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Atomic-scale structure of hard-core fluids under shear flow
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The effect of velocity correlations on the equal-time density autocorrelation function, e.g., the pair distribu-
tion function ~PDF!, of a hard-sphere fluid undergoing shear flow is investigated. The PDF at contact is
calculated within the Enskog approximation and is shown to be in good agreement with molecular dynamics
simulations for shear rates below the shear-induced ordering transition. These calculations are used to construct
a nonequilibrium generalized mean-spherical approximation for the PDF at finite separations, which is also
found to agree well with the simulation data.
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I. INTRODUCTION

In equilibrium, simple fluids exhibit spatial correlation
which are characterized by the pair distribution functi
~PDF! describing the probability of finding two atoms with
given relative orientation and separation. Equilibrium liqu
state theory is primarily concerned with the calculation of
PDF and a number of successful approaches have bee
veloped, including the Percus-Yevik approximation for ha
spheres, the mean-spherical approximation, and the mor
cent self-consistent integral equations@1#. Knowledge of the
PDF is equivalent to knowledge of the density-density sta
correlation function@1# and once this is known, all othe
interesting static correlation functions, e.g., density-ene
and energy-energy static correlation, functions, are imm
ately known because the velocity dependence of the t
body distribution function in equilibrium is trivial. It is a
characteristic of nonequilibrium fluids that this property
longer holds@2–5#, and the presence of velocity correlatio
is the reason that the determination of static correlation
nonequilibrium fluids, over all densities and length scales
a difficult problem.

The velocity correlations that occur in nonequilibrium fl
ids, as well as in fluctuations about the equilibrium state,
generated by collisions that have the effect of altering
two-body probability distribution so that even if the veloc
ties of the atoms prior to a collision are assumed to be in
pendent variables, the velocities after a collision are not
dependent. The question of whether the velocities of t
atoms prior to a collision are really independent variables
been much studied in statistical mechanics over the las
years and phenomena such as long-time tails and lo
ranged correlations are proof that this assumption is
strictly adhered to@6,7#, although in many cases it remains
good approximation. While the calculation of the preco
sional correlations is a very difficult problem, it has recen
been noted@2# that, for fluids interacting via a hard-cor
potential, it is possible to calculate the postcollisional cor
lations in an arbitrary nonequilibrium state for the spec
case of the two atoms being in contact using the same
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sumptions as underlie the Enskog theory of the one-b
distribution function. This allows one to calculate all sta
correlation functions for two atoms in contact up to this lev
of approximation. It was subsequently shown that this inf
mation could be combined with a formalism borrowed fro
equilibrium liquid-state theory to create a successful mo
of the pair distribution function of a granular fluid@4# ~i.e., a
fluid of inelastic hard spheres!. The purpose of the presen
paper is to describe an extension of this model to inhomo
neous systems and to examine its application to the partic
case of a fluid of elastic hard spheres undergoing unifo
shear flow~USF! and to present detailed comparisons of t
theory to the result of molecular dynamics simulations. U
form shear flow, in which the velocity in one Cartesian d
rection varies linearly with position along another axis, is
particularly interesting example since the density-dens
correlation function can be studied experimentally by me
of light scattering@8#. Furthermore, the hard-sphere model
generally accepted as a reasonable analogy to certain t
of colloidal suspensions, see, for example, Ref.@9# and ref-
erences therein, for which it is possible to achieve conditio
of strong shear~e.g., shear rates comparable to the inve
mean free time of the colloidal particles! in the laboratory,
which are otherwise inaccessible in simple fluids.

