t !T~ t !, ~21!

wherez(t) is the ‘‘cooling’’ rate due to inelastic collisions,

z~ t !5~12a2!
sd21

2dNv2~ t !
E dq1E dv1

3E dv2E dVQ~g12"ŝ!~g12"ŝ!3

3 f (2)~q1 ,v1 ,q11s,v2 ;t !, ~22!

f (2)(q1 ,v1 ,q11s,v2 ;t) being the reduced two-fluid particl
distribution function at contact. The latter is in general d
fined by

f (2)~x1 ,x2 ;t !5E dx0f (3)~x0 ,x1 ,x2 ;t !. ~23!

For a homogeneous system, its spatial dependence oc
only throughq12. Upon deriving Eq.~22! we have taken into
account that the contribution from the impurity particle
negligible in the limit of largeN.

In place of the Gibbs distribution, it is assumed that th
is a homogeneous scaling solutionrHCS(G,t) to the Liouville
equation, for which all time dependence occurs throug
scaling of the velocity~‘‘cooling’’ ! with the thermal velocity
v(t) @23,24#,

rHCS~G,t !5@ l v~ t !#2d(N11)rHCS* ~$qi j /l ,vi /v~ t !%!.
~24!

The dimensionless distribution functionrHCS* is invariant un-
der space translations, with the coordinates scaled~arbi-
trarily! relative to l [(nsd21)21, which is proportional to
the mean free path (n is the number density of particles!.
Therefore, rHCS(G,t) represents a spatially homogeneo
fluid. Substitution of Eq.~24! into the Liouville equation
gives

1

2
z~ t !(

i 50

N
]

]vi
•~virHCS!1L̄rHCS50. ~25!

The self-consistent solution to the coupled set of Eqs.~21!
and~25! determines thehomogeneous cooling state~HCS!. It
is the analog of the Gibbs state for elastic collisions a
reduces to it fora51. For a,1, the exact solution is no
known~it is not simply a Gaussian in the velocities as for t
Gibbs state! but its existence is supported by results fro
Monte Carlo@8# and molecular-dynamics simulations@31#.
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The notation in Eq.~24! does not make explicit the de
pendence ofrHCS on parameters specific to the impurity pa
ticle, such as the mass and size ratiosm/m0 ands/s0. Since
all velocities have been scaled relative to the thermal ve
ity determined by the fluid, there is no explicit dependen
on the fluid temperature. However, the kinetic temperature
the impurity particleT0 defined in a manner analogous to E
~20! is not equal to the temperature of the fluid in the HC
Consequently, scaling of the impurity velocities to the flu
thermal velocities leads to a dependence on the tempera
ratio T/T0. This peculiarity is due to a failure of energ
equipartition in granular fluids@26#, which has been ob-
served in recent experiments@32#. The detailed form of the
relationship betweenT0(t) and T(t) will be discussed later
on, but it follows from the condition for the HCS that th
cooling rates of the fluid and impurity particles are the sa
in the HCS. This leads to an explicit expression forT/T0 as
a time-independent function of the mechanical differen
between the two types of particles. Through this section,
dependence ofrHCS on time independent parameters of t
impurity particle will continue to be suppressed, although
will become important in the subsequent discussion of im
rity diffusion.

Some interesting consequences follow from the veloc
scaling of the distribution function associated with the HC
The reduced distribution functions also have this property
it is easily verified from Eq.~22! that z(t)}T1/2(t). Then,
Eq. ~21! can be integrated for the explicit time dependence
T(t),

T~ t !5T~ t8!F11
1

2
z~ t8!~ t2t8!G22

. ~26!

The temperature is seen to have an algebraic decay in
time ~Haff’s law @1#!. For the analysis of the HCS, it is mor
convenient to use the dimensionless time scale

s~ t,t8![E
t8

t

dtnc~t!, ~27!

wherenc(t) is an average collision frequency given by

nc~ t !5v~ t !/l . ~28!

Thus, s(t,t8) is a measure of the average number of co
sions per fluid particle in the interval (t8,t). The integral in
Eq. ~27! can be performed using Eq.~26! with the following
result:

s~ t,t8!5
2

z*
lnF11

1

2
z~ t8!~ t2t8!G , ~29!

where we have introduced the dimensionless cooling rat

z* 5l z~ t !/v~ t !. ~30!

It follows from dimensional analysis thatz* is time indepen-
dent. The cooling in terms of the dimensionless times is
exponential,
3-4
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DIFFUSION IN A GRANULAR FLUID. I. THEORY PHYSICAL REVIEW E65 051303
T~ t !5T~ t8!e2z* s(t,t8) ~31!

and, consequently,

v~ t !5v~ t8!e2z* s(t,t8)/2. ~32!

Sincez is proportional to (12a2), there is a crossover from
logarithmic to linear relationship between the two tim
scales for weak inelasticity.

Knowledge of the time dependence ofv(t) also implies
that for many average properties. For example, the ave
value ofA(G) in the HCS can be written

^A;t&HCS5E dGrHCS~G,t !A~G!

5E dG* rHCS* ~G* !A~$l qi* ,v~ t !vi* %!. ~33!

Use has been made of the scaling form~24! and G*
5$qi* ,vi* %5$qi /l ,vi /v(t)%. This last result suggests tha
the transformation to dimensionless form may admit a s
tionary state representation for the HCS. To see that th
the case, define for a general stater(G,t),

r~G,t !5@ l v~ t !#2d(N11)r* ~G* ,s!, ~34!

where we have introduced the same scaling for space, t
and velocity as above. Substitution of this into Eq.~17! gives
the dimensionless Liouville equation

~]s1L̄* !r* ~G* ,s!50, ~35!

with the definitions

L̄* 5
1

2
z* @K* 1d~N11!#1L̄* , ~36!

