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Diffusion in a granular fluid. I. Theory
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Many important properties of granular fluids can be represented by a system of hard spheres with inelastic
collisions. Traditional methods of nonequilibrium statistical mechanics are effective for analysis and descrip-
tion of the inelastic case as well. This is illustrated here for diffusion of an impurity particle in a fluid
undergoing homogeneous cooling. An appropriate scaling of the Liouville equation is described such that the
homogeneous cooling ensemble and associated time correlation functions map to those of a stationary state. In
this form the familiar methods of linear response can be applied, leading to Green-Kubo and Einstein repre-
sentations of diffusion in terms of the velocity and mean-square displacement correlation functions. These
correlation functions are evaluated approximately using a cumulant expansion and from kinetic theory, pro-
viding the diffusion coefficient as a function of the density and the restitution coefficients. Comparisons with
results from molecular-dynamics simulation are given in the following companion paper.
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[. INTRODUCTION lattice-gas cellular automafa9]. In this way, the conditions
for macroscopic diffusion and the accuracy of methods for
It has long been recognized that rapid flow granular medid@redicting the diffusion coefficient are known over a wide
have properties similar to those of ordinary flufds2]. At-  range of densities. There is evidence based on kinetic theory
tempts to sharpen this relationship have used idealized sy&d molecular-dynamics simulation that similar studies are
tems of hard spheres with inelastic collisions. Remarkablyrelevam for the system of inelastic hard sph¢@-23. On

. . . . the other hand, there are significant differences to confront.
the s_mgle feature of |nelast|C|t_y allows reproduct!on of ManYy an isolated fluid of inelastic hard spheres does not support a
qualitative features observed in real granular fluids. This obgjnhg state or any other stationary state, since the collisions
servation is based on the derivation of hydrodynamic equapaq to a continual loss of energy or “cooling.” Instead, the

tions from kinetic theoryf3—7], direct Monte Carlo simula-  analog of the equilibrium state is a "homogeneous cooling
tion of kinetic equations [8,9], molecular-dynamics state” (HCS) whose time dependence is entirely given via
simulation of dense fluid§10], and controlled experiments the mean-square kinetic energy of the parti¢23,24,8,25.
on inelastic hard objects such as spherical bddds-16.  As shown below, the scaling property associated with this
Consequently, there is a growing opinion that the traditionaktate allows a change of variables in terms of which a sta-
methods of nonequilibrium statistical mechanics applied taionary, but non-Gibbs, state results.
such model systems provide the means to understand granu- In the next section, the Liouville dynamics for inelastic
lar media at the most fundamental microscopic level. Thenard spheres is reviewgd7,24,23. The corresponding non-
objective here is to give further support for this opinion by aequilibrium statistical mechanics is given in terms of the
detailed application and test of linear response methods apiouville equation for the ensemble, and also in terms of the
plied to diffusion of an impurity particle in a fluid of inelastic Bogoliubov-Born-Green-Kirkwood-Yvor{BBGKY) hierar-
hard spheres. Some adaptation is required since the referencey for the associated reduced distribution functions. Next, it
states are inherently nonequilibrium, but the central ideas af shown that the Liouville equation supports a scaling solu-
linear response for normal fluids are retained. A preliminarytion describing the HCS. A time-dependent temperature is
report of some of these results presented here has been giveefined in terms of the mean-square velocity, in the same
in [17]. way as for elastic collisions, hence the terminology “homo-
Diffusion is the prototype transport process and the assogeneous cooling state.” A transformation to dimensionless
ciated diffusion equation is the prototype hydrodynamic devariables allows a representation of expectation values and
scription for macroscopic dynamics. For normal fluids, dif-time correlation functions in terms of stationary state aver-
fusion in a system of hard elastic spheres also has been tlagjes, just as for the Gibbs state.
testing ground for many-body methods in nonequilibrium The probability density for the position of a tagged or
statistical mechanic&ensity dependence, correlated many-impurity particle as a function of time is considered in Sec.
body collisions, mode coupling, percolation, glass transidll. Linear-response methodeow inherently nonequilibrium
tion). The benchmarks have been set by accurate moleculalinear responseare applied to obtain a diffusionlike equation
dynamics simulation for normal fluidgl8] and fluidlike for long wavelengths, with a time-dependent diffusion coef-
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ficient. The analysis parallels closely that for fluids with elas-the center of particlé(i to 0, respectivelythrough the point

tic collisions, except that the dimensionless tiftiee colli-  of contact. The coefficients of restitution have values in the
sion number required to accommodate the cooling is range 6<«a,ay=<1, measuring the degree of inelasticity. The
logarithmically stretched compared to real time. Consespecial case of elastic particles is given &y ag=1. The
quently, the mean-square displacement approaches linearigenter-of-mass velocity is unchanged so that the total mass
in the collision number rather than real time. The diffusion 3nd momentum of the pairs are conserved in such collisions.

coefficient is expressed as a time integral of the velocityysyever, there is an energy loss for each fluid-fluid particle
autocorrelation function which becomes a Green-Kubo ex-

pression for long times. This limit also establishes the timeCOIIISIOn
scale for the validity of the diffusion equation, and represents 5 m .
a clear example of macroscopic hydrodynamics for a granu- Ej—Ej=—5(1- a®)(o- gij)2 2)
lar system. 4

An approximate evaluation of the velocity correlation L . . -
function of the tagged particle is carried out in Sec. IV by &nd for each fluid-impurity particle collision
two different methods. The first is based on a leading cumu- u
lant expansion, while the second is an evaluation by means T o_E P oy 2
of kineﬁc theory. The two results are quite similar, ar)(d their Boi~Boi=~ 5 (1~ a0)(0- %)%, ©
relationship is clearly identified. Also, it is confirmed in Ap-
pendix B that the evaluation of the Green-Kubo expressionwhere u=mym/(my+ m). The state of the system at tinte
by kinetic theory agrees with that obtained by the Chapmanis completely characterized by the positions and velocities of
Enskog solution to the Enskog kinetic equation for the dis-all particles at that time and is represented by a pbint
tribution function. Moreover, for elastic collisions these ap-={q(t), ... an(t),vo(t), . .. vn(t)} in the associated
proximations are known to give an accurate description 0bd(N+ 1)-dimensional phase space, whete 2 for hard
the diffusion coefficient over a wide range of densities. Thisgisks andd=3 for hard spheres. The sequence of free
accuracy cannot be assumacpriori to apply for inelastic  syreaming and binary collisions determines uniquely the po-
collisions, since the stationary state is nonequilibrium. Thejiong and velocities of the hard particles at titfer given
diffusion coefficient is given as a function of the density, ;i) conditions at’ <t. A more complete notation express-

restitution coefficient, and ratio of temperatures for the ﬂu'ding this dependence on initial conditions Is(T',,). Thus,