The second section of this paper reviews the theory
hind the calculation of static correlations at contact a
evaluates the density-density correlation function at con
for the special case of USF. This makes use of recent w
on solution of the Enskog equation for high shear ra
@10,11# to extend an earlier calculation@2# resulting in an
explicit expression for the PDF at contact in a sheared flu
The third section deals with models for the PDF at fin
separations. It reviews two well known theories that are
tentially applicable to atomic length scales: the kinetic mo
studied by Hess and co-workers@12# and the Langevin
model of Ronis@13#. The former involves an undetermine
parameter which, if the theory is to apply to atomic leng
scales, can now be fixed by requiring agreement with
calculations for two atoms in contact. The latter, while n
involving anya priori unknown parameters is, nevertheles
phenomenological and a diffusion constant appearing in
formulation has in fact been treated as a free parameter w
comparing to experiment@8#. Again, it is noted that the pa
©2002 The American Physical Society09-1
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rameter can be fixed unambiguously by requiring agreem
with the calculated value at contact. It is also shown t
these two theories are in fact very closely related not w
standing their different motivations. Finally, in this sectio
the nonequilibrium version of the generalized mean spher
approximation~GMSA! is introduced as a means of mode
ing the PDF at finite separations based on the atomic-len
scale information coming from the calculations of Sec.
and, qualitatively, the large-separation~i.e., small wave-
vector! information provided by mode-coupling theorie
based on either kinetic theory@12,14,15# or fluctuating hy-
drodynamic@13,16,17,18#, of which the Ronis theory is an
example. This is not unlike the original motivation of Wei
man in introducing the equilibrium GMSA as a means
improving on the Percus-Yevik approximation by incorpor
ing accurate knowledge about the PDF at contact, from
Carnahan-Starling equation of state and the pressure e
tion, to construct a model of the PDF for an equilibriu
hard-core fluid accurate over a wide range of densities@19#.
Recent work by Yustes and Santos@20–22#, as well as Car-
raro and Ciccariello@23#, has shown first that the Percu
Yevik approximation may be viewed as, in some sense,
simplest approximation that provides certain analytic prop
ties that any distribution function must satisfy and seco
that the GMSA of Weisman may be viewed as a framew
for systematically extending this model so as to incorpor
additional constraints. It is with this motivation that the e
tension of the GMSA to nonequilibrium systems was p
posed@3# as a means of modeling the density-density cor
lation function, i.e., the PDF, at all length scales.

In Sec. IV, these calculations are compared with the
sults of molecular dynamics~MD! simulations over a wide
range of shear rates and densities. As noted previously@2#,
there seems to be a strong correlation between the rapid
crease, with increasing shear rate, of the PDF in certain
rections and the onset of shear-induced ordering of the fl
Below this transition, it is shown that the Enskog calcu
tions of the PDF at contact are quite accurate at small s
rates and low densities and becomes increasingly inaccu
as the density and/or the shear rate increases. The the
for the PDF at finite separations are also compared to
and it is found that all three theories are in qualitative agr
ment with the GMSA providing the best quantitative agre
ment with simulation. The paper ends with a discussion
the prospects to extend these results to other systems. A
liminary description of some of these results has appea
previously@3#.

II. THEORY OF CORRELATIONS AT CONTACT

A. Hard-sphere statistical mechanics

Consider a system ofN elastic hard spheres of diameters
in a cubic volumeV5L3 described by a Cartesian coordina
system with axesx̂,ŷ andẑ. The boundary conditions will be
discussed below. The dynamics of the atoms consist of
streaming, subject to the boundary conditions, interrupted
elastic collisions. Two atoms having coordinatesqi ,pi and
qj ,pj at time t0 will collide at time t2 , provided thats
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5uqi j (t2)u, where qi j (t2)5qi(t2)2qj (t2) and provided
qi j (t2)•pi j (t2),0. Immediately after the elastic collision
the momenta become

pi~ t1!5pi~ t2!2q̂i j ~ t2!@ q̂i j ~ t2!•pi j ~ t2!#, ~1!

pj~ t1!5pj~ t2!1q̂i j ~ t2!@ q̂i j ~ t2!•pi j ~ t2!#,

so that the relative momentum is reversed along the line
contact and the total momentum is unaffected.

