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Nanoscale self-assembly is naturally subject to impediments at the nanoscale. The recently developed
ability to follow processes at the molecular level forces us to resolve older, coarse-grained concepts in terms
of their molecular mechanisms. In this Letter, we highlight one such example. We present evidence based
on experimental and simulation data that one of the cornerstones of crystal growth theory, the Cabrera-
Vermilyea model of step advancement in the presence of impurities, is based on incomplete physics.
We demonstrate that the piercing of an impurity fence by elementary steps is not solely determined by the
Gibbs-Thomson effect, as assumed by Cabrera-Vermilyea. Our data show that for conditions leading up to
growth cessation, step retardation is dominated by the formation of critically sized fluctuations. The growth
recovery of steps is counter to what is typically assumed, not instantaneous. Our observations on
mesoscopic impurities for lysozyme expose a nucleation-dominated regime of growth that has not been
hitherto considered, where the system alternates between zero and near-pure velocity. The time spent by the
system in arrest is the nucleation induction time required for the step to amass a supercritical fluctuation
that pierces the impurity fence.
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Nucleation and growth are considered two separate stages
of all first order phase transitions. The delineation between
the two is the transition from a stochastic regime driven by
fluctuations to a deterministic regime governed by thermo-
dynamics. As a consequence of the high activation barrier
that is usually associated with the nucleation process, most
crystalline nuclei are formed at relatively high supersatura-
tions [1]. During the growth stage that ensues, supersatura-
tion is gradually lowered until equilibrium is reached,
exposing a number of other activation barriers in the process.
One well-known example is the barrier for 2D nucleation on
the flat faces that make up the crystal habit after the
disappearance of kinked and stepped faces [2]. At suffi-
ciently low supersaturation, the formation of new layers by
the condensation of admolecules into crystalline islands
becomes the rate-limiting step of crystal growth.
Crystal growth eventually arrests by one of two means:

(i) by depletion of growth units from the surrounding liquid
until the supersaturation Δμ reaches zero or (ii) at some
finite Δμd by the presence of growth perturbing species
distinct from the constituent crystal units, i.e., impurities.
This impurity induced nonzero value of Δμ where the
crystal growth rate is zero defines the width of the so-called
dead zone [3]. Such a dead zone occurs for a specific class
of impurities, namely, those that are firmly adsorbed onto
the surface with (near-) infinite residence times (Dynamic
residues with finite residence times can in extreme cases
lead to kinetic arrest, but only at very high concentrations.)
The moments leading up to this growth cessation event
have been the subject of intense study [4–11] and are

thought to be well understood. The first theoretical
description was developed as early as 1958 by Cabrera
and Vermilyea (CV) [3], whose core views on the subject
still persist today. The CVmodel for step pinning states that
the step velocity is zero below the dead zone supersatu-
ration, and some finite value v above Δμd.
The important point for our purposes is that growth is

predicted to instantaneously reinitialize once Δμ > Δμd. We
stress that CVonly considered average velocities based on a
mesoscopic model of the steps—a nuance that is typically
overlooked. In fact, this was pointed out by the authors
themselves in their seminal paper on the subject. In reality,
steps do not display the smooth curvatures as assumed in
their simplified model, but rather are discrete, atomistic
objects subject to fluctuations. This was already realized by
Frank [12] and explored further by van Enckevort and van
den Berg [9] and more recently by Ranganathan and Weeks
who developed a coarse grained terrace-step-kink model to
study impurity induced step bunching [10,11].
In this contribution we focus on isolated elementary