and impurity particles. This latter parameter is a peculiarity. . . e : ;
of granular fluids for mixtures, where the lack of detaileqlustasin the case of elastic collisions, the microdynamics for
balance leads to a HCS with’all species having the sam@“s system corresponds to a deterministic trajectory in phase

cooling rate but different temperatur¢g6]. The conse- i
quences for impurity diffusion and mobility have been dis- OPservables of interest are represented by the same phase
cussed elsewhere recenf87,28. The last section contains a functions as for elastic collisiong}(I'), and their average
summary and discussion of the main results. The theoreticdPr given statistical initial data &t=0 is defined by
developments presented here are tested and extended in a
companion paper by comparison with molecular dynamics
simuFI)ation repsuplts O\Yer a wFi)de range of densities an)(; inelas- <A(t)’0>:f dlp(MALTHI)], @
ticies for the particular case of self diffusi¢a9].
where p(I") is the probability density or ensemble for the
Il. STATISTICAL MECHANICS AND HOMOGENEOUS initial state, normalized to unity. An equivalent representa-
COOLING STATE tion of this average is obtained by changing variables to
The system considered is composed of a fluidNdélen- integrate ovel’; rather than ovel'. This change of variables
tical hard disks or spheresnassm, diametero, and fluid- 1S Possible since trajectories in phase space do not cross, and
fluid coefficient of normal restitutionr), and an additional I can be expressed in termsiof denoted byl’, *(I',). This
impurity particle(massm,, diameters,, and fluid-impurity ~ allows the time dependence in E@f) to be expressed in
coefficient of normal restitution,). The position and veloc- terms of the probability density
ity coordinates of the fluid particles will be denoted by
{qi,vi;i=1,... N}, w_hile thoge for the impurity. particlg <A(t);0>:f dlp(I,HA(T)=(A:t), (5)
are (g,Vo. The dynamics consists of free streaming until a
given pair of fluid particlesi,j, or a fluid and impurity pair, ) - ) _ )
04, is in contact. At that point, the relative velocity of the With the probability density at timegiven by
pair changes instantaneously according to the inelastic colli-

sion rules p(I,H)=J[T*(T),Ip[ ()], (6)
Gj=0;—(1+ a) (o gij)(}, J(T',T,) being the Jacobian of the transformation.
Goi =90i — (1+ ag) (0 Gy)) 0. (1) A. Liouville dynamics

Here,gij=v;—Vv; andgg=Vo—V; are the relative velocities, For practical purposes it is useful to identify the genera-

anda is a unit vector directed from the center of partipte  torsL andL for the two above representations, defined by
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(A(1);0)= f dl'p(T)eA(T) = j dr'[e " p(I)JA(T). T(0j)=09"1 J dQO(gy - 0)|goi - o
7

The last equality is consistent with the adjoint relationship - o

implied by Eqgs.(4) and(5). These are not the usual genera-with o= (o + 0)/2 ando= o a. The explicit forms forb;;*
tors of Hamilton’s equations for continuous forces, but areandh! are

somewhat more complex due to the singular nature of hard

X[ag?8(qoi— )by = 8(ai+ )], (13

particles. Such generators have been discussed in detail for . a . R
the case of elastic collisions and the analysis extends quite bij g =6~ — —(o-gj)o, (14)
naturally to the inelastic case as wgt¥,30,17,22, with the
results L 1+ag - A
Poi~Goi = Goi — (o-Goi) o (19

N
L:Lf+VO'VO+E T(O,'), ) . .

i=1 The dynamics for the phase functions and the equivalent
Liouville equation distribution functionp(T",t), follow di-

_ N rectly from Eq.(7):
=L;+Vo-Vo— 2, T(0)i). (8)
=1 (g;—L)A(T',t)=0, (16)
Here, L; andff are the generators for the fluid particles (ﬂﬁrDP(F t)=0 (17)
alone ' ’
The BBGKY hierarchy of equations for the reduced dis-
N N N . . . . . . . .
_2 v +£ 2 2 (i tribution functions is obtained by partial integration of the
Li=2 vi-Vits 2, = (L0, Liouville equation over the position and velocities Nf-|
fluid particles,
N 1 N N o
Li=> vi-V,— = TGLj). @  [0+L(Xo, ... x)IFTD(xo, .. x5t)
=1 27317 |
The terms involving spatial gradients generate free streaming ZZB f dx 1 T(L I+ D2 (xg, . xq5t),  (18)
while the others describe_velocity changes. The binary colli-
sion operatord (i,j) andT(i,j) for particlesi andj are with the reduced distribution functions defined by
T(i,i)=0d_1f dQO(—g;- 0)|g;- o] d(q; — o) (b;—1), fFD(xg, ... X ;t)EN'j dXi41 - dXnp({Xi}51),

(10 (19

— a1 N ~ wherex;={q; ,v;} denotes the position and velocity for par-
Ti,j)=0 f dQ6(g;-0)|g;- of ticle i andL(Xq, . ...x) is the Liouville operator for a sys-
tem of | fluid particles and the impurity particle. Moreover,
X[a 28(qij—o)b; '~ 8(qj+o)], (1) the limit of largeN has been considered. The above results in
this section provide the basic tools and definitions of non-
whered() denotes the solid angle element for the unit vectorequilibrium statistical mechanics for granular mefi24].
o, o=00, q; is the relative position vector of the two
particles,® is the Heaviside step function, aibg is a sub- B. Homogeneous cooling stat¢HCS)

stitution operatorb;; F(g;;) =F(g;;), which changes the rela- giationary solutions to the Liouville E€L7) are expected
tive velocity g;; into its scattered valug,; , given by Eq.(1).  when suitable external forces or boundary conditions are im-
On the other hand, it does not change the velocity of thgyosed. However, there is no stationary solution for an iso-
center of mass of the two particles. The operapt is the  lated system, corresponding to the spatially homogeneous
inverse ofb;; and characterizes the “restituting” collision. Gibbs state, due to the inherent time dependence following
The binary operators for collisions between fluid particlesfrom loss of energy in collisions. This can be seen by calcu-
and the impurity are similar to those for collisions amonglating the rate of change of the mean-square velocity of a
fluid particles, fluid particle in an isolated state. For purposes below, the
latter is used to define a kinetic temperature according to

T(o,i>=?’*1f dQO(—gy- 0)|goi- 0] 8(doi — ) (bgi— 1),

T _Limit= tme? 20
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In addition toT(t), Eq. (20) defines the associated thermal The notation in Eq(24) does not make explicit the de-
velocity v (t) (a factor of Boltzmann’s constant usual in elas- pendence opycson parameters specific to the impurity par-
tic systems has been deleted since there is no zeroth law ttle, such as the mass and size ratisn, ando/ . Since
thermodynamics for granular media; alternatively, to incor-all velocities have been scaled relative to the thermal veloc-
porate the elastic limitv=1 the temperature should under- ity determined by the fluid, there is no explicit dependence
stood as defined in units such that=1). The time depen- on the fluid temperature. However, the kinetic temperature of
dence of these quantities can be calculated using thihe impurity particleT, defined in a manner analogous to Eq.