The statistical description of the system is characteri
by the N-body distribution, rN(x1 ,x2 , . . . ,xN ;t) which
gives the probability of finding the system at a given pha
point, where atom 1 has phasex1[(q1 ,p1) etc., at the speci-
fied timet. Its evolution is specified by the pseudo-Liouvil
equation

F ]

]t
1(

i 51

N

pi•
]

]qi
1(

i , j
T̄2~ i j !1(

i 51

N
]

]pi
•F~xi !G

3rN~x1 ,x2 , . . . ,xN ;t !50, ~2!

where the collision operator is given by@24#

T̄2~ i j !5d~qi j 2s!@ b̂i j 21#Q~2qi j •pi j !, ~3!

where the effect of the momentum transfer operatorb̂i j on an
arbitrary function is to replace the relative momentumpi j by
its postcollisional valuepi j 22q̂i j (q̂i j •pi j ) @see Eq.~1!#. The
final term of Eq.~2! describes any external one-body forc
acting on the atoms. Integrating Eq.~2! over N2n of the
coordinates yields thenth equation of the Bogoliubov-Born
Green-Kirkwood-Yvon~BBGKY! hierarchy, which relates
the n-body distribution to the (n11)-body distribution. In
particular, the result of choosingn5N21 is

F ]

]t
1p1•

]

]q1
1

]

]p1
•F~x1!Gr1~x1 ;t !

52~N21!E dq12d~q122s!

3@ b̂1221#Q~2q12•p12!r2~x1 ,x2 ;t !. ~4!

If the two-body distribution on the right is approximated b
r2(x1 ,x2 ;t)'r1(x1 ;t)r1(x2 ;t)g(q1 ,q2 ;t), the result is the
well-known Enskog equation for the one-body distribution
a system of hard spheres@here,g(q1 ,q2 ;t) is the probability
to find two atoms at positionsq1 and q2 and is normally
approximated by the equivalent local equilibrium function#.
In fact, examination of Eq.~4! shows that the necessary a
proximation is actually

d~q122s!Q~2q12•p12!r2~x1 ,x2 ;t !

'd~q122s!Q~2q12•p12!r1~x1 ;t !r1~x2 ;t !

3g0~q1 ,q2 ;t !, ~5!
9-2
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which is a somewhat weaker approximation than the
sumption that the two-body distribution always factorize
rather, one need only assume that it factorizes for the c
that the two atoms are in contact and approaching one
other, which is to say, just prior to a collision. This is
precise statement, for hard spheres, of Boltzmann’s ‘
sumption of molecular chaos.’’ Immediately after a collisio
the direction of the relative momentum is reversed and
momenta of the two atoms are obviously correlated. In fa
it has been shown@4# that the approximation given in Eq.~5!
implies the form of the entire two-body distribution at co
tact, given by

d~q122s!r2~x1 ,x2 ;t !

.d~q122s!r1~x1 ;t !r1~x2 ;t !g0~q1 ,q2 ;t !

1d~q122s!Q~q12•p12!@ b̂1221#

3r1~x1 ;t !r1~x2 ;t !g0~q1 ,q2 ;t !. ~6!

The distribution is seen to have two parts: the first term
the right describing uncorrelated atoms, and the second
describing velocity correlations which arise because of c
lisions. In equilibrium, the second term vanishes but for n
equilibrium systems, it is generally present and can give
to substantial structural effects as will be discussed be
This relation is critical in that it can be used to calculate,
the same level of approximation as is inherent in the Ens
equation, any static two-body correlation function at conta

Finally, the nonequilibrium pair distribution function i
defined, as in equilibrium, by

g~q1 ,q2 ;t !5VE dp1dp2r2~x1 ,x2 ;t !. ~7!

From the definition of the local density field,

n~r !5(
i 51

N

d~rÀqi !, ~8!

it follows that the PDF is related to the density autocorre
tion function via the usual relationship,

^n~r !n~r 8!;t&5nd~r2r 8!1n2g~r ,r 8;t !, ~9!

where the brackets indicate an average over the~time-
dependent! two-body distribution function.

B. Uniform shear flow

To induce shear flow, modified periodic boundary con
tions are used@25#. In thex andz directions, periodic bound
aries are applied whereas in they direction, an atom with
coordinates qi5(xi ,yi ,zi) and momentum pi
5(pxi ,pyi ,pzi) will have images with q5(xi1aLt,yi
1L,zi) and p5(pxi1aL,pyi ,pzi), wheret is the time and
the parametera, having the units of inverse time, is the she
rate. These are just periodic boundaries applied to the c
dinates qi85qi2atyi x̂ and pi85pi2ayi x̂, which are the
atomic coordinates in the local rest frame of a system un
05110
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going uniform shear flow and are the standard means
which such a flow is simulated.

