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Abstract

Modern analyses of diffusion processes have proposed nonlinear versions of the Fokker—Planck equation to account for
nonclassical diffusion. These nonlinear equations are usually constructed on a phenomenological basis. Here, we introduce
a nonlinear transformation by defining the ¢-generating function which, when applied to the intermediate scattering
function of classical statistical mechanics, yields, in a mathematically systematic derivation, a generalized form of the
advection—diffusion equation in Fourier space. Its solutions are discussed and suggest that the g-generating function
approach should be a useful method to generalize classical diffusive transport formulations.
© 2006 Elsevier B.V. All rights reserved.
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The development of generalizations of classical statistical mechanical paradigms to describe non-
equilibrium systems has become an important area of activity. One of the best known examples of this
approach is the so-called “‘nonextensive” thermodynamics first introduced by Tsallis [1] which is based on a
new definition of entropy as being the g-logarithm of the number of states, rather than the natural logarithm
in Boltzmann’s definition. It has been shown that thermodynamics can be consistently built using the Tsallis
entropy as a starting point [2]. The success of this program has led to the introduction of other ‘“‘nonextensive”
generalizations such as the nonextensive diffusion equation [3]. As in the case of the entropy, these
generalizations are usually based on the replacement of a classical, extensive (frequently linear)
phenomenological expression by a parameterized, nonextensive (frequently nonlinear) expression which
reduces to the classical expression for some value of the parameter. In this paper, we show that for the
particular case of diffusion it is possible to introduce these generalizations at a more fundamental level. The
key point is that statistical mechanical derivations often make use of resummations and ansatzs which can be
made “‘nonextensive” in a natural way since they are intrinsically heuristic.

Processes related to diffusive transport are most commonly measured by scattering methods (photon
correlation and thermal neutron spectroscopy) and the spectra are analyzed using the intermediate scattering
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function [4]
Fy(k, 1) = (exp[ik - (R(z) — R(0))]), (1)

which is the space-Fourier transform of the single particle density correlation function, i.e. the probability that
a tagged particle be at position R(7) at time ¢, given it was at R(0) at the initial time. In classical statistical
mechanics, one shows that this function obeys the usual diffusion — or advection—diffusion equation in the
hydrodynamic limit, i.e. for long wavelengths: k¢ <1, where ¢ is the mean free path. This is easily obtained, for
instance, by the cumulant expansion of F(k, t) [4]. We generalize the procedure by defining the ¢g-generating
function

Gk, t)=In, Fo(k,t) = i(lji')l Ki(1), ()
j=0 7

or equivalently the g-cumulant expansion
0o i 1/(1—¢)
(k)
L+-0) =Ko 3)
j:

Fy(k,t) = €XPy [Z(Zl?] ) Kl(t)]
=

where K;(7) are time-dependent functions which can be expressed in terms of the spatial moments [4]. Note that
in the limit ¢ — 1, the g-log and the g-exp reduce to the usual logarithmic and exponential expressions [1].
From (3), we have

oF, (k 0) Z (kY [aK (1)

]F"(k . )

which is an exact equation that follows from the nonlinear transformation (2). Low k expansion on the r.h.s.
of (4) yields

OF(k,t) k() 1., axz(t) J
or [lk TR LT | Fik D, ®
where
o (t 0
10 _ S RO - ROD = u+ (40} =, ©
with u the macroscopic velocity or “drift term”, and
Oro(r) _ 0 _ 2y _
== == (RO —ROP) =2D, ™

where, for simplicity, we have considered isotropic diffusion, with D the self-diffusion coefficient. So to second
order, as usually considered for the classical hydrodynamic limit, we obtain the nonlinear advection—diffusion
equation

OF s(k, 1)

5 =k uFi(k, t) — Dk* Fi(k, 1) (8)
or
1 OF! (k1) )
s WY _k-u— DK
4 5 ik-u k )
The solution for initial condition F(k,t = 0) = 1 (i.e. a real space delta-function) and for positive times is

1/(1-q)

Fy(k,t) = [1 + (1 — q)(k - u — Dk?){] = exp, [(k - u — Dk?)i], (10)

a form commonly found in nonextensive statistical mechanics [5]. It is clear that, in the limit ¢ — 1, one
retrieves the classical result: Fy(k, /) = exp(ik - u — Dk>)t.
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Eq. (8) rewritten as

OF s(k, 1)

Sk u,(k, 1) Fy(k,t) = — Dk* Fi(k, 1), (11)

with u,(k, 1) = u F g’_l(k, 1), can be viewed as the analogue in Fourier space of the porous media equation [6,7],
but in contrast to the latter, the nonlinear advection—diffusion equation (11) yields generalized, but classical
diffusive behavior in real space (i.e. with r/+/Dt scaling, as we shall see below), and therefore applies to a
different class of diffusive transport.