Liouville dynamics to get (20) is not equal to the temperature of the fluid in the HCS.
Consequently, scaling of the impurity velocities to the fluid
HT(t)=—Z(t)T(L), (21)  thermal velocities leads to a dependence on the temperature

ratio T/Ty. This peculiarity is due to a failure of energy
where{(t) is the “cooling” rate due to inelastic collisions, equipartition in granular fluid$26], which has been ob-
served in recent experimentd2]. The detailed form of the
) o1 relationship betweeiiy(t) and T(t) will be discussed later
(H=1-a )ZdN—vz(t)j dqlf dv, on, but it follows from the condition for the HCS that the
cooling rates of the fluid and impurity particles are the same

- 3 in the HCS. This leads to an explicit expression 7o, as
Xf dVZJ dQ20(9120) (91 0) a time-independent function of the mechanical differences
between the two types of particles. Through this section, the
X f@(qq,vy,00+ 0,Vp31), (22)  dependence ofcs on time independent parameters of the

5 . ] . impurity particle will continue to be suppressed, although it
f®)(qy,v1,0:+ o,v2;t) being the reduced two-fluid particle il hecome important in the subsequent discussion of impu-
distribution function at contact. The latter is in general de'rity diffusion.
fined by Some interesting consequences follow from the velocity

scaling of the distribution function associated with the HCS.
() 4y — (3) . The reduced distribution functions also have this property, so
o) f AT (X0 X1 X231)- @3 it is easily verified from Eq(22) that £(t)=TY4t). Then,
Eq.(21) can be integrated for the explicit time dependence of
For a homogeneous system, its spatial dependence OCCUfgt),
only throughg,,. Upon deriving Eq(22) we have taken into
account that the contribution from the impurity particle is
negligible in the limit of largeN. T()=T(t")
In place of the Gibbs distribution, it is assumed that there
is a homogeneous scaling solutipic(1',1) to the Liouville  The temperature is seen to have an algebraic decay in real
equation, for which all time dependence occurs through §me (Haff's law [1]). For the analysis of the HCS, it is more
scaling of the velocity“cooling” ) with the thermal velocity  onvenient to use the dimensionless time scale
v(t) [23,24,

1 -2
1+§g(t')(t—t’)} : (26)

t

prcs T, 1) =[/v(1)] N Dok ({ai 17 ,vi lv (D)}). s(tt)= f d7v(7), 27

(24) ‘
The dimensionless distribution functigif-g is invariant un- where(t) Is an average collision frequency given by
der space translations, with the coordinates sc&@ti- v()=v(t)!/. (28)
trarily) relative to/=(no% 1)~1, which is proportional to
the mean free pathn(is the number density of particles Thus, s(t,t’) is a measure of the average number of colli-
Therefore, pycqI',t) represents a spatially homogeneoussions per fluid particle in the intervat’(t). The integral in
fluid. Substitution of Eq.(24) into the Liouville equation Eq.(27) can be performed using E(26) with the following
gives result:

: (29

1 ’ !
1+ E{(t )(t—t")

1 % J _— 2
Eg(t)i:o a_vi'(ViPHCS)'H-PHCS_O- (25 s(t,t’)= g—*ln

The self-consistent solution to the coupled set of E8%)  where we have introduced the dimensionless cooling rate
and(25) determines thbomogeneous cooling statdCS). It

is the analog of the Gibbs state for elastic collisions and F=/L)lv(t). (30
reduces to it fora=1. For <1, the exact solution is not

known (it is not simply a Gaussian in the velocities as for thelt follows from dimensional analysis th4t is time indepen-
Gibbs statg but its existence is supported by results fromdent. The cooling in terms of the dimensionless time
Monte Carlo[8] and molecular-dynamics simulatiofi31]. exponential,
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T(H)=T(t")e &"stt) 3D <A-t>=f dlp(I',HA(T)
and, consequently,
- [ arepr e sadsar wouy
v(t)=v(t)e <SR, (32)
=J dI*[U(s,00p* (I'* 0 JA{ /0¥ ,w(DV})
Since( is proportional to (+ a?), there is a crossover from
logarithmic to linear relationship between the two time
scales for weak inelasticity. Ef dI'* p*(I'*,0U(s,0A({/a ,u(t)vi'}),
Knowledge of the time dependence wft) also implies
that for many average properties. For example, the average (40

value of A(T") in the HCS can be written _
whereU(s,s’) andU(s,s’) obey the equations

(A:t>Hcs=depHcs(F,t)A(F) (ds+L*)U(s,8')=0, (ds—L*)U(s,s')=0, (41

_ _— * ok * with the initial conditionslj(s’,s’)z U(s',s’')=1. The new
_f ™ phed I)AWZG7 vV (39) generator for the dynamics of the phase functions is

Use has been made of the scaling for@4) and I'* £*=E KICRLLY L*=[L R N 42
={q* v*1={q;//,v;/v(t)}. This last result suggests that 2¢ ' [Llia=ar =y (42
the transformation to dimensionless form may admit a sta-

tionary state representation for the HCS. To see that this igor the special case* (I'* ,0)=p{ic(I'*), Eq. (40) reduces

the case, define for a general statd,t), to Eq.(33).
The stationary representation is the most natural one for
p(T,0)=[/v(t)] 9N+t Dp*(T* s), (34)  both theoretical developments and for computer simulation,

as is discussed in the following companion pa&. Simi-

larly, the physically relevant time scales are those expressed
fi1 terms of the average collision numisather than the real
time t. It is appropriate at this point to note that although
plics is a stationary solution to E¢35), there is convincing
evidence from both theory and simulation that it is unstable

and velocity as above. Substitution of this into ELj) gives
the dimensionless Liouville equation

(ds+ L*)p*(T'*,5)=0, (39  to long wavelength spatial perturbations and spontaneous
fluctuations[33,34]. In the following sections, time correla-
with the definitions tion functions are considered for the HCS and use is made of

stationarity and spatial homogeneity. The results must be un-
1 o derstood as applying to system sizes for which the instability
L=z [K*+d(N+1)]+L*, (36)  does not occur, or on time scales that are short compared to
2 those required for growth of spatial structures.

