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In a recent paper [Phys. Rev. E 86, 040102(R) (2012)], Santos presented a self-consistency condition that can
be used to limit the possible forms of fundamental measure theory. Here, the direct correlation function, resulting
from the Santos functional, is derived, and it is found to be very close to the result of the White Bear density
functional, except near the origin where it diverges.
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In a recent paper, Santos introduced a novel argument
aimed at eliminating a source of ambiguity in the derivation
of the fundamental measure theory (FMT) approach to density
functional theory for hard spheres [1]. The result is a
new ansatz for the improvement of FMT beyond the basic
Rosenfeld functional [2]. The proposal is quite interesting as
the most accurate density functionals currently in use (such
as the “White Bear” functional [3,4]) are exactly of this
type: heuristic improvements beyond functionals based on
Rosenfeld’s original reasoning together with the additional
requirement that the forms reproduce known exact results in
low-dimensional systems. The introduction of a new element
that eliminates some of the arbitrarity of these extensions is,
therefore, welcome. The proposal of Santos is based on an
exact scaling relation of the type successfully exploited by
him and co-workers in the development of highly accurate
approximations for the free energy and pair-distribution
function of mixtures of hard spheres [5,6]. The purpose of
this Brief Report is to examine one consequence of the pro-
posed ansatz, namely, the implied direct correlation function
(DCF).

The direct correlation function is a fundamental element in
DFT as it provides a connection between model free energy
functionals and liquid-state properties for which much is
known [7]. Given a (grand-canonical) free energy functional
�[ρ] = Fid[ρ] + Fex[ρ] − μρ, where ρ(r) is the ensemble-
averaged local density, Fid is the ideal gas contribution, which
is not relevant here, μ is the chemical potential, and Fex[ρ] is
the excess term, the (two-body) direct correlation function is
given by taking two functional derivatives with respect to the
density,

c2(r1,r2) = − δ2β Fex[ρ]

δρ(r1)δρ(r2)
, (1)

where β = 1/kBT , kB is Boltzmann’s constant, and T is
the temperature [7,8]. This relation between the free energy
functional and the DCF has always provided an important
connection between free energy models and liquid-state
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properties: For example, one of the first indications of the
utility of the White Bear functional was its improvement in
the predicted DCF of hard spheres [3].

In DFT, the only unknown is the excess term, and FMT is
based on an ansatz of the form

βFex =
∫

�(n(r;[ρ]))dr, (2)

where the weighted densities have the generic expressions,

ni(r; [ρ]) =
∫

wi(r − r′)ρ(r′)dr′. (3)

Different models involve different collections of density-
independent weight functions wi and of different forms for
the function �(n). The proposal of Santos makes use of
the weight functions as introduced by Rosenfeld [ws(r12) =
δ( σ

2 − r12), wη(r12) = 	( σ
2 − r12), and wvi

(r12) = r̂12,iδ( σ
2 −

r12) where σ is the hard-sphere diameter] and the � function
of Rosenfeld �R = s�1(η) + �2(η)(s2 − v2) + �3(η)s(s2 −
3v2), where η(r; [ρ]) = nη(r; [ρ]) is the weighted density
formed from the weight function wη(r12), etc. The other terms
are

�1(η) = − 1

πσ 2
ln(1 − η),

�2(η) = 1

2πσ

1

(1 − η)
, (4)

�3(η) = 1

24π

1

(1 − η)2.

The Rosenfeld functional reproduces the Percus-Yevik
equation of state (evaluated using the compressibility
equation) for a uniform fluid [ρ(r) = ρ with ρ being a
position-independent constant] [2,7] (see the Supplemental
Material [9] for details). The idea of the extension discussed
by Santos is that one would like to use the knowledge of more
accurate equations of state than Percus-Yevik to construct
potentially more accurate approximations for �. Note that, for
a uniform system, Eq. (2) shows that the excess free energy
of a uniform liquid is simply βFex = V �[n(ρ)], where V

is the total volume. Santos introduces a correction so that
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FIG. 1. (Color online) The direct correlation function as
calculated using the full line: Percus-Yevik approximation; dotted
line: the White Bear approximation; and dashed line: Eq. (6)
with �(y) = [1 − (y/2) − ln(1 + y)/y]/3 [1]. The left panel
is for a low-density fluid with packing fraction η = 0.1, and
the right panel is for a high-density fluid with η = 0.5. At low
densities, the Percus-Yevik result is quite accurate, and at high
densities, the White Bear result is in good agreement with the
simulations [3].

� = �R + �S , the form of which is fixed by the scaling
relations to be

�S(n) = (s2 − v2)�2(η)�

(
2s(s2 − 3v2)

(s2 − v2)

�3(η)

�2(η)

)
. (5)

Here, the function �(y) is chosen so that the free energy
in the uniform limit agrees with some chosen form (such as
Carnahan-Starling [10]). Calculation of the implied DCF in
the uniform state based on Eq. (1) is straightforward (details
are given in the Supplemental Material [9]). The result is that

c(r; ρ) = 0 for r > σ , whereas,

c(r < σ ; ρ)

= cPY(r < σ ; ρ) − 6η + x(1 − 8η − 2η2) + 3η2x3

(1 − η)3

×
[
�

(
η

1 − η

)
+ 2η

1 − η
�′

(
η

1 − η

)

+ η2

2(1 − η)3
�′′

(
η

1 − η

)]

− η2

4(1 − η)3

(
1

x
− 2x

)
�′′

(
η

1 − η

)
, (6)

where x = r/σ and η = π
6 ρσ 3 and cPY(r; ρ) is the Percus-

Yevik DCF that comes from �R . One feature that stands out is
that this function diverges for x = 0 unless �′′( η

1−η
) = 0. This

divergence is unphysical and, as shown in the figure, spoils the
otherwise reasonable agreement with the results of the White
Bear functional. Hence, if this undesirable behavior is to be
avoided, the only possibility is the relatively restricted set of
corrections given by �(y) = a + by. However, Santos notes
that, in general, one expects that �(y) ∼ O(y2), so this elimi-
nates the possibility of a correction. Santos also offers a modi-
fied version of his proposal that appears to avoid the divergence
in the DCF but at the cost of violating his self-consistency
condition [1]. It is interesting to note that similar terms arise in
deriving the DCF from the Rosenfeld part of the free energy,
but they cancel, thus, leaving the (finite) Percus-Yevik result
(for a demonstration, see, e.g., the Supplemental Material [9]).

To summarize, the proposal of Santos produces a divergent
DCF in the uniform liquid. Nevertheless, the reasoning behind
it seems sound, and it is to be hoped that there might still be a
way to exploit it so as to eliminate some of the ambiguities of
the usual extensions of FMT while retaining their advantages,
one of which is an excellent description of the DCF for hard
spheres.
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