L̄* 5
1

nc~ t !
L̄5@ L̄#$qi5q

i* ,vi5v
i* % , ~37!

K* 5(
i 50

N

vi* •
]

]vi*
. ~38!

This transformation of the Liouville equation explicitly ac
counts for the collisional cooling, and in this form stationa
solutions are now possible. In fact, Eq.~25! becomes

L̄* rHCS* 50, ~39!

so the dimensionless HCS is a stationary solution to Eq.~35!.
The average value ofA(G) for a general stater(G,t)

becomes
05130
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^A;t&5E dGr~G,t !A~G!

5E dG* r* ~G* ,s!A~$l qi* ,v~ t !vi* %!

5E dG* @Ū~s,0!r* ~G* ,0!#A~$l qi* ,v~ t !vi* %!

[E dG* r* ~G* ,0!U~s,0!A~$l qi* ,v~ t !vi* %!,

~40!

whereŪ(s,s8) andU(s,s8) obey the equations

~]s1L̄* !Ū~s,s8!50, ~]s2L* !U~s,s8!50, ~41!

with the initial conditionsŪ(s8,s8)5U(s8,s8)51. The new
generator for the dynamics of the phase functions is

L* 5
1

2
z* K* 1L* , L* 5@L#$qi5q

i* ,vi5v
i* % . ~42!

For the special caser* (G* ,0)5rHCS* (G* ), Eq. ~40! reduces
to Eq. ~33!.

The stationary representation is the most natural one
both theoretical developments and for computer simulati
as is discussed in the following companion paper@29#. Simi-
larly, the physically relevant time scales are those expres
in terms of the average collision numbers rather than the rea
time t. It is appropriate at this point to note that althoug
rHCS* is a stationary solution to Eq.~35!, there is convincing
evidence from both theory and simulation that it is unsta
to long wavelength spatial perturbations and spontane
fluctuations@33,34#. In the following sections, time correla
tion functions are considered for the HCS and use is mad
stationarity and spatial homogeneity. The results must be
derstood as applying to system sizes for which the instab
does not occur, or on time scales that are short compare
those required for growth of spatial structures.

C. HCS averages and correlation functions

The HCS time correlation function for two phase fun
tions A(G) andB(G) is defined as

CAB~ t,t8![^A~ t !B~ t8!;0&2^A~ t !;0&^B~ t8!;0&, ~43!

with t>t8>0. Here and below the brackets^;t& denote an
average over the HCS at timet. For a system with elastic
collisions in equilibrium, the above autocorrelation functio
can be reduced to a single time correlation function, us
time translational invariance and stationarity of the Gib
state. In the case of inelastic particles, the HCS is not
tionary, but the scaling property~24! can be used to trans
form the correlation function to an effective time stationa
average. First, use time translational invariance to write

^A~ t !B~ t8!;0&5^A~ t2t8!B~0!;t8&. ~44!
3-5
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Next, transform to dimensionless variables to get

^A~ t !B~ t8!;0&5E dGrHCS~G,t8!A~ t2t8!B~0!

5E dG* rHCS* ~G* !

3@enc(t8)(t2t8)L* A~$l qi* ,v~ t8!vi* %!#

3B~$l qi* ,v~ t8!vi* %!, ~45!

where Eq.~33! has been used. Next note the identity

e21/2z* s(t,t8)K* F~$vi* %!5F~$e21/2z* s(t,t8)vi* %!

5FS H v~ t !

v~ t8!
vi* J D . ~46!

The correlation function now can be written

^A~ t !B~ t8!;0&5E dG* rHCS* ~G* !

3@U~ t,t8!A~$l qi* ,v~ t !vi* %!#

3B~ l qi* ,v~ t8!vi* %), ~47!

where

U~ t,t8!5enc(t8)(t2t8)L* e1/2z* s(t,t8)K* . ~48!

This time evolution operator can be identified by differen
ating with respect tos(t,t8), taking into account that in the
HCS z* is time independent,

]U~ t,t8!

]s
5U~ t,t8!F ]t

]s
e21/2z* s(t,t8)K* nc~ t8!L* e1/2z* s(t,t8)K*

1
1

2
z* K* G

5U~ t,t8!Fnc~ t8!

nc~ t !
e21/2z* s(t,t8)L* 1

1

2
z* K* G

5U~ t,t8!L* . ~49!

Consequently,

U~ t,t8!5es(t,t8)L* . ~50!

Note that this propagator is the same as that in Eq.~41!
specialized to the HCS. In this casez* becomes time inde
pendent, allowing the simple exponential representation.
correlation function now can be written in the final form

^A~ t !B~ t8!;0&5E dG* rHCS* ~G* !

3@es(t,t8)L* A~$l qi* ,v~ t !vi* %!#

3B~ l qi* ,v~ t8!vi* %). ~51!
05130
e

This is a primary result of this section. The time corre
tion functions depend on the dynamics through the collis
numbers(t,t8). All additional time dependence occurs triv
ally through the thermal velocity. This is most evident wh
A andB are homogeneous functions of the velocity,

A~$l qi* ,v~ t !vi* %!5va~ t !A~$l qi* ,vi* %!,

B~ l qi* ,v~ t8!vi* %)5vb~ t8!B~$l qi* ,vi* %!. ~52!

Then the correlation function becomes

^A~ t !B~ t8!;0&5va~ t !vb~ t8!^A~s!B&* , ~53!

^A~s!B&* 5E dG* rHCS* ~G* !A~$l qi* ,vi* %,s!

3B~$l qi* ,vi* %!, ~54!

and the phase functionA($l qi* ,vi* %,s) is

A~$l qi* ,vi* %,s!5es(t,t8)L* A~$l qi* ,vi* %!. ~55!

This stationary-state representation for the time correla
functions simplifies considerably the analysis of respo
functions in the next section.

