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Crystals grow by laying down new layers of material which can either correspond in size to the height of
one unit cell (elementary steps) or multiple unit cells (macrosteps). Surprisingly, experiments have shown
that macrosteps can grow under conditions of low supersaturation and high impurity density such that
elementary step growth is completely arrested. We use atomistic simulations to show that this is due to two
effects: the fact that the additional layers bias fluctuations in the position of the bottom layer towards
growth and by a transition, as step height increases, from a 2D to a 3D nucleation mechanism.

DOI: 10.1103/PhysRevLett.116.015501

The dynamics of elementary steps determine to a large
extent the kinetics of crystal growth from vapor and
solution. The unperturbed motion of an isolated, elemen-
tary step as described in theory, is, however, rarely realized
during the growth of any real crystal. Rather, steps tend
to interact, and either repel or attract each other [1].
Consequently, the collective motion of a train of equidistant
steps is in most cases inherently unstable and tends to decay
into the grouping of those steps into bunches separated by
areas relatively devoid of steps. In the limiting case where
the interstep distance in a bunch becomes zero, a so-called
true macrostep is formed [2]. The mutual attraction
between steps arises from the competition for growth units
and sets in when the diffusion field that supplies a step
starts to overlap with the diffusion field of a neighboring
step. Complicating factors are solutal flows perpendicular
to the mean step orientation [3,4], asymmetric incorpo-
ration kinetics into upward and downward steps for the
case of supply through surface diffusion [5–7], and the
presence of impurities that dynamically adsorb and desorb
from the terraces [8].
Kinematic descriptions of macrostep motion date back to

the 1950s [9] and find their origin in theories developed to
describe traffic flow and the onset of jamming [10]. Similar
to cars, steps are predicted [11] to decelerate when in close
proximity to one another. An exception to that prediction
was published as late as 1999, with the discovery of the
macrostep-mediated recovery of impurity poisoned surfaces
for the potassium dihydrogen phosphate=Fe3þ system [12].
Counterintuitively, step bunches that populate the f100g
KDP surface can advance under conditions where elemen-
tary steps are firmly fixed in place due to the action of
terrace-bound stoppers. The authors developed a heuristic
model that focused solely on the detachment of trailing
steps from the macrostep’s end, but ignored the question of
why macrosteps start moving in the first place. In 2013,

Ranganathan andWeeks [13] revisited the KDP/Fe system in
simulation but focused on conditions outside of the dead
zone for elementary steps. Their work elegantly shows how
overlapping time scales of impurity adsorption and terrace
exposure can lead to step bunching and ultimately to surface
cleansing, but they do not address the fact that macrosteps
can breach the impurity fence below the dead zone super-
saturation. This simple observation is in direct contradiction
with any theoretical models developed to date, and continues
to challenge our understanding of crystal growth.
The occurrence of such a discrepancy between theory

and experiment need not be surprising if one realizes that
our current picture of crystal growth is based on incomplete
physics. We recently showed that an explicit treatment of
the terrace-step-kink model can expose unanticipated
physics that are overlooked in mean-field approaches or
during the development of analytical expressions [14,15].
The groundwork we performed using kinetic Monte Carlo
simulations for elementary steps now allows us to inves-
tigate the dynamics of macrostep movement and its
response to a field of impurities. Despite their relevance
to crystal growth perfection, macrosteps remain elusive
because they have so far resisted clear experimental
characterization at the molecular level since even state-
of-the-art in situ techniques are blind to their microscopic
structure. In this Letter, we revisit the dynamics of macro-
steps by means of atomistic simulation. Our work makes
clear the mechanism that allows macrosteps to be mobile
while elementary steps are pinned. This is of significant
relevance to the fields of mineralogy, geochemistry, and
biomineralization, that have long been faced with an
apparent contradiction: most minerals in nature are grown
from low supersaturation or low purity conditions, i.e.,
conditions that are traditionally linked with crystal growth
cessation [16] due to impurity poisoning. Our work
demonstrates that macrosteps, which are abundant surface
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features on a wide range of crystals [17,18], provide an
escape route from surface poisoning that explains how
minerals can grow in such adverse growth environments.
For simplicity, we work on the (001) Kossel surface in the

kinetically limited regime. Under these conditions, macro-
steps are intrinsically unstable when no impurities are present
on the surface. Indeed, we found that ad hoc generated
macrosteps composed ofN elementary steps rapidly decayed
into step trains as a result of the entropic repulsion between
the steps. However, when we populated the surface with a
fixed density of impurity atoms, macrosteps relaxed into step
bunches—with finite interstep distance—that were stable
over the entire range of tested supersaturation. In a first
instance we worked with regular impurity arrays with a fixed
interimpurity distance in both directions.
We monitored the kinetics of growth for a broad range of

step heights N and supersaturation values within the dead
zone for elementary steps. A family of curves was obtained
that exhibit sigmoidal dependencies of the mean macrostep
velocity as a function ofN which plateau to a supersaturation
dependent value as shown in Fig. 1(a). These data convolute
two physical effects: namely, the macrostep-mediated break-
ing of the impurity fence that is the focus of this work,
and the Gibbs-Thomson effect as a result of step bending.