— 1 - . .
L*= . (t)L:[L]{qui* vy (37) C. HC.S averages a.md correlf.;ttlon functions
¢ The HCS time correlation function for two phase func-

tions A(T") andB(I') is defined as

N
=3 ‘. 39 Cas(t,t')=(A(1)B(t");0)—(A(1);0)(B(t');0), (43)

AV

with t=t'=0. Here and below the bracketst) denote an
This transformation of the Liouville equation explicitly ac- average over the HCS at tinte For a system with elastic
counts for the collisional cooling, and in this form stationary collisions in equilibrium, the above autocorrelation function
solutions are now possible. In fact, E5) becomes can be reduced to a single time correlation function, using
time translational invariance and stationarity of the Gibbs
state. In the case of inelastic particles, the HCS is not sta-
tionary, but the scaling propert{24) can be used to trans-
form the correlation function to an effective time stationary
so the dimensionless HCS is a stationary solution to(&5). average. First, use time translational invariance to write

The average value ofA(I') for a general state(I',t)

becomes (A(1)B(t");0)=(A(t—t")B(0);t"). (49

cx Prics=0, (39
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Next, transform to dimensionless variables to get

(A(D)B(t');0)= f dT g t)A(t—t')B(0)

- [ arepear)
X[ O AG g ()]
XB{Zd" w(t')v}), (45)
where Eq.(33) has been used. Next note the identity

e 1/20% s(t,t") K* F({Vi* }) _ F({ef 1/20* S(t,t’)vik})

B v(t) .
_F<{U(t,)VI J) (46)

The correlation function now can be written

(A(1)B(t");0)= f dl™ piedI'*)
X[U(t,t)A{ /g vtV ]
XB(/q v (t')Vi}), (47)
where

U(t’t/):evc(t')(t—t')L*eI/Z{*S(t,t')lC*. (48)

This time evolution operator can be identified by differenti-
ating with respect te(t,t’), taking into account that in the

HCS /* is time independent,

U (t,t’ at * o 1) gk * ot 1) K*
f;s )=U(t,t’) a_se—l/zg (L), (47 L% U2 s(tt)K
+1§*IC*
2
ve(t') —L2*s(tt')) * 1
= " == ) L ek
U(t,t )[ oD e L 2§ K
=U(t,t")L*. (49
Consequently,
U(tt")=esttOe, (50)

Note that this propagator is the same as that in @&4)

specialized to the HCS. In this cag& becomes time inde-

PHYSICAL REVIEW B5 051303

This is a primary result of this section. The time correla-
tion functions depend on the dynamics through the collision
numbers(t,t’). All additional time dependence occurs trivi-
ally through the thermal velocity. This is most evident when
A andB are homogeneous functions of the velocity,

Ad7ar oV H=vAWA{ gl V),
B(/gf w(t )V =v (t")B{/gf v }). (52
Then the correlation function becomes

(A(1)B(t');0)=0v3(t)v°(t")(A(S)B)*, (53

(A©)B)* = [ dr* plied TOAU G W)
XB{7d" vi'}), (54)
and the phase functioA({/q;" ,v{'},s) is
A7l v} = OTA{ g V). (59)

This stationary-state representation for the time correlation
functions simplifies considerably the analysis of response
functions in the next section.

Ill. IMPURITY PARTICLE DIFFUSION

In this section, the diffusion equation and associated ex-
pressions for the diffusion coefficient are derived for a granu-
lar system in the HCS. The probability densiRyr,t) to find
the tagged or impurity particle at pointat timet, given it
was at the origin at=0, is defined by

P(r,t)=V(d[aqo(t) —r]é(do);0)
=([qo(t)—qo—r];0), (56)

where the angular brackets indicate as above an average over
an initial HCS anaV is the volume(for d=3) or surfacgfor

d=2) of the system. The second equality is a consequence
of the translational invariance of the HCS. The conservation
law for probability follows by differentiation of Eq56) with
respect td,

oP(r,t)+V-J(r,t)=0, (57)
with the probability fluxJ(r,t) identified as

J(r, 1) =(vo(t) o[ do(t) —go—r];0). (59)

pendent, allowing the simple exponential representation. The

correlation function now can be written in the final form

(A()B(t');0)= f dl™ pficd(I™)

X[eXE AL/ gE (V]
XB(/qF ,u(t')vi). (51)

The interest here is in the limiting behavior of E§7) in
the hydrodynamic regime, which corresponds to the long
wavelength region. The long wavelength spatial dependence
of J(r,t) can be obtained from a Fourier representation of
P(r,t),

”F?(k,t):f dr eTP(r,t). (59)
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To get a formal equation fdP(k,t), it is useful to introduce . D(t)
the index of the distributio©(k,t) by D*(9=— 0 (68)
“ C
P(k,t)=eCk0, (600  Using the representatiof®3) for the correlation function in

Eq. (67) gives the Green-Kubo form as a stationary average

t
fdt’v(t)v(t')<v3(s)~VS>*

C(k,t)=In(e* o0~ q), (61) D*(s)= .

d/2w(t)

Differentiation with respect to time of E460) yields 1 [t
=af dt’ ve(t' (Vg (s—s')-vg)*
0

[~ C(k,DIP(k,1) =0, (62
1 (s
~ — ! * o). y*\*
where the dot ove€ denotes the derivative with respect to dfods (Vo(s=s)Vo)
time. For long wavelengthsk¢'<1), C(k,t) can be ex- 1rs
panded to ordek?, :ajods%vg(s’)'vg)*. (69

(i k~vo(t)e‘k'[qO(‘)‘qo(O)];0)

Ckt)= ('K [9(0 =01 0y

In going from the first line to the second line we have written
s(t,t’)= s(t,0)—s(t’,0)=s—s’. Similarly, from Eqgs.(65)

K2 the corresponding Einstein form is
=— 7 {Vo() [do(1) = Go(0)];0).  (63) .
D*(s)= 54 2565 ()~ a5 (0)[?)*. (70
Substitution of this expression into E@2) and inverting the

transform gives Eq(57) with the identification of the prob-

- These are the stationary average representations for the dif-
ability flux as

fusion coefficient, and are the primary results of this section.
_ In terms of the time scalg the mean-square displacement is
Ar,H==DOVP(r.. 64) expected to become linear fg&>1, and the velocity auto-
correlation function is expected to decay to zero also on this
time scale. The physical interpretation of this limit is the
1 9 same as for elastic collisions, sinsés essentially the num-
D(t)= EE(lqo(t)—qo(O)F;Oy (65  ber of collisions per particle. However, due to the time de-
pendence of the collision frequency, the correlation functions
are expected to have the proper behavior with respest to
rather thart. This will be shown more explicitly in the next
Section. The dimensionless form of E@57) and(64) reads