III. IMPURITY PARTICLE DIFFUSION

In this section, the diffusion equation and associated
pressions for the diffusion coefficient are derived for a gra
lar system in the HCS. The probability densityP(r ,t) to find
the tagged or impurity particle at pointr at time t, given it
was at the origin att50, is defined by

P~r ,t !5V^d@q0~ t !2r #d~q0!;0&

5^d@q0~ t !2q02r #;0&, ~56!

where the angular brackets indicate as above an average
an initial HCS andV is the volume~for d53) or surface~for
d52) of the system. The second equality is a conseque
of the translational invariance of the HCS. The conservat
law for probability follows by differentiation of Eq.~56! with
respect tot,

] tP~r ,t !1“•J~r ,t !50, ~57!

with the probability fluxJ(r ,t) identified as

J~r ,t !5^v0~ t !d@q0~ t !2q02r #;0&. ~58!

The interest here is in the limiting behavior of Eq.~57! in
the hydrodynamic regime, which corresponds to the lo
wavelength region. The long wavelength spatial depende
of J(r ,t) can be obtained from a Fourier representation
P(r ,t),

P̃~k,t !5E dr eik"rP~r ,t !. ~59!
3-6
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To get a formal equation forP̃(k,t), it is useful to introduce
the index of the distributionC̃(k,t) by

P̃~k,t !5eC̃(k,t), ~60!

i.e.,

C̃~k,t !5 ln^eik"[q0(t)2q0(0)];0&. ~61!

Differentiation with respect to time of Eq.~60! yields

@] t2 Ċ̃~k,t !# P̃~k,t !50, ~62!

where the dot overC̃ denotes the derivative with respect

time. For long wavelengths (kl !1), Ċ̃(k,t) can be ex-
panded to orderk2,

Ċ̃~k,t !5
^ ik•v0~ t !eik•[q0(t)2q0(0)];0&

^eik•[q0(t)2q0(0)];0&

.2
k2

d
^v0~ t !•@q0~ t !2q0~0!#;0&. ~63!

Substitution of this expression into Eq.~62! and inverting the
transform gives Eq.~57! with the identification of the prob-
ability flux as

J~r ,t !52D~ t !“P~r ,t !. ~64!

The finite time diffusion coefficient is

D~ t !5
1

2d

]

]t
^uq0~ t !2q0~0!u2;0&. ~65!

This will be referred to as the Einstein form, relating t
diffusion coefficient to the mean-square displacement. T
equivalent Green-Kubo form, in terms of the velocity au
correlation function~VACF!, is derived by using the relation
ship

q0~ t !2q0~0!5E
0

t

dt8v0~ t8!, ~66!

with the result

D~ t !5
1

dE0

t

dt8^v0~ t !•v0~ t8!;0&. ~67!

For normal fluids with elastic collisions, the diffusio
constantfollows from the long-time limitD5 limt→`D(t),
or equivalently from the coefficient of the mean-square d
placement when it becomes linear int. This limit occurs for
times large compared to the mean free time. Since the la
is time dependent in the HCS, the usual conditions to es
lish a diffusion constant, and consequently the diffus
equation, must be modified for granular media. This is do
by introducing the dimensionless diffusion coefficient
05130
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D* ~s!5
D~ t !

l 2nc~ t !
. ~68!

Using the representation~53! for the correlation function in
Eq. ~67! gives the Green-Kubo form as a stationary avera

D* ~s!5
1

dl 2nc~ t !
E

0

t

dt8v~ t !v~ t8!^v0* ~s!•v0* &*

5
1

dE0

t

dt8nc~ t8!^v0* ~s2s8!•v0* &*

5
1

dE0

s

ds8^v0* ~s2s8!•v0* &*

5
1

dE0

s

ds8^v0* ~s8!•v0* &* . ~69!

In going from the first line to the second line we have writt
s(t,t8)5 s(t,0)2s(t8,0)[s2s8. Similarly, from Eqs.~65!
the corresponding Einstein form is

D* ~s!5
1

2d

]

]s
^uq0* ~s!2q0* ~0!u2&* . ~70!

These are the stationary average representations for the
fusion coefficient, and are the primary results of this secti
In terms of the time scales, the mean-square displacement
expected to become linear fors@1, and the velocity auto-
correlation function is expected to decay to zero also on
time scale. The physical interpretation of this limit is th
same as for elastic collisions, sinces is essentially the num-
ber of collisions per particle. However, due to the time d
pendence of the collision frequency, the correlation functio
are expected to have the proper behavior with respects
rather thant. This will be shown more explicitly in the nex
section. The dimensionless form of Eqs.~57! and~64! reads

]sP* ~r* ,s!2D* ~s!“* 2P* ~r* ,s!50, ~71!

whereP* (r* ,s)5l dP(r ,t). Clearly, this becomes the usu
diffusion equation for sufficiently larges, if D* (s) tends to a
constant.

It is useful to introduce a dimensionless VACF for th
impurity particle that is normalized to unity ats50. This
requires calculation of̂v0*

2&* . It might appear from Eq.~20!
that this can be obtained simply in terms of the mass of
impurity and the temperature of the fluid. However, it h
been shown elsewhere that mechanically different partic
in a common HCS do not have the same temperatures@26#,
as already mentioned below Eq.~25!. Thus^v0*

2&* is given
by Eq.~20! with bothm andT(t) replaced bym0 andT0(t),

^v0*
2&* 5

dT0~ t !

m0v2~ t !
5

d

2
fHCS, ~72!

wherefHCS is the ratio of the square of the thermal veloci
for the impurity particle relative to that for the fluid particle
3-7
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fHCS5
mT0~ t !

m0T~ t !
. ~73!