steps in the classic CV scenario through experimental
means and by the use of kinetic Monte Carlo (KMC)
simulations. We focus on the early stages of growth
recovery atΔμ ¼ Δμd þ δwith δ small compared to typical
bond energies ϵ. As a case study we follow the impurity-
induced growth cessation of an impure (≤95% purity)
commercial preparation of hen egg white lysozyme sup-
plied by Sigma-Aldrich. Previously, we demonstrated that
Sigma lysozyme displays elementary step kinetics that are
not compatible with the predictions made by CV [13].
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The optical technique we employed to measure the mean
growth rate had only a limited lateral resolution and was
therefore blind to the presence of surface bound impurities
and the effects they have on local step structure. We
identified the supersaturation at which growth cessation
starts to occur to be βΔμ ¼ lnð40=37.5Þ ¼ 0.065with β the
inverse temperature. To probe the still-unknown mecha-
nism of this phenomenon [13,14], we revisit the Sigma
lysozyme system using atomic force microscopy at con-
ditions close to kinetic arrest. In situ atomic force micros-
copy reveals that the molecular impurities in the liquid
self-aggregate into mesoscopic particles that have a high
affinity for the (110) face of tetragonal lysozyme crystals
(see Supplemental Material [15], Fig. 1). Two types of
impurities can be discerned: linear fibrils [Supplemental
Material [15], Figs. 1(b) and 1(c)] and amorphous clusters
[Supplemental Material [15], Fig. 1(d)]. The adsorbed fibrils
are mostly aligned with the h001i direction [Supplemental
Material [15], Fig. 1(e)] suggesting that the interaction with
the crystal surface is highly specific. Given that such
structures are not observed when using highly purified
lysozyme solutions, they must be the result of a molecular
aggregation process in the liquid in which the impurity
species play a crucial role. The strong impurity-crystal
interaction (as inferred from the long impurity residence
time on the surface) gives rise to a high density network of
linear impurity chains. The atypical anisotropic structure and
mesoscopic dimensions of the impurities renders the prevail-
ing model of the impurity fence (randomly dispersed atomic
impurities) inapplicable for this case. Rather, the maze
of impurities creates a scenario that is more reminiscent of
percolation theory and is therefore out of the scope of
conventional impurity models.
The impurity effect is maximal (see Supplemental

Material [15], Fig. 2) in the h110i direction where the
contact area between the aligned fibrils and steps is
maximal. The impurities create roadblocks where the local
step velocity is effectively zero (Fig. 1). After an induction
time of minutes, protuberances are formed by step seg-
ments that suddenly burst through the impurity blockade.
The local step velocity jumps from 0 nm=s to 2.5 nm=s
only to drop back to 0 nm=s when another fibril is
encountered. The system effectively cycles through discrete
stages of cessation and growth, averaging out to a rate of
growth of the entire step front of 0.7 nm=s. We remark that
the rapidly emerging terraces that are formed during the
breakthrough event of formerly halted step segments are
relatively devoid of impurities. This suggests that the
equilibrium surface impurity density is not yet reached
locally and that kinetic adsorption factors should be taken
into account. These kinetic factors will become increas-
ingly relevant for higher supersaturation values where the
terrace exposure times become smaller. Also, impurities
can persist on the surface even after step fronts have passed
(see Supporting Movie 1, [15]). Single steps therefore do

not have the cleansing effect that is typically assumed in
crystal growth models, i.e., they do not sweep away (all) the
impurities (either by incorporation or rejection) from the
surface.
In order to advance through the impurity blockade, steps

need to squeeze through slits (with characteristic length Δ)
that exist in between parallel impurity chains. Growth
cessation criteria predict that steps fail to break through
such an obstacle when Δ is smaller than or equal to a
critical value [18]. For larger Δ, the steps are expected to
breach the slit and continue until the next obstacle is
reached. Our data shows that this is not an instantaneous
event. When a step encounters a “wall of impurities,” there

FIG. 1 (color online). Structural evolution of two elementary
lysozyme steps growing in the h110i direction: the dashed white
lines at t ¼ 0 min indicate step segments where the local step
velocity is effectively zero due to blockage by fibrils. After an
induction time of minutes, fingers are formed as a consequence of
a rapid burst through the impurity blockade. The regained
advancement is hampered until the next fibril is reached. The
system cycles through vstep > 0 and vstep ¼ 0. The fresh terraces
created by the formation of fingers, are relatively devoid of
impurities. Gradual impurity binding is observed over the course
of the successive frames.
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is an initial period during which the mean step velocity is
zero, after which a rapid burst in step advancement is
observed. The presence of an induction time suggests that
the breakthrough moment is governed by a nucleation
event. When a local opening of near-critical dimensions of
the impurity grid is encountered, the step needs to create a
protuberance of adequate size before growth resumes. Such
structures, due to their large circumference to surface ratio,
are plagued by a high free energy cost of formation. For
small structures, the cost of creating the relatively large
number of dangling bonds at the periphery dominates the
gains of creating satisfied bonds within the center. Given
that the crossing of the associated nucleation barrier is
driven solely by thermal fluctuations, there is a nonzero
waiting time during which the mean growth rate of the step
is effectively zero followed by a sudden burst—as is
observed in experiment. To get a quantitative understanding
of this process, we performed KMC simulations for a
similar, albeit, simplified scenario.
Our starting configuration is a flat terrace with a central