The finite time diffusion coefficient is

This will be referred to as the Einstein form, relating the
diffusion coefficient to the mean-square displacement. Th
equivalent Green-Kubo form, in terms of the velocity auto-
correlation functioVACF), is derived by using the relation- AsP* (r* ;s)—D*(s)V*2P* (r* 5)=0, (71)
ship
whereP* (r*,s)=/9P(r,t). Clearly, this becomes the usual
diffusion equation for sufficiently largs if D*(s) tends to a
constant.
It is useful to introduce a dimensionless VACF for the
with the result impurity particle that is normalized to unity a&=0. This
requires calculation afv§ 2)*. It might appear from E¢(20)
1t that this can be obtained simply in terms of the mass of the
D(t)= afodt'<V0(t)'Vo(t');0>- (67)  impurity and the temperature of the fluid. However, it has
been shown elsewhere that mechanically different particles
in a common HCS do not have the same temperaf2@s
as already mentioned below E@5). Thus(v§?)* is given
by Eq.(20) with bothm andT(t) replaced bymy andTy(t),

t
do(t) —0o(0) = Jodt’vo(t’), (66)

For normal fluids with elastic collisions, the diffusion
constantfollows from the long-time limitD =lim,_,,,D(t),
or equivalently from the coefficient of the mean-square dis
placement when it becomes lineartirThis limit occurs for
times large compared to the mean free time. Since the latter (vE2* = dTo(t) _ Qd, (72)
is time dependent in the HCS, the usual conditions to estab- 0 mev2(t) 2 ¥
lish a diffusion constant, and consequently the diffusion
equation, must be modified for granular media. This is donevhere ¢cs is the ratio of the square of the thermal velocity
by introducing the dimensionless diffusion coefficient for the impurity particle relative to that for the fluid particles,
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mTy(t) A. Cumulant expansion

HCS ™ o T(D) 73 The cumulant expansion of the VACF is

Since the cooling rates of the fluid(t), and the impurity o1 N 0
particle, /o(t), are the same and they are proportional to the (s)=ex p; a“’p(_s) : (80)
square root of the temperature, the above ratio is time inde-
pendent. The condition for equal cooling rates also deterrpe coefficientsy’ are determined from the initial time de-
mines ¢ycs. These rates are calculated to good approximayiyatives of the correlation function, Clearly, truncation of
tion using a local equilibrium ensemble in Appendix A, and this expansion at any order is asymptotically exact at short
are given by times and also for smah (heavy impurity since each time

U2 (d-1)12 derivative contributes a factor df. The simplest such ap-

o _F(dT)dX(l a?), (74) proximation retains only the leading term
C* (s)=e “1°, (81)

+ brcs

ggzv*(l—h Fre | (LT 92 9 ith

whereh=(1+ ag)m/2(m+my), and »* is a dimensionless . |9 N
impurity particle collision rate, 0l =~ |55INCu(s) )
sS=
sh (d—1)/2 2
*—_ | — [E— I ) R\ K

The factorsy andx, are the pair-correlation function for the Use has been made of the definition of $hdependence in
fluid-fluid and the fluid-impurity particles at contact, respec-Eq. (78). The corresponding approximation for the mean-
tively. A more accurate calculation for the case of hardsquare displacement is obtained by integrating EB{)
spheresd=23) is carried out in Ref.27]. Equating Eqs(74)  twice,

and(75) provides the equation fapcs,

¢ (I8 (5)— a3 (02 =225 31— gm0l
= (77) (U]_
4 (83)

1+
h dHcs

(1+ $uco ™ 1

¢HCS

This gives a cubic equation which has a unique real, positivé&or elastic collisions, this approximation is known to be ac-
solution for all allowed values o and {*/v*. For elastic  curate for short as well as long times, and for a wide range of
collisions, ¢ycs—m/my as required by the equipartition densities and mass ratios. The resulting diffusion coefficient
theorem. Qualitative changes in this solution, similar to aand diffusion constant are then found by substituting (Bd).
phase transition occur in the limtit— 0 [28], but will not be  into Eqg.(79),

discussed here. The normalized VACF is now given by

o D*(s)=D*(1—e “I5), (84)
C;U(S)E<V°(Sf;’f> e (VA(s)-VEY* (78
(v57) HES D* = lim D*(s)—(bHCS (85)
S—® 601

and the diffusion coefficient in Eq69) becomes

Clearly, w7 is a characteristic dimensionless collision fre-
j ds'Cy,(s'). (79 guency for the impurity particle. The first cumulant approxi-
mation confirms the expectation that the mean-square dis-
placement becomes linear ins and the velocity
IV. APPROXIMATIONS autocorrelation function decays f@> w3 . Consequently,
the macroscopic diffusion equation applies on this time scale
In the following, two approximations, originally devel- as well. The collision frequenay’ is evaluated in Appendix
oped for fluids with elastic collision§35], are applied to A by using a local equilibrium ensemble, with the result
calculate the VACF in the HCS. The first method uses a L L
leading-order truncation of a cumulant expansion, while the x * * 12
second uses an approximate kinetic equation. The results wl__ig +§V (1+ bres) ™ (86)
confirm the expected time scale for transition to hydrody-
namics and provide the detailed dependence on density amwthere* and v* are defined in Eq9.74) and(76), respec-
restitution coefficients. tively. Substitution of this into Eq(85) gives

¢HCS

D*(s)=
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PHcs 1 J
*= . 8 At VE-VE P D(xE s)+ = ¢* JvE g O(xE s
(1+ dreg V2 — ¢+ (87) (95t Vg - Vo) (x5 ,S) 2§ v [Vo " (x5 .9)]
It is possible to show thaD* is positive and finite for all :J dx’l‘?*(o,l)a/i*(z)(xg X5 .s). (92)

values of the density and restitution coefficients.

The failure of energy equipartition means thialcs is not A kinetic equation results from a closure approximation in
simply the mass ration/mg but changes also with the resti- the above equation that expressis® as a ?L?nctional of
tution coefficients and the size ratio. To illustrate this, use ") E CIII this | 'Fl;l ince boibt (V(x* d
Eq. (77) to write Eq.(87) in the equivalent form 2 o, *orm*a y, tNIS 1S possibie since oyt 1(X0*’S) an
P* A (xg xF,s) are linear functionals ofy* (V(x3,0). In
2 principle, this functional relationship can be inverted to give
D* % — Phcs ' 89) P D(xE X ,5) =P () x¥ X1 9] W(l)]. Use of this in Eq.

h(1+ ¢pce)®? (92) provides the closed kinetic equation fg# (). In prac-
tice, it is a difficult many-body problem to discover this

Let the mass ratio be fixed. The right side of E88) has a functional. However, its form is easily calculated &t 0.
minimum when the left side of Eq(77) vanishes, i.e.,, Equation(90) gives

ducs—h/(1—h). This is a possible solution for mechani- )

cally different particles only iZ*/v* —0, i.e., elastic colli- W xg x1,s=0[y* V(0]

sions among the fluid particles. ThuB* v* is smallest = Fr@)(xk x* )k
when the fluid cooling rate is small compared to the impurity 071770
collision rate. Conversely, the maximum value®f v* oc- :f*(z)(x(’)‘ ,x’l‘)[f*(l)(x’g)]*la,b*(l)(xg,0),

curs at the maximum value foycs—[Z*/v*(1—h)]%.
This occurs when the cooling rate is large compared to the
impurity collision rate, which is possible when the mechani-
cal differenceqe.g., mass ratio, size rajiare large.