Since the cooling rates of the fluid,z(t), and the impurity
particle,z0(t), are the same and they are proportional to
square root of the temperature, the above ratio is time in
pendent. The condition for equal cooling rates also de
minesfHCS. These rates are calculated to good approxim
tion using a local equilibrium ensemble in Appendix A, a
are given by

z* 5
21/2p (d21)/2

G~d/2!d
x~12a2!, ~74!

z0* 5n* S 12h
11fHCS

fHCS
D ~11fHCS!

1/2, ~75!

whereh5(11a0)m/2(m1m0), andn* is a dimensionless
impurity particle collision rate,

n* 5
8h

d
S s̄

s
D d21

p (d21)/2

G~d/2!
x0 . ~76!

The factorsx andx0 are the pair-correlation function for th
fluid-fluid and the fluid-impurity particles at contact, respe
tively. A more accurate calculation for the case of ha
spheres (d53) is carried out in Ref.@27#. Equating Eqs.~74!
and ~75! provides the equation forfHCS,

~11fHCS!
1/2S 12h

11fHCS

fHCS
D5

z*

n*
. ~77!

This gives a cubic equation which has a unique real, posi
solution for all allowed values ofh and z* /n* . For elastic
collisions, fHCS→m/m0 as required by the equipartitio
theorem. Qualitative changes in this solution, similar to
phase transition occur in the limith→0 @28#, but will not be
discussed here. The normalized VACF is now given by

Cvv* ~s![
^v0* ~s!•v0* &*

^v0*
2&*

5
2

dfHCS
^v0* ~s!•v0* &* ~78!

and the diffusion coefficient in Eq.~69! becomes

D* ~s!5
fHCS

2 E
0

s

ds8Cvv* ~s8!. ~79!

IV. APPROXIMATIONS

In the following, two approximations, originally deve
oped for fluids with elastic collisions@35#, are applied to
calculate the VACF in the HCS. The first method uses
leading-order truncation of a cumulant expansion, while
second uses an approximate kinetic equation. The res
confirm the expected time scale for transition to hydrod
namics and provide the detailed dependence on density
restitution coefficients.
05130
e
e-
r-
-

-

e

a

a
e
lts
-
nd

A. Cumulant expansion

The cumulant expansion of the VACF is

Cvv* ~s!5expF (
p51

`
1

p!
vp* ~2s!pG . ~80!

The coefficientsvp* are determined from the initial time de
rivatives of the correlation function. Clearly, truncation
this expansion at any order is asymptotically exact at sh
times and also for smallh ~heavy impurity! since each time
derivative contributes a factor ofh. The simplest such ap
proximation retains only the leading term

Cvv* ~s!.e2v1* s, ~81!

with

v1* 52F ]

]s
ln Cvv* ~s!G

s50

52
2

dfHCS
^~L* v0* !•v0* &* . ~82!

Use has been made of the definition of thes dependence in
Eq. ~78!. The corresponding approximation for the mea
square displacement is obtained by integrating Eq.~81!
twice,

^uq0* ~s!2q0* ~0!u2&* 5
dfHCS

v1*
@s2v1*

21~12e2v1* s!#.

~83!

For elastic collisions, this approximation is known to be a
curate for short as well as long times, and for a wide range
densities and mass ratios. The resulting diffusion coeffici
and diffusion constant are then found by substituting Eq.~81!
into Eq. ~79!,

D* ~s!5D* ~12e2v1* s!, ~84!

D* 5 lim
s→`

D* ~s!5
fHCS

2v1*
. ~85!

Clearly, v1* is a characteristic dimensionless collision fr
quency for the impurity particle. The first cumulant approx
mation confirms the expectation that the mean-square
placement becomes linear ins and the velocity
autocorrelation function decays fors@v1* . Consequently,
the macroscopic diffusion equation applies on this time sc
as well. The collision frequencyv1* is evaluated in Appendix
A by using a local equilibrium ensemble, with the result

v1* 52
1

2
z* 1

1

2
n* ~11fHCS!

1/2, ~86!

wherez* andn* are defined in Eqs.~74! and ~76!, respec-
tively. Substitution of this into Eq.~85! gives
3-8
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D* 5
fHCS

~11fHCS!
1/2n* 2z*

. ~87!

It is possible to show thatD* is positive and finite for all
values of the density and restitution coefficients.

The failure of energy equipartition means thatfHCS is not
simply the mass ratiom/m0 but changes also with the rest
tution coefficients and the size ratio. To illustrate this, u
Eq. ~77! to write Eq.~87! in the equivalent form

D* n* 5
fHCS

2

h~11fHCS!
3/2

. ~88!

Let the mass ratio be fixed. The right side of Eq.~88! has a
minimum when the left side of Eq.~77! vanishes, i.e.,
fHCS→h/(12h). This is a possible solution for mechan
cally different particles only ifz* /n* →0, i.e., elastic colli-
sions among the fluid particles. Thus,D* n* is smallest
when the fluid cooling rate is small compared to the impur
collision rate. Conversely, the maximum value ofD* n* oc-
curs at the maximum value forfHCS→@z* /n* (12h)#2.
This occurs when the cooling rate is large compared to
impurity collision rate, which is possible when the mecha
cal differences~e.g., mass ratio, size ratio! are large.

B. Kinetic theory

Perhaps the most accurate and detailed evaluation of
correlation functions is via kinetic theory methods. The
can be applied as well to the case of inelastic collisio
@30,36,17#. To show this, first use the adjoint property of th
Liouville operators to write the velocity autocorrelation fun
tion in the form

Cvv* ~s!5
2

dfHCS
E dG* rHCS* ~G* !v0* •esL* v0*

5
2

dfHCS
E dG* v0* •e2sL̄* @rHCS* ~G* !v0* #. ~89!