column of impurities that has a slit of impurity vacancies at
its center (see Supplemental Material [15], Fig. 3). For
Δμ > 0, steps move from left to right in the Supplemental
Material [15], Fig. 3 and need to squeeze through the
central impurity blockade. We monitored the evolution of
the total mass of the system for a broad supersaturation
range, keeping the dimension Δ of the central passage
constant. The average change in mass over the total
simulation time hdM=dti is a good proxy for the step
velocity v. This rate is then normalized by the value v0
obtained for the pure case and plotted as a function ofΔμ in
Fig. 2. For comparison, we also plot the kinetic recovery
that is predicted by the CV step pinning model using

empirically determined rc values. The discrepancy between
the dead zone supersaturation of both cases [Δμd and Δμd
(CV)] has been discussed at length in Lutsko et al [18].
Here we are interested in the kinetic response of the system
for Δμ > Δμd. The CV trace clearly shows a weaker
dependence than the v=v0 trace obtained from simulation.
Probing for the origins of this stronger supersaturation

dependence, we looked at the temporal evolution of the

FIG. 2 (color online). Supersaturation dependence of the ratio
of the impure growth rate v and the growth rate v0 of the pure
system (circles; black line is a guide for the eye). Red line shows
the predicted CV dependence using empirically determined
critical radii. Colored data points correspond to the simulations
in Fig. 3.

FIG. 3 (color online). (a) Total mass within the simulation cell
as a function of time: each cycle starts out in an arrested state
during which the mass fluctuates around a constant value. After
some induction time, a breakthrough occurs that allows the step
to pierce through the impurity blockade. It subsequently accel-
erates and quickly reaches (near) pure velocity (linear growth)
only to become pinned again when the next column of impurities
is reached. (b) Total mass (grey circles) and energy (open squares)
of a single growth cycle. The green and red lines are smoothed
traces of the energy using Savitzky-Golay and Fast Fourier
Transform filters, respectively, with a 20-point sliding window.
(c) Simulation snapshots and close-ups of the mass and energy
evolution close to the breakthrough: the sudden increase of mass
coincides with a crossing of a local maximum in energy followed
by steady growth during which the energy decreases consistently.
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total mass and energy of the system in more detail. The
mass trace shown in Fig. 3(a) is representative of higher
supersaturation values and is in complete accordance with
the classical CV picture. It highlights the stepwise, cyclic
nature of the process. As a planar step front arrives at the
impurity blockade it needs to squeeze through the central
impurity-free slit, and decelerates as a consequence of the
Gibbs-Thomson effect, rapidly regaining its near-pure
velocity as the blockade is passed. The important point
here is that the temporal length of each cycle is roughly
constant and the step velocity never reaches zero.
This regularity is lost for conditions closer to Δμd, see

for example the Δμ ¼ 0.06ϵ trace in Fig. 3(a). The time
spent by the system at constant mass is considerably longer
and varies from cycle to cycle. The enlargement in Fig. 3(b)
shows the mass and energy fluctuations during a single
obstruction stage. After a given induction time, a break-
through event occurs that is characterized by a rapid
increase (decrease) of mass (energy). The further enlarge-
ment in Fig. 3(c) demonstrates that the sudden increase of
mass coincides with a crossing of a local maximum in
energy followed by a stage of steady growth during which
the energy decreases consistently. Essentially, the step
fragment needs to accumulate a critical mass defined by
a critical energy in order to overcome the impurity
obstruction. The process is driven solely by fluctuations
and can therefore be regarded as a nucleation event that is
characterized by a nucleation activation barrierΔE. We also
include the simulation snapshots of the moments leading up
to the step-breakthrough [Fig. 3(c)]: in line with nucleation
terminology we divide the step fragments in groups of sub-,
near- and super-critical mass. It is interesting to note that
subcritical step fragments close to the actual breakthrough
moment change very little in mass, but do correspond to
gradual increases in energy.
Extracting meaningful estimates of the activation