(93

wheref*(M(x*) and f*(2)(x} ,x}) are the reduced distribu-
tion functions associated withfcg(I'*). For fluids with
elastic collisions, the approximation
B. Kinetic theory
Perhaps the most accurate and detailed evaluation of time  W* @[xg X} ,s|y* M- w*@[xg x7,0/y* M(s)]
correlation functions is via kinetic theory methods. These (94)
can be applied as well to the case of inelastic collisions

[30,36,17. To show this, first use the adjoint property of the 'S accurate over a widp range of low-to-moderate densitie;.
Liouville operators to write the velocity autocorrelation func- 1N€ Same approximation in the current case leads to the ki-

tion in the form netic equation

2 x 9
C* — fdr* * *)v*. SL™ | % *  g* (L) y* > Ty* (L) y*
oo(S) ddbrroe PHC Vo - €% Vg (dst+ Vo - Vo) (x5 ,8) + 2 [Vo ¥ M(x5,5)]
2 o o
=mf dr*vg-e * [pficdT*)Vv5 1. (89) =f dxET*(0,1) F* @D (x3 ,x*)
Next, define the dimensionless reduced correlation functions X[f*(l)(xéc)]fl‘p*(l)(xéc S). (95

in @ manner similar to Eq19) ] o ) ] )
This equation is exact at short times by construction and its

use for longer times can be interpreted as a Markovian ap-

(1+1)(y* * =N * * o= SL* proximation[37]. For the VACF only the spatial integral of
1/ (Xg .- X ,9)=N"| dxQ,...dxye
v* D(x% ,s) is required, so the final representation of Eq.
0

X[ pred TFIVE], (90) (91) becomes

. 2
so that the VACF can be written as C* (s)= mf dvEVE - ¥ (V8 ,9), (96)

2
c:v(s)z—f dxgvg - D(xg ). (91  Wwhere
déncs
* — * (1) y*

It is easily verified by direct differentiation that thg'* %) ¥ (Vg,9) f dgg #* (x5 ,S) (97)

functions obey a hierarchy of equations similar to EL),
the first of which is obeys the kinetic equation
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& Enskog kinetic equation are all the same modulo small dif-
dsP* (Vg ,8) + > T Vg * (VG ,S)1=Z¢* (v ,S). ferences due to velocity correlations and higher order Sonine
N polynomials.
(98)

The collision operatof is defined as V. DISCUSSION

In this paper, it has been shown that standard linear-
* o) * Tk *(2)(y* o* response theory can be extended in a natural way to describe
T (%o ,s)=f T (0. x5 . x) difleJ)sion ina sgstem of inelastic hard spheres inythe homo-
geneous cooling state. The response functions of the system
are given in terms of stationary-state averages corresponding
to a an effective dimensionless dynamics. In particular, the
dimensionless time scale is related to the average number of
collisions per particle taking place in the system, and it is the
physically relevant one to analyze the aging to a hydrody-
namic stage. Similar Einstein and Green-Kubo expressions
have been obtained for the shear visco&9,40, which is

as follows directly from Eq(90). To obtain Eq.(98) from . e : .

., .essentially a diffusion process like that considered here. Re-
Eq..(95), use hag been made of the fact that thg HCS dlsm'sponse to an external force has been studied to determine
butions are spatially homogeneous. kot 1 the linear col-

- . . X . expressions for the mobilit}27]. Transport coefficients as-
lision operatofZ is non-negative, and the correlation funlctlon sociated with longitudinal hydrodynamic modésg., ther-

is found to decay on a time scale of the ordersefwy *, 4 conductivity pose special problems and will be dis-
the initial rate of decay. Although not proven, it is reasonableyssed elsewhere. Beyond their formal interest and utility for
to assume that the spectrum Bis qualitatively similar for — 5n5r6ximate analysis, the results derived here enable a sys-
a<1. Since the kinetic equation is exacsat 0, the leading  tematic nonperturbative study of transport processes in
term in a cumulant expansion of E(Q0) also is exact and  granylar fluids by means of molecular-dynamics simulation
agrees with Eq(81). More generally, this approximate ki- of the response functions, just as for fluids with elastic col-
netic equation gives contributions to all higher terms in thgjgions.

cumulant expansion. However, far=1 these corrections |t js interesting to consider the particular case of self dif-
are of the order of a few percent except when the size ofysjon, j.e., when the impurity particle is mechanically
mass ratio of fluid and impurity particles differs greatly from eqyivalent to the fluid particles, for which previous analysis

X[F*D(xE) ] (Vg ,s). (99

The kinetic Eq.(98) has to be solved with the initial condi-
tion

P (V5,00 =F*D(vg)vg , (100

one. , _ _ _ have been carried out. The expression for the self-diffusion
The diffusion constant is obtained by integrating E21)  coefficient in the first cumulant approximation is obtained by
to get considering the limitpycs=1, h=(1+a)/4, andag=« in
5 Eq. (87). This yields
D*=——fdv*v*-x vy), 10
Qpcs) 40V0 X0 (on dr(dr2)

*

:(1+a)2)(21/277(d—1)/2' (103

whereX(vg) is the solution to the integral equation
& o As expected, this result agrees with the expression derived in
X (VE) — = —-[V’SXi(VS)]=f*(1)(V6‘)v3i. Ref. [20] from a C_hapmfan—Enskog solutlor) to the Er)skog—
2 g Lorentz equation in a first-order polynomial expansion. A
(102 previous approach to self diffusion in the HCS, also in the
context of linear response theory, has been developed by
The only (left) eigenfunction with vanishing eigenvalue of Billiantov and Pschel[41]. Their result differs from Eq.
the operator defined by the left-hand side of the above equ&103) in a factor of (1+«)/2. Quite peculiarly, the same
tion is one. The right side is orthogonal to one so the Fredresult had been derived before by Hsiau and Hdi2] and
holm alternative(solubility condition is satisfied and a so- Savage and D4#3], independently, from approximate solu-
lution to this equation exists. It is shown in Appendix A that tions of the Enskog-Lorentz equation. The discrepancy be-
the diffusion coefficient given by Eq101) is the same as tween the result in Ref41] and the one reported here is not
that obtained from the Chapman-Enskog solution to the Eneue to a different degree of approximation, but has a funda-
skog kinetic equation, if velocity correlations are neglectedmental physical origin. Brillantov and ‘Bohel assume that
for f*@)(x} ,x¥) in the definition ofZ, Eq. (99). Recent the velocity autocorrelation function of the tagged particle
computer simulations confirm that such neglect is a goodas the form
approximation38]. Finally, if Eg. (102 is solved as an ex-
pansion in Sonine polynomial¢he usual method for elastic [Cyu(t,t)]gp=v(t)%e” -1/ 7B(t), (104)
collisions, the first approximation yields again the leading
cumulant approximation. Thus the cumulant approximationwith the relaxation timerg being inversely proportional to
linear kinetic theory, and Chapman-Enskog solution to thehe initial slope, in the actual time scdleof the VACF. This
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is to be contrasted with our analysis, based in the relevance