It is known @10# that this combination of dynamics an
boundary conditions allows for an exact solution of the m
roscopic conservation laws in which the local density is co
stant, the local flow velocity is given byv(r )5aryx̂ and the
local temperature, defined as the excess kinetic energy
tive to the flow field, is spatially uniform in the comovin
frame and increases as

3

2
nkB

]

]t
T52aPxy1F, ~10!

wherePi j is the macroscopic pressure tensor, which is a
spatially uniform, and the last term on the right represe
the effect of the external forces. Typically, an external for
or thermostat, is included such that the right hand side of
equation vanishes, thus giving a constant temperature
allowing for the possibility of a stationary state. Here, it
assumed that for shear rates below the ordering transition
thermostats are equivalent@26,27#.

The one-body distribution function of a sheared and th
mostated fluid of hard spheres has been studied in cons
able detail@10,11#, and may be approximated as

f „q,p…5rS b

2p D 3/2

@det~D!#21/2expS 2
1

2
bpi8pj8D i j

21D ,

~11!

D i j 5d i j 1Ai j , ~12!

where the~constant! matrix of coefficients is defined implic
itly as the solution of

a~dxid jy1dyid jx1dxiAjy1dx jAiy!5Ci j
(0)1Ci j ,lm

(1) Alm ,

~13!

with

Ci j
(0)5rxE dqd~q21!qiqj

3H 1

Ap
w2e2w2/41

1

2
~w212!c~w!J ,

Ci j ,lm
(1) 5

1

2
rxE dqd~q21!F H 8

Ap
e2w2/416c~w!J qiqjqlqm

1H 2

Ap
e2w2/41c~w!J D i j lm G , ~14!

D i j lm5~d i l qjqm1d imqjql1d j l qiqm1d jmqiql !,

c~w!5wFerfS w

2 D21G ,
w5aqxqy ,
9-3
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together with the condition that Tr(A)50. This approxima-
tion gives a semiquantitative description of effects of stro
shear such as shear thinning and normal stresses as w
being positive definite at all shear rates. The PDF at con
within this approximation is found to be

d~r 122s!g~r1 ,r2!

5d~r 122s!x0F12erfS 1

2s2

ar12xr 12y

A11Almr 12l r 12m
D G , ~15!

which follows directly from Eqs.~13! and~6!. Here and be-
low, x0 is taken to be the equilibrium value of the PDF
contact as calculated in the Carnahan-Starling approxi
tion. From this, the projections of the PDF at contact onto
spherical harmonics may be calculated as

Mlm[E dr12Ylm* ~ r̂12!d~r 122s!g~r1 ,r2!. ~16!

Note that from this point, the dependence of all quantities
time is being suppressed since we work in a steady stat

III. THE NONEQUILIBRIUM PAIR DISTRIBUTION
FUNCTION

The Enskog approximation gives information about qu
tities at contact. In order to understand the PDF for fin
separations, several different approaches have been
gested. Two well-known proposals, the kinetic model
Hess@12# and the fluctuation model of Ronis@13#, involve
phenomenological parameters which can be fixed by req
ing that they reproduce one of the momentsMlm as calcu-
lated from Eq.~16!. These theories share the property that
equilibrium, they reduce to the equilibrium PDF so that it
reasonable to attempt to reproduce local information suc
the moments at contact. This contrasts with calculations
the density autocorrelation function based on kinetic the
@14,15# or, equivalently, long-wavelength Langevin mode
@18# which can only give information at asymptotically larg
separations for which the information at contact is not r
evant.

A. Kinetic model

The second equation of the BBGKY hierarchy is

]

]t
r2~x1 ,x2 ;t !1 (

i 51,2
S pi8•

]

]qi
1qi•aJ•

]

]qi
1

]

]pi8
•F~xi !D

3r2~x1 ,x2 ;t !1T̄2~12!r2~x1 ,x2 ;t !