Next, define the dimensionless reduced correlation functi
in a manner similar to Eq.~19!

c* ( l 11)~x0* , . . . ,xl* ,s![NlE dxl 11* . . . dxN* e2sL̄*

3@rHCS* ~G* !v0* #, ~90!

so that the VACF can be written as

Cvv* ~s!5
2

dfHCS
E dx0* v0* •c* (1)~x0* ,s!. ~91!

It is easily verified by direct differentiation that thec( l 11)

functions obey a hierarchy of equations similar to Eq.~18!,
the first of which is
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~]s1v0* •“0* !c* (1)~x0* ,s!1
1

2
z*

]

]vo*
•@v0* c* (1)~x0* ,s!#

5E dx1* T̄* ~0,1!c* (2)~x0* ,x1* ,s!. ~92!

A kinetic equation results from a closure approximation
the above equation that expressesc* (2) as a functional of
c* (1). Formally, this is possible since bothc* (1)(x0* ,s) and
c* (2)(x0* ,x1* ,s) are linear functionals ofc* (1)(x0* ,0). In
principle, this functional relationship can be inverted to gi
c* (2)(x0* ,x1* ,s)5C* (2)@x0* ,x1* ,suc* (1)#. Use of this in Eq.
~92! provides the closed kinetic equation forc* (1). In prac-
tice, it is a difficult many-body problem to discover th
functional. However, its form is easily calculated ats50.
Equation~90! gives

C* (2)@x0* ,x1* ,s50uc* (1)~0!#

5 f * (2)~x0* ,x1* !v0*

5 f * (2)~x0* ,x1* !@ f * (1)~x0* !#21c* (1)~x0* ,0!,

~93!

where f * (1)(x0* ) and f * (2)(x0* ,x1* ) are the reduced distribu
tion functions associated withrHCS* (G* ). For fluids with
elastic collisions, the approximation

C* (2)@x0* ,x1* ,suc* (1)#→C* (2)@x0* ,x1* ,0uc* (1)~s!#
~94!

is accurate over a wide range of low-to-moderate densit
The same approximation in the current case leads to the
netic equation

~]s1v0* •“0* !c* (1)~x0* ,s!1
z*

2

]

]v0*
•@v0* c* (1)~x0* ,s!#

5E dx1* T̄* ~0,1! f * (2)~x0* ,x1* !

3@ f * (1)~x0* !#21c* (1)~x0* ,s!. ~95!

This equation is exact at short times by construction and
use for longer times can be interpreted as a Markovian
proximation@37#. For the VACF only the spatial integral o
c* (1)(x0* ,s) is required, so the final representation of E
~91! becomes

Cvv* ~s!5
2

dfHCS
E dv0* v0* •c* ~v0* ,s!, ~96!

where

c* ~v0* ,s!5E dq0* c* (1)~x0* ,s! ~97!

obeys the kinetic equation
3-9
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]sc* ~v0* ,s!1
z*

2

]

]v0*
•@v0* c* ~v0* ,s!#5Ic* ~v0* ,s!.

~98!

The collision operatorI is defined as

Ic* ~v0* ,s![E dx1* T̄* ~0,1! f * (2)~x0* ,x1* !

3@ f * (1)~x0* !#21c~v0* ,s!. ~99!

The kinetic Eq.~98! has to be solved with the initial cond
tion

c* ~v0* ,0!5 f * (1)~v0* !v0* , ~100!

as follows directly from Eq.~90!. To obtain Eq.~98! from
Eq. ~95!, use has been made of the fact that the HCS dis
butions are spatially homogeneous. Fora51 the linear col-
lision operatorI is non-negative, and the correlation functio
is found to decay on a time scale of the order ofs;v1*

21,
the initial rate of decay. Although not proven, it is reasona
to assume that the spectrum ofI is qualitatively similar for
a,1. Since the kinetic equation is exact ats→0, the leading
term in a cumulant expansion of Eq.~90! also is exact and
agrees with Eq.~81!. More generally, this approximate k
netic equation gives contributions to all higher terms in
cumulant expansion. However, fora51 these corrections
are of the order of a few percent except when the size
mass ratio of fluid and impurity particles differs greatly fro
one.

The diffusion constant is obtained by integrating Eq.~91!
to get

D* 52
2

dfHCS
E dv0* v0* •X~v0* !, ~101!

whereX(v0* ) is the solution to the integral equation

IXi~v0* !2
z*

2

]

]v0*
•@v0* Xi~v0* !#5 f * (1)~v0* !v0i* .

~102!

The only ~left! eigenfunction with vanishing eigenvalue o
the operator defined by the left-hand side of the above eq
tion is one. The right side is orthogonal to one so the Fr
holm alternative~solubility condition! is satisfied and a so
lution to this equation exists. It is shown in Appendix A th
the diffusion coefficient given by Eq.~101! is the same as
that obtained from the Chapman-Enskog solution to the
skog kinetic equation, if velocity correlations are neglec
for f * (2)(x0* ,x1* ) in the definition ofI, Eq. ~99!. Recent
computer simulations confirm that such neglect is a go
approximation@38#. Finally, if Eq. ~102! is solved as an ex
pansion in Sonine polynomials~the usual method for elasti
collisions!, the first approximation yields again the leadin
cumulant approximation. Thus the cumulant approximati
linear kinetic theory, and Chapman-Enskog solution to
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Enskog kinetic equation are all the same modulo small
ferences due to velocity correlations and higher order Son
polynomials.