In the absence of flow (u = 0), we call Eq. (8) the g-diffusion equation

aF%f’t) = —DK’Fi(k, ). -

This generalized equation can be cast into a regular diffusion equation with an effective diffusion coefficient
D, by using the identification

Dy =Dy = DFI™\(k,1), (13)

or, substituting the solution given in (10) (with u = 0) and expanding in Dk’ (i.e. for long wavelengths),

)
D,=D (1-q) (DK1Y, (14)
=0
that is D, = D + higher moments(q, k, t), where the higher moments depend on ¢, and also on k and ¢ as for
the space- and time-dependent transport coefficients in generalized hydrodynamics [4]. For ¢ = 1, only the
term j = 0 survives in the sum in (14), and one retrieves the classical diffusion formulation.
We now consider what type of distributions are obtained from the solution to the g-diffusion (12):

Fyk,0)=[1— (1 — ¢)Dk*1]"/(1-9, (15)

As the scattering function must be real and non-negative, the argument in brackets must be positive. This is
always realized for ¢> 1. If we are to allow g< 1, then it is necessary to limit the support of the intermediate
scattering function by including a step function giving

Fyk,0) =1 — (1 — q)DK*"/"=20(1 — (1 — q)Dk>*?), (16)

where @(y) = 1 for y>1 and ©(y) = 0 otherwise. Substitution of (16) into Eq. (12) shows that (16) satisfies the
g-diffusion equation since the time-derivative acting on the step function gives a Dirac delta function with a
prefactor that goes to zero. Note that in this case, since the intermediate scattering function is a function of
DK’t, it immediately follows that in real space it is a function of r?/Dt so that (r*)~Dt which corresponds to
normal diffusion, albeit with non-classical distribution functions.

In one dimension, inversion of the Fourier transform (15) in the case ¢>1 gives

r-Y(1/(g -1y (x>1/<q—1)71/2
Va/(g— 1Dt \2

where x = r/+/(q¢ — 1)Dt, and K, (x) is the modified Bessel function of the second kind. The structure of this
result should not be too surprising since we know that the general solution to the classical diffusion problem is
given in terms of Bessel functions [8]. For some rational values of ¢, it is possible to express the Bessel function

in terms of elementary functions in which case the solution assumes the form p(x)exp(—x) where p(x) is a

polynomial in x. For instance for ¢ = %, we obtain

Gy>1(r, 1) = Ki/g-1)-1/2(%), (17)

G3pp(r,t) = N%ﬁ(x + 1) exp(—x). (18)

Fig. 1 shows a numerical evaluation of the solutions for various values of ¢, and, as ¢ increases, it does indeed
appear to decay as an exponential. In the Appendix we show that, in the limit ¢ — 1, the distribution (17)
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Fig. 2. Distribution G,(r,?) as a function of r* = r/+/Dt for ¢ = 1.05 and 0.95 compared to the Gaussian solution.

approaches the classical Gaussian

1 ¥
Gyq(r, )~ expl —— 1, 19
ql<>2mp(4m> (19)

as illustrated in Fig. 2.
For ¢<1, Fourier inversion of (15) yields

Gq<1(r, l) — 1 F(l/(l - (]) + 1) (§>_1/(1—l])—1/2

WV gD

with x = r/+/(1 — ¢)Dt, and where J, is the Bessel function of the first kind. Here also, for some values of g,
this result can be written in terms of elementary functions in the form /(x)cos x 4+ m(x) sin x where /(x) and

J1/=g+1/2(%), (20)



J.P. Boon, J.F. Lutsko | Physica A 368 (2006) 55-62 59

m(x) are polynomials in x. As an example, for ¢ = %, we have
oS
G pp(r,t) = /3D (2) (3sinx — 3xcosx — x
In Fig. 3, G,(r, t) is illustrated for several values of ¢<1, and in Fig. 2 we show that, as ¢ — 1, the distribution
approaches a Gaussian. We defer to the Appendix the explicit computation of the limit of (20) as ¢ approaches
1 from below.

In the case g< 1, we observe that the distribution goes sometimes negative (for small values of ¢g) and, hence,
becomes unphysical. Note that after the distribution first becomes negative, its magnitude is always very small so that
in some sense it appears to be approximating a function with finite support. Therefore, we must either (a) restrict the
range of allowable values of ¢ to ¢=1, or (b) allow values of ¢ <1 with the understanding that the distribution is an
approximation to a positive-definite function, perhaps one having finite support. It is worth noting in passing that
option (b) is quite commonly used in other areas of statistical mechanics. For example, the Chapman—Enskog
solution to the Boltzmann equation results, at all orders, in a distribution which is not positive-definite [10].

It is interesting to ask what conventional diffusion process would yield the above results. Casting the general
solutions (17) and (20) into the form of a generalized diffusion equation in real space

2 sin x). (21)

3G, (r, 1) 3 Gy(r, 1)
— =D ) ——— 7
ot oD 53
gives, for ¢>1,
q— 1 N(V, t)
D =D — 22
q>1(ra l) B M(}’, l‘)’ ( )
where, with the notation v=1/(g — 1) —1/2,
¢ Kea(r/\lg— DD
N(r,t) = —1=2v,
V(g —1)Dt K\(r/+/(¢g—1)Dt)
—1)D
M@, t)=1 +% (1=2v)(N(, )+ 1),
and, for g<1,
1 — q N/(I’, t)
D =D—— 2
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Fig. 3. Distribution G,<(r,t) as a function of r* = r/+/Dt.
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where, with the notation v=1/(1 —¢) + 1/2,

N/(r Z)= r Jv+l(r/\/ (I—CI)DI)_
(A =¢bt I/ A=g)D1)

M'(r,0) = — (1 rq)Dl(l +2v)(N'(r, £) + 1).