barrier is less trivial than one would initially assume.
The finger morphology and the nucleation barrier that
must be overcome are closely related. The critical size
depends on the shape of the finger since this determines
the length of the boundary of the finger (for fixed total
mass) and this, in turn, determines the contribution of line
tension to the total free energy. Note for instance the red
arrowhead in Fig. 3(b): it highlights a local maximum in
energy (> ΔE) that is not correlated to a significant
change in mass. This demonstrates that the system cannot
be described by a single order parameter, local step
structure needs to be taken into account as well. The
nonproductive fluctuation around t ¼ 1.8 × 108ν−1 (with
ν the KMC attempt frequency) is a reorganization to a step
morphology that is characterized by a larger critical mass
(that is not reached) and therefore does not lead to a
breakthrough.
Reverting back to Fig. 2, we can now rationalize the

increased supersaturation dependence with respect to CV.

For high supersaturation, step deceleration is dominated by
the Gibbs-Thomson effect [19,20] induced by the local step
curvature that is created as the step squeezes through the
blockade (deterministic regime). For lower supersaturation,
the deceleration is predominantly caused by the accumu-
lated induction time spent by the system in arrest leading to
the observed stop-and-go dynamics (stochastic regime). As
supersaturation decreases, the induction time is expected to
increase exponentially, as is the reduction in growth rate.
Effectively, the nucleation of supercritical step protuber-
ances becomes the rate-limiting step, and crystal growth as
a whole becomes nucleation limited thus qualitatively
reproducing the experimental observations. Because nucle-
ation in this case is effectively driven by step meandering, it
will be tightly related to the density of kinks of the pinned
step segment. If the static mean excursion of the step
segment is supercritical, steps will be relatively unencum-
bered by the impurity stoppers. If the supersaturation
decreases, the time during which the steps remain pinned
will depend on the height of the activation barrier (which
sets the amplitude of the required step fluctuation) and the
frequency of nucleation attempts (which is governed by the
rate of terrace width equilibration [21]), both of which
depend on the kink density.
Our data demonstrate that step advancement close to the

cessation condition becomes an activated process where
“nucleation” of step protuberances that pierce the grid of
impurities becomes the rate-limiting step. This nucleation
dominated regime of step advancement exposes an activa-
tion barrier that poses serious restrictions to the advance-
ment of steps which has not been hitherto considered. In
many cases, crystallographic impurities are comparable in
size to the main building blocks of the growing crystal. The
mesoscopic impurities we observe can be 2 to 3 orders of
magnitude longer in length than a single lysozyme mol-
ecule. There are numerous examples of crystallization
systems that are perturbed by linear impurities, leading
to strong nonlinear step kinetics. Notable examples are
peptide-biomineral systems (calcite [22], apatite [23],
calcium oxalate monohydrate [24,25]) and anti-freeze
polymer, and ice [26,27]. In fact, stop-and-go dynamics
were also observed by Weaver et al. for calcium oxalate
monohydrate [25]. Although they implemented a two-step
impurity adsorption model to rationalize the bistable
growth, the similarity with the case presented here is
remarkable.
We stress that the stochastic growth regime presented

here is a general concept that applies to all types of surface
bound impurities, regardless of their size. To illustrate this
point, we end with a qualitative simulation, identical to the
one in Fig. 3 but with impurities similar in size (3 × 1) to
the growth species (see Supplemental Material [15], Fig. 4).
As expected, there is a clear induction time associated with
the passing of each column of equidistant spaced impu-
rities. The small difference with larger impurities is that
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adjoining step segments can interact and cross the impu-
rities in a cooperative manner. Our observations for Sigma
lysozyme differ from existing models on two essential
points: (i) the cleansing assumption of the Frank model
does not hold, and (ii) the anisotropic shape of the
impurities leads to step orientation dependent effects.
These features need to be taken into account in the future
development of more general impurity models.
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