V. DISCUSSION

In this paper, it has been shown that standard line
response theory can be extended in a natural way to des
diffusion in a system of inelastic hard spheres in the hom
geneous cooling state. The response functions of the sys
are given in terms of stationary-state averages correspon
to a an effective dimensionless dynamics. In particular,
dimensionless time scale is related to the average numbe
collisions per particle taking place in the system, and it is
physically relevant one to analyze the aging to a hydro
namic stage. Similar Einstein and Green-Kubo expressi
have been obtained for the shear viscosity@39,40#, which is
essentially a diffusion process like that considered here.
sponse to an external force has been studied to determ
expressions for the mobility@27#. Transport coefficients as
sociated with longitudinal hydrodynamic modes~e.g., ther-
mal conductivity! pose special problems and will be di
cussed elsewhere. Beyond their formal interest and utility
approximate analysis, the results derived here enable a
tematic nonperturbative study of transport processes
granular fluids by means of molecular-dynamics simulat
of the response functions, just as for fluids with elastic c
lisions.

It is interesting to consider the particular case of self d
fusion, i.e., when the impurity particle is mechanica
equivalent to the fluid particles, for which previous analy
have been carried out. The expression for the self-diffus
coefficient in the first cumulant approximation is obtained
considering the limitfHCS51, h5(11a)/4, anda05a in
Eq. ~87!. This yields

D* 5
dG~d/2!

~11a!2x21/2p (d21)/2
. ~103!

As expected, this result agrees with the expression derive
Ref. @20# from a Chapman-Enskog solution to the Ensko
Lorentz equation in a first-order polynomial expansion.
previous approach to self diffusion in the HCS, also in t
context of linear response theory, has been developed
Billiantov and Po¨schel @41#. Their result differs from Eq.
~103! in a factor of (11a)/2. Quite peculiarly, the same
result had been derived before by Hsiau and Hunt@42# and
Savage and Dai@43#, independently, from approximate solu
tions of the Enskog-Lorentz equation. The discrepancy
tween the result in Ref.@41# and the one reported here is n
due to a different degree of approximation, but has a fun
mental physical origin. Brillantov and Po¨schel assume tha
the velocity autocorrelation function of the tagged partic
has the form

@Cvv~ t,t8!#BP5v~ t !2e2(t2t8)/tB(t8), ~104!

with the relaxation timetB being inversely proportional to
the initial slope, in the actual time scalet, of the VACF. This
3-10
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is to be contrasted with our analysis, based in the releva
of the time scale defined by the number of collisions,

Cvv~ t,t8!5v~ t !v~ t8!expF2v1* E
t8

t

dt
v~t!

l G , ~105!

with v1* determined from the initial slope of the VACF in th
dimensionless scale defined by Eq.~27!. Making clear the
crucial role played by this latter time scale for the study
response functions is one of the main goals in this pape

The quality of the simple approximations given here
studied in the following paper@29# by comparison with
molecular-dynamics simulations for both the Einstein a
Green-Kubo forms. Only the case of self-diffusion is cons
ered. It is found that the agreement is very good for l
densities and all degrees of dissipation, but there are l
discrepancies at high density and large dissipation. The
sible reasons for the discrepancies are discussed there.
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APPENDIX A: COOLING RATES IN HCS

In this appendix, the cooling rates for the fluid and t
impurity particle, as well as first cumulant for the VACF, a
calculated from the Liouville dynamics of the system. F
simplicity, a local equilibrium ensemble approximatio
known to lead to accurate results@7#, will be considered. The
dimensionless cooling rates for the fluid and impurity p
ticle are defined as

z* [2
l

v~ t !

] ln T

]t
52

2

d
^L* v1*

2&* , ~A1!

z0* [2
l

v~ t !

] ln T0

]t
52

2

dfHCS
^L* v0*

2&* , ~A2!

respectively. For the derivation of the last equalities, use
been made of the property that in the HCS, for any dyna
cal variableA(G) having the scaling property~52! it is

^LA;t&5
va11~ t !

l
^L* A~$l qi* ,vi* %!&* . ~A3!

The first cumulant for the VACF is given by Eq.~82! or,
equivalently,

v1* 52
z*

2
2

2

dfHCS
^~L* v0* !•v0* &* . ~A4!

In terms of the dimensionless distribution functions
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f * (2)~x0* ,x1* !5NE dx2* dx3* •••dxN* rHCS* ~G* !, ~A5!

and

f * (2)~x1* ,x2* !5N2E dx0* dx3* •••dxN* rHCS* ~G* !, ~A6!

the above quantities can be written as

z* 52
2

dNE dx1* dx2* f * (2)~x1* ,x2* !T* ~1,2!v1*
2 , ~A7!

z0* 52
2

dfHCS
E dx0* dx1* f * (2)~x0* ,x1* !T* ~0,1!v0*

2 ,

~A8!

v1* 52
z*

2
2

2

dfHCS
E dx0* dx1* f * (2)~x0* ,x1* !

3v0* •@T* ~0,1!v0* #. ~A9!

The action of the binary collision operators can be perform
for further simplification, leading to

z* 5
1

2dn*
~12a2!s* d21E dv1* E dv2* E dV

3 f * (2)~v1* ,v2* ,q12* 5s* !Q~2g12* •ŝ!ug12* •ŝu3,

~A10!

z0* 52
4h

dfHCS
s̄* d21V* E dv0* E dv1* E dV

3 f 0*
(2)~v0* ,v1* ,q01* 5s̄* !Q~2g01* •ŝ!ug01* •ŝu2

3F2G01* •ŝ1
m

m1m0
~12a0!ŝ•g01* G , ~A11!

v1* 52
z*

2
2

4h

dfHCS
s̄* d21V* E dv0* E dv1* E dV

3 f * (2)~v0* ,v1* ,q01* 5s̄!Q~2g01* •ŝ!ug01* •ŝu2

3S G01* •ŝ1
m

m01m
g01•ŝD , ~A12!

whereh is defined below Eq.~75!, V* is the reduced volume
or surface of the system, andG01* is the reduced velocity of
the center of mass for particles 0 and 1, i.e.,

G01* 5
m0v0* 1mv1*

m01m
. ~A13!