Two typical examples (for ¢ = % and %) of the generalized diffusion coefficient are'

D r 1
Dyt =7 ( nZAN Nm) 9

where D' = 1D, and

D x2sinx 4 (3 — x)(xcos x — sin x)
4 sinx + (1 — I)(cosx —sinx) 7

Dyjy(r 1) = (25)

with x = r/+/D't.

Although the diffusion coefficient D, exhibits a generalized form because of its dependence on the
distribution function G,(r,?), diffusion remains normal in the sense that r/ /Dt scaling is preserved as we
already observed and as can be seen even more explicitly by computing the mean square displacement

(r(1)) = / dri?G,(r, 1), (26)
0
with G,(r, ) given either by (17) or (20), which, with r* = r/+/Dt, yields
(r} (1)) = Dt2 / d* ¥ G (%) = 2D1. (27)

In this paper, we have shown how a standard derivation of the diffusion equation can be generalized into a
“nonextensive” form without the introduction of ad hoc modifications. Instead, we simply generalize the
ansatz used to resum the expansion of the intermediate scattering function. For an initial condition of a Dirac
delta function in real space, the solutions of the resulting diffusion equation in Fourier space take the form of
the g-exponential which commonly arises in nonextensive statistical mechanics. This solution corresponds
to normal diffusion, but with nonclassical distributions. Therefore, the ¢-generating function approach
developed here should be useful to similarly generalize other derivations of diffusive transport.
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Appendix

Here, we show that both (17) and (20) give the correct Gaussian limit as ¢ — 1.
(1) ¢>1: In (17), we make explicit the dependence on ¢ by writing

r*
Ki/g-1-12(x) = K1 )g-1)-1,2 (ﬁ)’ (28)

where * = r/+/Dt. Then introducing v=1/(g — 1) — 1/2, (17) gives

—1 * v
Gq>1(r,z)=W v+;<r2 v—f-;) K‘,<r*\/v+;>. (29)

"Notice that in both cases, the generalized diffusion coefficient exhibits singularities.
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Using z = r*y/v + /v, the asymptotic expansion for v>1 [9]

K, (vz)~ %(1 " jH—zz> _V(l +122)1/4 exp(—v(\/ 1 +22)),

gives, for fixed r*,

K, (r* [y + %) - 21 <r* Vvt 1/2> e(vln2+(1/4)r*2) e(fvf(l/Z)r*z)
v v

_<7V+1/2> - exp<_v _%>

2y 2v

~

With this result, (29) becomes

I'v+1/2) , 1 40
Gqﬁl(r, H~——————Vexp| —v— -,
V2Dt

wherefrom, using Stirling’s formula, we retrieve the classical Gaussian distribution (19).

(i1) g<1: We rewrite (20) with the notation

1 1 r r¥ « 1
= X = = =7 V—f’
1—¢q 2 VU —g¢Dt JT—¢ 2

to obtain

o 1 T(v+)) WEYARS: _J L[
q<1(rst)—m~ \/52 V_E Y vl r V—E .

Now, for v>1 (i.e. ¢ — 1), the Bessel function [9] reads (for fixed o)

exp(vtanh(o) — vor),

v 1
Jy ~
(COSh OC) +\/2mv tanh(e)

which, with z = 1/cosha or & = In(1 + /(1 — z2))/z, and tanhz = 1 — 22 /(1 + /(1 — z2)), gives

1 z v
J,(v2)~ ( )
\/27[\;(1_22/(14_4/1_22)) 1++v1-22

2
xexplv—v—————=],
p( 1+v1—22>

and, for z = r*(\/v — 1/2) /v,

Jo [ vr® v—% o] ! r vex v—f
! v V21 v =22 \ 201/ P 2 )

Inserting this result into (33), we have

1 T'(v+1/2) 1 —1/2\
2 Joi V' 72 2

Gq<1(l’, Z‘)r\"

1 1 O\ r2
\/2_\/—72/2(2/) ‘”‘p(”‘2>
1 1 ITv+1/2) _, 2
RENGINCC RN T e"p<v‘_>’

2
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(30)

(1)

(32)

(33)

(34)

(35)

(36)

(37)
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where we use Stirling’s formula to obtain

1 1 —v—1/2 1/2)'v/2 2
Gt (1 1)~ exp(=v — 1/2)(v +1/2)'V2n V= exp (V _ r_)
2/m2n VDt 2
1 P2
~———exp|——|. 38
2/ nDt p( 2 ) 38)
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