52NE d3@ T̄2~13!1T̄2~23!#r3~x1 ,x2 ,x3 ;t !, ~17!

and integrating over the momenta gives an equation for
pdf
05110
g
l as
ct

a-
e

n

-
e
ug-
f

ir-

as
of
y

-

e

]

]t
g~q12;t !1q12•aJ•

]

]q12
g~q12;t ! ~18!

52E dp1dp2T̄2~12!r2~x1 ,x2 ;t !2nE dp1dp2

3E d3@ T̄2~13!1T̄2~23!#r3~x1 ,x2 ;t !. ~19!

The kinetic models studied by Hess@12# consist in replacing
the complicated right-hand side of this equation by a simp
diffusion or relaxation model constrained only by the r
quirement that it force a relaxation towards the equilibriu
state. This is intended to simplify the complex three-bo
term while capturing the fundamental physical property th
in the absence of shear, it is the collisions, represented
this term, which tend to drive the PDF to the equilibriu
state. The simplest model then takes the form,

]

]t
g~q12;t !1q12•aJ•

]

]q12
g~q12;t !

52G@g~q12;t !2g0~q12!#, ~20!

whereG is a relaxation time. Fourier transforming gives

]

]t
g̃~k12;t !2k12•aJ•

]

]k12
g̃~k12;t !

52G@ h̃~k12;t !2h̃0~k12!#. ~21!

The solution to Eq.~20!, under the assumption of stationa
ity, is

g~q12!5E
0

`

dge2gg0@q12~agG!#, ~22!

where

q12~ag!5~q12x2agq12y ,q12y ,q12z!. ~23!

In Fourier space, this becomes the solution to Eq.~21!,

g̃~k12!5E
0

`

dge2gg̃0@k12~2agG!#,

with

k12~2agG!5~k12x ,k12y1agGk12x ,k12z!. ~24!

As alluded to above, the relaxation time appearing in t
model can be fixed by requiring that the model reprodu
one of the momentsMlm .

B. Langevin model for density fluctuations

The Langevin model of Ronis@13# consists of a
convective-diffusion equation for the decay of density flu
tuations which, in Fourier space, appears as
9-4
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]

]t
dn~k,t !2k•aJT

•

]

]k
dn~k,t !1D~k!k2dn~k,t !5 f ~k,t !,

~25!

where D(k) is a wave-vector-dependent diffusion consta
and f (k,t) is a fluctuating force representing the neglec
degrees of freedom. The fluctuating force is approximated
d function correlated in both wave vector and time, w
amplitude D(k)S0(k)k2 where S0(k) is the equilibrium
static structure factor. The PDF is obtained by solving for
density fluctuation as a functional of the force and evaluat
of the equal-time density-density correlation function w
the result

h̃~k12!5E
0

`

dgD„k~2ag!…h0„k~2ag!…k2~2ag!

3expS 2E
0

g

dg8D„k~2ag8!…k2~2ag8! D ,

~26!

so that it is seen that the particular choice for the autoco
lation of the force leads to the correct result in equilibriu
The similarity between this and the Hess’ model is appar
and in fact the same result is obtained if the relaxation ti
in the latter, Eq.~21!, is taken to be wave-vector depende
with G(k)5D(k)k2. To close the model, Ronis usesD(k)
5D0 /S0(k) with D0 a constant that he takes to be the eq
librium self-diffusion constant, although in the present c
cumstances it will be fixed by the requirement that the mo
give the correct value ofM22 ~the dominant nonequilibrium
moment!. Finally, the nonequilibrium correction can be wri
ten more explicitly by means of an integration by par
which gives

h̃~k12!2h̃0~k12!

5aE
0

`

dg
kxky~2ag!

k~2ag!
h08„k~2ag!…

3expS 2E
0

g

dg8D„k~2ag8!…k2~2ag8! D ,

~27!

where h08(k)[(d/dk)h0(k). The same result has recent
been derived@28# using a random phase approximation in t
context of a Langevin model for the atomic coordinates.