The above results are still exact. To compute the integ
two approximations are introduced. First, the velocity cor
lations in f (2)* (v1* ,v2* ,q12* 5s* ) and f * (2)(v0* ,v1* ,q01*

5s̄* ) are neglected. Note that this approximation is
quired only for particles at contact and for the precollisi
hemisphere. Significant velocity correlations exist on the
3-11
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posite hemisphere and at larger separation of the partic
and no restriction is placed on these configurations. The
ond approximation is to represent the one-particle distri
tions by Maxwellians. This is known to be a good appro
mation except for conditions of large mechanical differen
between the fluid and impurity particles. These two appro
mations are equivalent to write

f * (2)~v0* ,v1* ,q01* 5s̄!5n* x0~ s̄ !w0* ~v0* !w* ~v1* !,
~A14!

f * (2)~v1* ,v2* ,q12* 5s!5n* 2x~s!w* ~v1* !w* ~v2* !,
~A15!

wherex0(s̄) andx(s) are the fluid-impurity and fluid-fluid
pair-correlation functions for particles at contact, and

w0* ~v0* !5
1

~fHCSp!d/2
e2v0*

2/fHCS, ~A16!

w* ~vi* !5
1

pd/2
e2v1*

2
. ~A17!

Now the integrations in Eqs.~A10!–~A12! can be performed
The calculations are straightforward but lengthy, and will
not reproduce here. The results are given by Eqs.~74!–~76!,
and ~86!.

APPENDIX B: ENSKOG KINETIC THEORY

In the main text sections, linear response has been app
to describe diffusion directly from the Liouville dynamics.
is useful to see that equivalent results, in appropriate
proximations, follow from kinetic theory as well. This is i
lustrated in this appendix using the Enskog kinetic theo
expected to be valid over a wide range of densities and
titution coefficients. To review its origin and applicability t
granular fluids, the first hierarchy equations of Eq.~18! for
the impurity particle reduced distribution functio
f 0

(1)(q0 ,v0 ,t) and one-particle fluid reduced distributio
function f (1)(q1 ,v1 ,t), are written explicitly,

~] t1v0•“0! f 0
(1)~q0 ,v0 ,t !

5s̄d21E dq1E dv1E dVQ~2g01•ŝ!ug01"ŝu

3@a0
22d~q012s̄!b01

212d~q011s̄!#

3 f (2)~q0 ,v0 ,q1 ,v1 ,t !, ~B1!

~] t1v1•¹1! f (1)~q1 ,v1 ,t !

5sd21E dq2E dv2E dVQ~2g12•ŝ!ug12•ŝu

3@a22d~q122s!b12
212d~q121s!#

3 f (2)~q1 ,v1 ,q2 ,v2 ,t !, ~B2!
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where f (2)(q0 ,v0 ,q1 ,v1 ,t) and f (2)(q1 ,v1 ,q2 ,v2 ,t) are the
two-particle reduced distribution functions for the impuri
and one-fluid particle, and for two-fluid particles, respe
tively. Their definitions are given by Eqs.~19! and ~23!. A
closure of the hierarchy is obtained by replacing in t
above,

f (2)~q0 ,v0 ,q1 ,v1 ,t !→x0~q0 ,q1 ;t !

3 f 0
(1)~q0 ,v0 ,t ! f (1)~q1 ,v1 ,t !, ~B3!

f (2)~q1 ,v1 ,q2 ,v2 ,t !→x~q1 ,q2 ;t !

3 f (1)~q1 ,v1 ,t ! f (1)~q2 ,v2 ,t !. ~B4!

The approximation is a generalization of that in Eq.~94!, and
also of that in Eqs.~A14! and~A15!. It can be understood in
two different ways. It is the exact Markovian limit if the
initial distribution functions have the forms~B3! and~B4! on
the precollisional hemisphere~exact at short times!. It also
follows if velocity correlations on this hemisphere are d
stroyed between collisions~Boltzmann’s argument!. In any
case, it is known to provide a good description of the ha
sphere fluid over a wide range of densities and times
elastic collisions, and this validity appears to hold as well
inelastic collisions. As in the elastic collisions case, the fu
tions x0(q0 ,q1 ;t) andx(q1 ,q2 ;t) are taken to be the equi
librium configurational pair-correlation functions as fun
tionals of the nonequilibrium density.

The Enskog approximation converts Eqs.~B3! and ~B4!
into a pair of kinetic equations. The kinetic equation for t
fluid is autonomous while that for the impurity distribution
a functional off (1)(q1 ,v1 ,t),

~] t1v1•“1! f ~q1 ,v1 ,t !5JE@q1 ,v1u f ~ t !#, ~B5!

~] t1v0•“0! f 0~q0 ,v0 ,t !5JEL@q0 ,v0u f 0~ t !, f ~ t !#.
~B6!

Here and below the superscript on the single-particle dis
butions will be suppressed for simplicity of notation. Th
Enskog and Enskog-Lorentz collision operators are given

JE@q1 ,v1u f ~ t !#

[sd21E dv2E dVQ~2g12•ŝ!ug12•ŝu

3$a22x@q1 ,q12sun~ t !#b12
21f ~q1 ,v1 ,t !

3 f ~q12s,v2 ,t !2x@q1 ,q11sun~ t !# f ~q1 ,v1 ,t !

3 f ~q11s,v2 ,t !%, ~B7!

JEL@q0 ,v0u f 0~ t !, f ~ t !#

[s̄d21E dv1E dVQ~2g01•ŝ!ug01•ŝu

3$a0
22x0@q0 ,q02s̄un~ t !#b01

21f 0~q0 ,v0 ,t !

3 f ~q02s̄,v1 ,t !2x0@q0 ,q01s̄un~ t !# f 0~q0 ,v0 ,t !

3 f ~q01s̄,v1 ,t !%, ~B8!
3-12
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respectively. The HCS is a special case for which Eqs.~B5!
and ~B6! reduce to

] t f HCS5JE@v1u f HCS~ t !#, ~B9!