of the time scale defined by the number of collisions,
t o u(7)
C,,(t,t")=v(tv(t")ex —w’{f dT—/ , (105
t

with w7 determined from the initial slope of the VACF in the
dimensionless scale defined by Eg7). Making clear the
crucial role played by this latter time scale for the study of
response functions is one of the main goals in this paper.
The quality of the simple approximations given here is
studied in the following papef29] by comparison with

molecular-dynamics simulations for both the Einstein and
Green-Kubo forms. Only the case of self-diffusion is consid-

PHYSICAL REVIEW E65 051303

£ () (x ,x;)sz dxzdx - - - dXpficsI*),  (A5)
and

@0 x)=N? [ dxax- dxipicd ™), (A0
the above quantities can be written as

2
§*=—mf dxdxs £+ P(x x5)T*(L2vi %, (A7)

= gy AP XD 0,02
dbnes

ered. It is found that the agreement is very good for low (A8)
densities and all degrees of dissipation, but there are large

discrepancies at high density and large dissipation. The pos- . * 2

sible reasons for the discrepancies are discussed there.
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APPENDIX A: COOLING RATES IN HCS

In this appendix, the cooling rates for the fluid and the
impurity particle, as well as first cumulant for the VACF, are
calculated from the Liouville dynamics of the system. For
simplicity, a local equilibrium ensemble approximation,
known to lead to accurate resulg, will be considered. The
dimensionless cooling rates for the fluid and impurity par-
ticle are defined as

. / aInT_ 2L* - AL
EEETC R e A
.7 dInTy L%t 2y A2
é“Oz_U(t) at __d¢Hcs< vo©)", (A2)

respectively. For the derivation of the last equalities, use has

been made of the property that in the HCS, for any dynami
cal variableA(I") having the scaling propert{g2) it is

a+1(t)
Yz

(LAt)= (LAQ/G VD). (AD)

The first cumulant for the VACF is given by E¢82) or,
equivalently,

s
W= (. (A9
2  dépcs

In terms of the dimensionless distribution functions

X F*@(vi V3 ,q5,= 0*)0(— g}, 0)| g}, of,

(A10)

4h _—
53:——a*d—1v*f de;J dv’l‘f dQ
d(rZSHCS

X 5O (vE Vi a5= 0*)O(—géy 0)|ghy- o1

~ m ~
X|2G} o+ —m+mo(1—ao)a-ggl}, (A11)
& 4h —
2 xd—1yx* * *
wi=—> d(f’HCSO- V fdvof dvlj dQ

X *@(vE Vi ,08,= 0)O(— G5y 0)|5y o

X

N m -~
* R .
Gorr ot m0+m901 0'), (A12)

whereh is defined below Eq(75), V* is the reduced volume

or surface of the system, ar@&};, is the reduced velocity of
the center of mass for particles 0 and 1, i.e.,

* *
. Movg +mvy

Olzw. (A13)

The above results are still exact. To compute the integrals
two approximations are introduced. First, the velocity corre-
lations in f@*(vi vi,gh=0%) and f*@§ vi, g},
=o¢*) are neglected. Note that this approximation is re-
quired only for particles at contact and for the precollision
hemisphere. Significant velocity correlations exist on the op-
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posite hemisphere and at larger separation of the particlesshere f(®)(qq,vo,0;,v;,t) and f(q;,vy,0,,V,,t) are the
and no restriction is placed on these configurations. The set¢wo-particle reduced distribution functions for the impurity
ond approximation is to represent the one-particle distribuand one-fluid particle, and for two-fluid particles, respec-
tions by Maxwellians. This is known to be a good approxi-tively. Their definitions are given by Eq$19) and (23). A
mation except for conditions of large mechanical differenceslosure of the hierarchy is obtained by replacing in the
between the fluid and impurity particles. These two approxi-above,

mations are equivalent to write @
f (quVOyquvlat)_’XO(quql;t)

@5 Vi ,08,= 0)=n* xo(0) 0F (V§) o* (V’{),(AM) Xt (0. Vo, DT (qs,v1,1),  (BI)

f*(2)( x ok Ak ) *2 () @* (V) o* (V%) f(z)(ql!V11q2-V21t)_>X(C|1-q2;t)
Vi,V , = =N \ Vs ),
' 2 q12 7 xoe e ? (A15) Xf(l)(ql1vlvt)f(l)(q21V27t)' (B4)

— L . i ., The approximation is a generalization of that in E}), and
where xo(o) and x(o) are the fluid-impurity and fluid-fluid 55 of that in Eqs(A14) and(A15). It can be understood in
pair-correlation functions for particles at contact, and two different ways. It is the exact Markovian limit if the
initial distribution functions have the formi83) and(B4) on
ok (VE) = 1 o5 Idmos, (A16) the precollisional hemispher@xact at short timgs It also
(pcsm) V2 follows if velocity correlations on this hemisphere are de-
stroyed between collisionBoltzmann’s argumeit In any
1 case, it is known to provide a good description of the hard-
*Fy D _ amui? sphere fluid over a wide range of densities and times for
o (V)= —e 1. (A17) re fluid le rang
T elastic collisions, and this validity appears to hold as well for
inelastic collisions. As in the elastic collisions case, the func-
Now the integrations in Eq$A10)—(A12) can be performed. tions xo(dg,ds;t) and x(q;,9»;t) are taken to be the equi-
The calculations are straightforward but lengthy, and will belibrium configurational pair-correlation functions as func-
not reproduce here. The results are given by Eg®—(76),  tionals of the nonequilibrium density.