C. Nonequilibrium GMSA

As in equilibrium, define the direct correlation function
usual through the Ornstein-Zernike~OZ! equation

h~r1 ,r2!5c~r1 ,r2!1E dr3c~r1 ,r3!r~r3!h~r3 ,r2!,

~28!

whereh(r1 ,r2)5g(r1 ,r2)21 is the structure function. The
PDF must satisfy the boundary condition that the probabi
for two atoms to interpenetrate is zero so that
05110
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The OZ equation can be solved for both the structure fu
tion and the direct correlation function~DCF!, provided that
this is supplemented by a closure relation between the tw

In equilibrium, the relation between the PDF and the
rect correlation function may be written as

c~r1 ,r2!5 ln g~r1 ,r2!2h~r1 ,r2!1v~r1 ,r2!1B~r1 ,r2!

~30!

where v(r1 ,r2) is the pair potential andB(r1 ,r2) is the
bridge function which is not generally known in closed form
The integral equation approach to liquid state structure
be written in terms of various approximations to the brid
function. SettingB50 yields the hyper-netted chain equ
tion and further approximating lng5ln@11h#'h, or B5h
2 ln(g), yields the Percus-Yevik approximation. A numb
of other approximations exist, including schemes such as
of Rogers and Young@29# and of Zerah and Hansen@30#,
which involve a parametrization of the right hand side of E
~30!. For hard-core potentials, the Percus-Yevik approxim
tion reduces to the statementc(r1 ,r2)50 for ur12r2u.s
and the GMSA replaces the right-hand side by a Yuka
function with parameters adjusted to give a known equat
of state. In this case, these have been shown to be the
two steps in a systematic expansion of the tail of the D
with little underlying physical approximation@20–23#. It
thus becomes natural to carry over this model to the none
librium state so that the closure condition is expressed
terms of a similar parametrization of the tail of the DC
giving the form

c~r1 ,r2!5(
i

AiKi~r1 ,r2!, ur12r2u.s, ~31!

for some set of basis functions$Ki(r1 ,r2)%. As it stands, Eq.
~31! is quite general and the physical approximation will
to truncate and parametrize this expansion as discussed
low.

The problem of solving the OZ equation is now formal
equivalent to that of the case of molecular fluids and sim
techniques can be used@31#. To begin, one expands the an
gular dependence of the DCF, the PDF, and the bound
conditions in terms of spherical harmonics so that

h~r1 ,r2 ;t !5(
lm

hlm~r 12;t !Ylm~ r̂ 12!, ~32!

with similar expansions for the other quantities. Using Ra
leigh’s expansion of a plane wave in terms of radial a
angular functions and the addition theorem for spherical h
monics, it is easy to show@31# that the Fourier transform o
such an expansion has the form

h̃~k1 ,k2 ;t !5~2p!3d~k11k2!(
lm

h̄lm~k1 ;t !Ylm~ k̂1!,

~33!

with the coefficients defined in terms of Hankel transform
9-5
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h̄lm~k;t !54p i lE
0

`

r 2dr j l~kr !hlm~r !. ~34!

The Fourier transform of the OZ equation then becomes

h̄lm~k!5 c̄lm~k!1nc̄l 8m8~k!h̄l 9m9~k!E dk̂Yl 8m8~k!Yl 9m9~2k!Ylm* ~k!

5 c̄lm~k!1n
1

A4p
(

u l 82 l 9u< l< l 81 l 9
(

m852 l 8

l 8

A~ l ,l 8,l 9,m,m8!c̄l 8m8~k!h̄l 9m2m8~k!, ~35!

where

A~ l ,l 8,l 9,m,m8!5~21! l 812mA~2l 811!~2l 911!

2l 11
C~ l 8,l 9,l u000!C~ l 8,l 9,l um8,m2m8,m! ~36!
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and the last line is a well-known result that follows from t
Wigner-Eckart theorem@32#. Equation~35! together with Eq.
~31! and the exact condition, Eq.~29!, serve to define the
integral equation.