The supersaturation dependence of the latter can be accounted
for by normalizing the measured macrostep velocities with
their respective large-N values. We also note that the minimal
step height required for growth recovery decreases as a
function of supersaturation. If we correct the scaled velocities
by shifting each individual curve with respect to its inflection
point Ni, the master curve in Fig. 1(b) is obtained. This
collapse suggests that the underlying mechanism which
pushes macrosteps outside the kinetic dead zone is shared
throughout the entire family of curves.
Inspection of the instantaneous macrostep velocity as a

function of time reveals similar stop-and-go dynamics
as has been reported for elementary steps near growth
cessation [15]. The induction time associated with a
macrostep fragment breaking through two neighboring
impurity atoms exhibits a Poisson distribution (see
Supplemental Material [19]), which is in accordance with
the nucleation-limited kinetics expected for this regime of
growth. Probing for the origin of the dependence of the
growth rate on step height, we monitor the induction time
tind as a function of N for a fixed supersaturation
(Δμ ¼ 0.017ϵ with ϵ the bond energy; Ni ¼ 11.4� 0.1).
The induction time decreases monotonically as a function
of N, leveling out to a finite value for N > 12 (Fig. 2). It is
clear that macrosteps of increasing height can move faster
through a field of impurities by reducing the time spent in
arrest in the stop-and-go regime. Three interesting features
are worth stressing: (i) there is a minimum induction time
associated with this nucleation process, i.e., there is a limit
to how fast macrosteps can accelerate for a fixed surface
impurity concentration, (ii) the value of N where minðtindÞ
is reached, does not correspond to the step height of
maximum macrostep velocity (N > 15), and (iii) the
experimental dependence in Fig. 2 follows a double
exponential decay, rather than a single exponential decay
as expected for classical nucleation. The last two points
suggest that there is more than one mechanism by which
tind can be reduced.

FIG. 1. (a) Velocity v as a function of macrostep height N (in
units of atomic step size a) for a range of supersaturation values
starting from 0.013ϵ (cyan) to 0.037ϵ (blue) at 0.002ϵ increments.
Lines correspond to fits using v ¼ vmax þ ðvsingle − vmaxÞ=
f1þ expð½N − NiÞ=ΔN�g. ν is the kMC attempt frequency.
(b) Master curve obtained by plotting the curves in (a) using
reduced coordinates.

FIG. 2. The time tind required for a macrostep to break through
a column of equidistant, surface bound impurities for
Δμ ¼ 0.017ϵ. The blue line corresponds to a fit using
tindðNÞ ¼ A1 expð−N=N1Þ þ A2 expð−N=N2Þ þ A3, and the red
line using tindðNÞ ¼ A1 expð−N=N1Þ þ A2.
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To understand the origin of the observed tind dependence,
we take a closer look at the macrostep structure as a function
of N and Δμ. More specifically, for a given (N, Δμ) we
calculate the spatial average of the macrostep topography
followed by a temporal averaging during the period that the
macrostep is pinned (Fig. 3). The step bunches exhibit a
discontinuity in step density that becomes more pronounced
for higher macrosteps and for higher supersaturation (see
Supplemental Material [19]). The interesting feature is that
the center of mass of the macrostep shifts closer to the
pinning point as N or Δμ increases. The step bunches are
essentially being compressed by the pressure exerted by the
upper steps leading to ever decreasing interstep distances,
which in the limit, leads to the formation of a facet with a
simple crystallographic index (100). The steady-state pinned
macrostep structure arises from a balance between the
external, positive, supersaturated-induced pressure, and the
internal negative pressure generated by the entropic repul-
sion. The gradual transformation towards a true macrostep
has important consequences for the dynamics of the bottom,
leading step that is being pinned by the impurities. This is
of interest because the fluctuations of the bottom step are
expected to determine to a large extent the rate of advance-
ment of the entire macrostep [20].
As a measure of the dynamics of the bottom step, we

monitored its mean position along the length of the step,
xN , as a function of time (see Supplemental Material [19]).
As expected for a pinned single step, x1 fluctuates
randomly but is negative on average (x̄1 < 0); i.e., the
center of mass is behind the pinning location. x̄N increases
monotonically as a function of N leveling out to a positive
value forN > 7 (Fig. 4). This means that the fluctuations of
the bottom step become gradually more biased towards
positive fluctuations beyond the pinning location as the
macrostep height increases. As negative fluctuations
become gradually suppressed, the induction time to

nucleate a supercritical fluctuation decreases, resulting in
the measured increase in the macrostep growth rate.
However, this dampening of the crystal growth stochas-
ticity can only partially account for the vstep vs N
dependence as it saturates much earlier, i.e., at N ≈ 8
rather than N ¼ 15. For that reason there must be an
additional cooperative mode of step interaction that endows
macrosteps to advance so quickly through an impurity field
even when single steps are firmly pinned. A close inspec-
tion of the surface topography leading up to the moments of
breakthrough reveals the nature of this secondary mecha-
nism. Once a true macrostep is formed, local wetting of the
intersection between the facet defined by the macrostep and
the vicinal surface takes place. Dynamic three-dimensional
clusters are formed which fluctuate, dissolve or grow
(Fig. 5). Clusters that grow to supercritical sizes engulf
the adjoining impurities and locally breach the impurity
field, triggering the macrostep to overflow and advance until
the next column of stoppers is encountered. As only macro-
steps of increasing height gradually transform into true
macrosteps (Fig. 3), it is clear to see why this 3D-nucleation
mechanism only becomes active for larger values of N.
Now that we have established the mechanisms behind