and (86). The Enskog approximation converts EGB3) and (B4)
into a pair of kinetic equations. The kinetic equation for the
APPENDIX B: ENSKOG KINETIC THEORY fluid is autonomous while that for the Impurlty distribution is

a functional off(M(q; vy ,t),
In the main text sections, linear response has been applied

to describe diffusion directly from the Liouville dynamics. It (0+vy-V)f(ar,va,)=Jelar,va|f(D],  (BY)
is useful to see that equivalent results, in appropriate ap- _
proximations, follow from kinetic theory as well. This is il- (d¢+Vo- Vo) fo(Go,Vo,t) =Je[do, Vol Fo(t), F(1)]. =6

lustrated in this appendix using the Enskog kinetic theory,
expected to be valid over a wide range of densities and reg4ere and below the superscript on the single-particle distri-
titution coefficients. To review its origin and applicability to putions will be suppressed for simplicity of notation. The

granular fluids, the first hierarchy equations of Eif) for  Enskog and Enskog-Lorentz collision operators are given by
the impurity particle reduced distribution function

f0(qo,Vo,t) and one-particle fluid reduced distribution Je[d1,valf(t)]
function f1)(q,,v4,t), are written explicitly,

) E(Tdflf def dQO(—g &)|912‘ ‘;'|
(8+Vo- Vo) F§(do, Vo, )

x{a"2x[qy,0:— a|n(t) 1o f(dy,vq,1)

_ -1 o 2
7 qulJ' dvlf dQO(~gor 0)|gor ] X f(q,—o,vp,t) = x[a1,9:+ ofn(t) 1f(qq, vy, 1)

X Lo * (001~ @) bo;"— 8(Clor+ 0] Xf(d1+ o5, 1)}, (87)
x £)(dg, Vo, 01, V1,1), (B Je[do,Volfo(t),f(D)]
(dgtvy- V) FD(ay,vy,t) EFd-lf dvlf 40O (—gor- )| gor- o]
=0'd71f dQZJ def dQO(—0iy 0)|gr2 0] X{arg *xol do.Go— @1n(t) 1bg; Fo(0o. Vo 1)
X[a 26(q1— 0)bs— 801t 0)] X f(do— o,V1,t) = xo[ do.Go+ aIN(1)Tfo(dlo. Vo, 1)
X E3(qy.v1,02.v2.), (B2) xt(dot a1 )}, (B8)
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respectively. The HCS is a special case for which EBS)
and (B6) reduce to J(Qo,t)ZJ dvoVofo(do,Vo,t), (B17)
ifrcs= Je[Valfres(D)], (BY) which, of course, are the same as E(g/) and (58). The
diffusion equation is obtained from a “normal” solution to
iforcs= Je[Vol foed ), Fres(D)], (B10)  the Boltzmann-Lorentz equation, where all space and time

dependence occurs throu@tiqg,t) andT(t). The linear re-

with the collision terms lationship(B15) implies that such a solution has the form

Jelvilfres )] folGo Vo) =P(Go. Dh[Ve/o(D)].  (B18)
Eadflxj dvzf dQO(—gy fr)|g12- &| The Chapman-Enskog method represents a normal solution
to the kinetic equation as an expansion in the gradients,
X[(@ 2= 1) FuesVa ) Frcs(Va,t,)], (B11)
fo(Co.Vo.t) =5 (ao, Vo, 1) + €f (ao, Vo, )+ - -,
Je[Vol forcd 1), Fhes(t)] (B19)
— . wheree is a formal parameter representing the order of the
=0 Xof dVlf dQO(—go1 o) spatial gradient. Similarly, the time derivative is obtained as

an expansion in the gradients via the conservation equation,
~ -2 —1_
X|Go1- (@ “bo; = 1) foned Vo, ) Fres(Va, ). =00+ edM+ ... (B20)
(B12)

and the kinetic equation is written
Use has been made of the fact that,,q,— ojn]=yx and q

Xoldo,00— o|n]=x, are independent of space coordinates (d¢+ evo- Vo) Foldo,Vo.t) =Je[ Ao Vol fo(t), Freg(D) 1.
due to translational invariance. Furthermore, the reduced dis-

tribution functionsfycs and fg s have the scaling forms, (B21)
inherited from Eq.(24), . . .
Substitution of Eqs(B19) and(B20) into Eq.(B21) gives to
fracs( Vi, ) =[/v(t)] ¥ cdvi/v(t)], zeroth order in the spatial gradients
IO =g o, Vol FE(1), Fres )], (B22)

forcd Vo) =[ v ()] 5 pcd Volv(t)].  (B13)

Substitution of these expressions into the kinetic equation\évhICh has the solution

leads to 1900, =VP(do Dl vcslVo ). (B23)
Eg* 9 (Vg = JE Vi Fied This givesJ®=0 and, consequently{")P=0. The first-
27 vk resT TELIRe order correctiorf(") is determined from

Lo 0 e ety g PTG+ (4o Vo) {6 =Je [0, vol f6(1), Frcs(D]-
§§o e (V15 e =JEL[ Vol fopes: fricsl,  (B14) (B24)
0
The contribution fromy{") vanishes, since it is proportional
where the scaled position anq \{elocity variables defiqed bagp &gl)P(qo,t): —V,-39(qo,t)=0. Also, the time deriva-
low Eq. (33) have been again introduced. The solution tOtive ﬁ§0) can be expressed in terms of the cooling réte

these equations hafs bk:aenhdiscussed elsev6tend will - ging once again the dimensionless variables defined in the
not be considered further here. main text, Eq.(B24) becomes

Now consider more general spatially inhomogeneous
states for the impurity particle, with the fluid still in the HCS. *

The probability density to find the impurity at a poigg in e fEM— 2 o (vEfE Dy =f* 5LVEP* (g8 1),
terms of the reduced distribution function is given by =0 2 Vg o0 oresfo Vo °
(B25)
P(Qo,t):f dvofo(do,Vo,t). (B15)  \whereZg, is the linear Enskog-Lorentz collision operator,

Integration of Eq(B6) over the velocit ives the conser- A A o
Vation taw for probabilly "o IELfg(l)Ej dvff A0 (= by )lghy- (@0 Do’ = 1)

3P (do,) + V- (o, 1) =0, (16 X £ (v 5 (g V5 0, (B26)
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that is the same as the collision operafoin Eq. (99) if Finally, the diffusion coefficient is identified from
velocity correlations, associated to the two-particle distribu-
tion, are neglected in the latter. The solution to BBR5) can

(1) — (1) —
be written in the form 3700 1) fdvovofo (Go:Vo,)=—~DVoP(do, 1

W (B29)
f20E L g*, ) =X(v3) - VEP*(g*,s), B2
o (Vo.g".1) (Vo)-VgP*(g*,s) (B27) t0 get
whereX(vy) is the solution to the integral equation >
D*=——J’ dvgvy - X(vy). (B30)
e (V) — o VX (V)= ek 8 s sl 27
eLli(Vo) = 55— X[Vo Xi(Vo ) = To ed vo )voi -
' 2 ov§ ' . ' These are the same results as those from Sec. 1V,(EQ$.
(B28) and(102.
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