In the theory of molecular liquids@31#, auxiliary functions
are usually defined as

f lm8 ~r !55
4p i

~2p!3E0

`

k2dk
sin~kr !

kr
f̄ lm~k!, l even

4p i

~2p!3E0

`

k2dk
cos~kr !

kr
f̄ lm~k!, l odd,

~37!

where f̄ lm(k) could be eitherh̄lm(k) or c̄lm(k). For even
values ofl, the only ones of concern below, this means t
the Hankel transform of the original functions is the Fouri
transform of the auxiliary function. This is useful for nume
cal work but more important is that the auxiliary functio
tend to be of shorter range than the original functions. To
this, we need the relation between the auxiliary functions
original functions in real space,

f lm8 ~r !5 f lm~r !2E
r

`

r 82dr8
1

rr 82
Pl8~r /r 8! f lm~r 8!, ~38!

where Pl8(u) is the derivative of thel th Legendre polyno-
mial with respect to its argument. Direct calculation sho
that if f lm(r )5r 2n then f lm8 (r )50 provided that 2,n, l
13. This transformation therefore removes a subset of lo
ranged decays and is consequently degenerate. The in
transformation is

f lm~r !5~21! l f lm8 ~r !2~21! l

3E
0

r

r 82dr8
1

r 2r 8
Pl8~r 8/r ! f lm8 ~r 8!

1 (
n51

[( l 21)/2]

Alm,nr 2(2n11), ~39!
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where the relationship holds for any choice of the coe
cientsAlm,n—an expression of the degeneracy of the origin
transformation. In the present application, sincehlm(0) is
known, from Eq. ~29!, we will always have Alm,n50
whereas for the DCF, no such statement can be made.

Further discussion of the details of the solution of the
equations is given in the Appendix and only some of t
conclusions of that analysis are stated here. First, becaus
the symmetry of the boundary conditions, only coefficien
corresponding to even values ofl and m will be nonzero.
Second, one expects that, because of the symmetry of
flow, the dominant nonequilibrium contributions come fro
l 52 andm562 ~sinceY221Y222} x̂ŷ) and indeed this can
be verified for the PDF at contact by calculations using E
~15!. In the case that we keep only these contributions to
OZ equation, as well as thel 5m50 component necessary t
describe the equilibrium contribution, the problem can
transformed into the solution of two one-dimensional O
equations with the Yukawa closure and an analytic solutio
possible as described in the Appendix. This approximat
should be understood in the spirit of a truncation of a m
ment solution rather than an expansion in the shear rate
in fact, all of the expressions presented below dependnon-
linearly on the shear rate. The result is that

h~r !5h00~r !Y00~r !12h22,r~r !ReY22~ r̂ !

22h22,i~r !ImY22~ r̂ !

5
1

A4p
h00~r !1A 5

8p
Re„h22~r !…~ r̂ x

22 r̂ y
2!

2A 5

2p
Im„h22~r !…r̂ xr̂ y , ~40!

where the angular average of the PDF is given by

h00~r !5
A4p

2n
@n1h1~r ;n1!1n2h2~r ;n2!#, ~41!
9-6
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with n65n@16ucuA1/4pIm(B22,1)# and where the constan
B22,1, is related toA22,1 occuring in Eq.~39!. As discussed in
detail in the Appendix, the functionsh6(r ;n) may be ex-
pressed in terms of the solution of the OZ equation forho-
mogeneoussystem @e.g., the Percus-Yevik solution if th
right-hand side of Eq.~31! is set to zero or the known ana
lytic solution of the N-Yukawa closure@33# if the basis func-
tions are Yukawa terms# for density n6 . The anisotropic
component is given by

h22~r !5Q~r 21!Fh228 ~r 8;t !1
B22,1

r 3

2
3

r 3E1

r

r 82dr8h228 ~r 8;B22,1!G , ~42!

Im„h228 ~r ;B22,1!…5
A4p

2uaun @n1h1~r ;n1 !2n2h2~r ;n2!#,

Re„h228 ~r !…5Im„h228 ~r !…Re~M22!/Im~M22!.

Aside from the truncation of the OZ hierarchy, these resu
are independent of any assumption about the closure co
tion given in Eq.~31!.

In equilibrium, the GMSA is based on the choice of
Yukawa function for the tail of the DCF. This is motivated b
the expectation that the tail is short ranged and, then, bec
a Yukawa closure is analytically tractable. As discuss
above, recent work has shown that the Yukawa term may
thought of as the first term in a systematic expansion t
removing some of the arbitrarity of this choice. In the sa
spirit, we therefore conclude, as the principal hypothesis
the extension of the GMSA to nonequilibrium systems, t
the tail of the auxiliary DCF function can be expanded a

Q~r 122s!c8~r1 ,r2!5(
l ,m

v lm8 ~r 12!Ylm~ r̂12! ~43!

with

v lm8 ~r !.
1

r
Klmexp~2zlmr !. ~44!