mutual step acceleration, we depart from the idealized
scheme used so far, and move on to more realistic growth
scenarios (see Supplemental Material [19]). First and fore-
most, we no longer limit the incorporation pathway of the
primary growth units to direct impingement from solution,
but allow surface diffusion as well. The general sigmoidal
vstep dependence is recovered, with a slightly stronger
dependence on N. Second, until now we have used neutral
impurities that only interact with the terraces of the crystal;
i.e., all interaction energies were set to zero apart from the
downward interaction used to fix the impurities onto the
surface. Both attractive as well as mildly repulsive solute-
impurity interactions reproduce the general features of the
master curve in Fig. 1. Third, rather than prepopulating
the surface with a fixed density of impurities, we allow for
continuous adsorption and desorption from the surface
resulting in a random, dynamic distribution of impurities.

FIG. 3. Average macrostep structure as a function of step height
N for Δμ ¼ 0.017ϵ. x is the surface coordinate perpendicular to
the mean step direction.

FIG. 4. Mean position x̄N of the bottom step of a pinned
macrostep as a function of N (with Ni ¼ 11.4� 0.1 for
Δμ ¼ 0.017ϵ).
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We target conditions where the characteristic exposure times
of impurity binding sites overlap with the inverse rate of
impurity adsorption, leading to nonequilibrium surface
concentrations as the macrosteps traverse the surface.
Again, we recover the same result: elementary steps remain
pinned, and macrosteps move at a rate that scales with their
height. The interesting additional feature that is uncovered
is that the uppermost, trailing step has the tendency to
sporadically break free from the macrostep and becomes
pinned in the process (see Supplemental Material [19],
video). This is a key experimental observation for the
KDP=Fe3þ system that is explained by the macrostep
structure determined in this work: the interstep distance
gradually increases towards the trailing end of the macrostep,
which leads to an increased probability for impurity binding,
leading to step pinning in the limit.
Our results emphasize the critical importance of fluctua-

tions in the growth kinetics of crystals—fluctuations that are
typically overlooked or averaged out in mean-field, meso-
scopic, or analytic crystal growth treatments. The macrostep-
mediated breaking of the impurity fence is a cooperative
process driven by crowding of the constituent steps. The
physics of step crowding can be captured using a simple
random walk model. We imagine the steps to be abstracted
as random walkers on a one-dimensional lattice that shifts to
the right with probability p and to the left with probability
q ¼ 1-p. Nonzero supersaturation translates into asymmet-
ric probabilities: p > q giving rise to an average drift
velocity c ¼ aðp − qÞ=τ, where a is the lattice spacing.
A line of impurities can only be passed after the passing of a
nucleation activation barrier. The simulations show that the
first walker makes more crossing attempts if other walkers
are present. In fact, a simple argument (see Supplemental
Material [19]) indicates that the mean-first passage time for
crossing the barrier will scale as 1=N where N is the height
of the macrostep. We therefore expect the induction time for
a macrostep to behave as tindðNÞ ¼ t0 þ ½tindð1Þ − t0�=N,
where t0 is the minimum possible time to cross the barrier.
In turn, the average velocity will be

vðNÞ ¼ L
tindðNÞ þ L=v0

¼ v0L
v0t0 þ Lþ v0tindð1Þ=N

; ð1Þ

where v0 is the macrostep velocity in the absence of
impurities and L the distance between lines of impurities.
This assumes that only the lowest elementary step is
involved in the barrier crossing—all other steps pass unim-
peded, as would be the case when breaking through the
impurities occurs via 2D nucleation. When the case of 3D
nucleation dominates, multiple steps n will be involved in
the barrier crossing and the factor N in the velocity will be
reduced to approximately N − n. This simple model repro-
duces the general trend in Fig. 1(b) and therefore gives some
intuition as to how the pressure of the trailing steps increases
the macrostep velocity in the presence of impurities and an
idea as to the origin of the slow approach to a steady-state
velocity with increasing step height.
Our results clearly show why macrosteps are able to move

even when elementary steps are firmly pinned: (i) they
stabilize the step structure required to pass a group of
impurities and (ii) they facilitate the formation of a 3D
nucleus that breaches the impurity fence. The bunching of
steps effectively dampens the stochasticity of crystal growth
by lowering the induction time, and by doing so, leads to a
net acceleration. From the perspective of crowding, this is
interesting because crowding is typically associated with
subdiffusive behavior [21–23]. Macrostep-mediated recovery
is a clear example of a molecular process that is accelerated
rather than decelerated as a consequence of crowding.
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