] t f 0,HCS5JEL@v0u f 0,HCS~ t !, f HCS~ t !#, ~B10!

with the collision terms

JE@v1u f HCS~ t !#

[sd21xE dv2E dVQ~2g12•ŝ!ug12•ŝu

3@~a22b12
2121! f HCS~v1 ,t,! f HCS~v2 ,t,!#, ~B11!

JEL@v0u f 0,HCS~ t !, f HCS~ t !#

[s̄d21x0E dv1E dVQ~2g01•ŝ!

3ug01•ŝu~a0
22b01

2121! f 0,HCS~v0 ,t ! f HCS~v1 ,t !.

~B12!

Use has been made of the fact thatx@q1 ,q12sun#[x and
x0@q0 ,q02sun#[x0 are independent of space coordina
due to translational invariance. Furthermore, the reduced
tribution functionsf HCS and f 0,HCS have the scaling forms
inherited from Eq.~24!,

f HCS~v1 ,t !5@ l v~ t !#2df HCS* @v1 /v~ t !#,

f 0,HCS~v0 ,t !5@ l v~ t !#2df 0,HCS* @v0 /v~ t !#. ~B13!

Substitution of these expressions into the kinetic equati
leads to

1

2
z*

]

]v1*
•~v1f HCS* !5JE* @v1u f HCS* #,

1

2
z0*

]

]v0*
•~v1f 0,HCS* !5JEL* @v0u f 0,HCS* , f HCS* #, ~B14!

where the scaled position and velocity variables defined
low Eq. ~33! have been again introduced. The solution
these equations has been discussed elsewhere@26# and will
not be considered further here.

Now consider more general spatially inhomogeneo
states for the impurity particle, with the fluid still in the HCS
The probability density to find the impurity at a pointq0 in
terms of the reduced distribution function is given by

P~q0 ,t !5E dv0f 0~q0 ,v0 ,t !. ~B15!

Integration of Eq.~B6! over the velocityv0 gives the conser-
vation law for probability

] tP~q0 ,t !1“0•J~q0 ,t !50, ~B16!
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J~q0 ,t !5E dv0v0f 0~q0 ,v0 ,t !, ~B17!

which, of course, are the same as Eqs.~57! and ~58!. The
diffusion equation is obtained from a ‘‘normal’’ solution t
the Boltzmann-Lorentz equation, where all space and t
dependence occurs throughP(q0 ,t) andT(t). The linear re-
lationship~B15! implies that such a solution has the form

f 0~q0 ,v0 ,t !5P~q0 ,t !h@v0 /v~ t !#. ~B18!

The Chapman-Enskog method represents a normal solu
to the kinetic equation as an expansion in the gradients,

f 0~q0 ,v0 ,t !5 f 0
(0)~q0 ,v0 ,t !1e f 0

(1)~q0 ,v0 ,t !1•••,
~B19!

wheree is a formal parameter representing the order of
spatial gradient. Similarly, the time derivative is obtained
an expansion in the gradients via the conservation equa

] t5] t
(0)1e] t

(1)1••• ~B20!

and the kinetic equation is written

~] t1ev0•“0! f 0~q0 ,v0 ,t !5JEL@q0 ,v0u f 0~ t !, f HCS~ t !#.

~B21!

Substitution of Eqs.~B19! and~B20! into Eq.~B21! gives to
zeroth order in the spatial gradients

] t
(0)f 0

(0)5JEL@q0 ,v0u f 0
(0)~ t !, f HCS~ t !#, ~B22!

which has the solution

f 0
(0)~q0 ,v0 ,t !5VP~q0 ,t ! f HCS~v0 ,t !. ~B23!

This givesJ(0)50 and, consequently,] t
(1)P50. The first-

order correctionf 0
(1) is determined from

] t
(0)f 0

(1)1~] t
(1)1v0•“0! f 0

(0)5JEL@q0 ,v0u f 0
(1)~ t !, f HCS~ t !#.

~B24!

The contribution from] t
(1) vanishes, since it is proportiona

to ] t
(1)P(q0 ,t)52“0•J(0)(q0 ,t)50. Also, the time deriva-

tive ] t
(0) can be expressed in terms of the cooling ratez.

Using once again the dimensionless variables defined in
main text, Eq.~B24! becomes

IELf 0*
(1)2

z*

2

]

]v0*
3~v0* f 0*

(1)!5 f 0,HCS* v0* •“0* P* ~q0* ,t !,

~B25!

whereIEL is the linear Enskog-Lorentz collision operator,

IELf 0*
(1)[E dv1* E dVQ~2g01* •ŝ!ug01* •ŝu~a0

22b01
2121!

3 f * ~v1* ! f 0*
(1)~q0* ,v0* ,t !, ~B26!
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that is the same as the collision operatorI in Eq. ~99! if
velocity correlations, associated to the two-particle distrib
tion, are neglected in the latter. The solution to Eq.~B25! can
be written in the form

f 0*
(1)~v0* ,q* ,t !5X~v0* !•“0* P* ~q* ,s!, ~B27!

whereX(v0* ) is the solution to the integral equation

IELXi~v0* !2
z*

2

]

]v0*
3@v0* Xi~v0* !#5 f 0,HCS* ~v0* !v0i* .

~B28!
, J

al

. E

. E

ids

, i

4

d

n
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ev

l,
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Finally, the diffusion coefficient is identified from

J(1)~q0 ,t !5E dv0v0f 0
(1)~q0 ,v0 ,t !52D“0P~q0 ,t !

~B29!

to get

D* 52
2

dfHCS
E dv0* v0* •X~v0* !. ~B30!

These are the same results as those from Sec. IV, Eqs.~101!
and ~102!.
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