For the spherically symmetric componentl 5m50 this is
just the Yukawa closure as in equilibrium. Because of
nonuniqueness of the relation between the DCF and the
iliary DCF, see the discussion after Eq.~39!, this corresponds
to a closure of the actual DCF of the form

Q~r 122s!clm~r1 ,r2!5v lm~r 12!1 (
n51

[( l 21)/2]

Alm,nr 2(2n11).

~45!

Since the DCF is of no significance in the present conte
the values ofAlm,n are left indeterminate at this stage.

As formulated, the truncated analytic model has five
rameters corresponding to the amplitudes and length sc
of the two Yukawa terms and the constantB22,1 appearing in
05110
s
di-

se
d
e
s

e
f
t

e
x-

t,

-
les

Eqs. ~40!–~42!. These parameters are constrained by t
boundary conditions consisting of the values ofM00 and
M22. In the first application to shear flow@3#, the model was
simplified by settingK005K2250. The justification for this
was simplicity, since there is then only the nonuniquen
parameter,B22,1, and it was shown that a value could b
found which simultaneously satisfied both boundary con
tions reasonably well. However, recent estimates@34# indi-
cate thath22(r ) decays faster than 1/r 3 for larger leading to
the condition that the inverse-cube terms in Eq.~42! vanish
in the limit r→` giving the constraint

B22,153E
1

`

r 82dr8h228 ~r 8;B22,1!, ~46!

This still leaves two parameters undetermined. One of th
will be eliminated by taking the length scale of thev008 (r )
function to be fixed at its equilibrium value and to only allo
the amplitude to be adjusted so as to reproduceM00. This
still leaves one undetermined parameter that can be take
be z22. In an application of this approach to granular fluid
a similar indeterminacy was solved by insisting that the co
pressibility equation continues to hold in the nonequilibriu
state. Here, this is not useful becausev22(r ) has little influ-
ence onh00 which would be the object fixed by such a rel
tion. ~In fact, this could be used as an alternate means
fixing z00.) With no other exact or well-approximated prop
erty to fit, it seems appropriate to try to minimize the pert
bation of the tail of the DCF. The tail of the full DCF i
found to be

c22~r !5K22

exp„2z22~r 21!…

r

r 2z22
2 23z22r 23

r 2z22
2

2
3

r 3E0

`

c22~x!x2dx for r .s, ~47!

which is clearly short ranged if the last term on the rig
vanishes as it in fact does in the present approximation
result of the condition given in Eq.~46!. For large separa-
tions, the tail is therefore the same as that of the auxili
function, a Yukawa term and this cannot be changed by
condition onz22. At short range, the Yukawa term is mod
fied and one possibility that suggests itself is to demand
at contact, the tail assume its equilibrium value, name
zero. This implies thatsz225

3
2 1 1

2 A21.3.8, which is the
value used below.

IV. MOLECULAR DYNAMICS SIMULATIONS

In order to evaluate the model for the structure propo
above, I have performed molecular dynamics simulations
sheared hard spheres in three dimensions. The shearing
is imposed by means of Lees-Edwards boundary conditi
consisting of periodic boundaries in all directions except t
of the gradient~here, they direction!. If a particle exits the
volume in the positivey direction ~say, at y5L/2), it is
9-7
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JAMES F. LUTSKO PHYSICAL REVIEW E66, 051109 ~2002!
reentered at the opposite side of the volume (y52L/2) with
its velocity in the direction of flow shifted asvx→vx2aL
and its position in thex direction shifted tox2aLt wheret is
the total time transpired in the simulation. Taken togeth
these constitute periodic boundaries in the local rest fra
The heating is controlled by periodically rescaling the v
locities. Specifically, to maintain an average temperatureT0,
the velocities are rescaled to give an instantaneous temp
ture of 0.95T0 whenever the instantaneous temperature
ceeds 1.05T0. The simulations reported here were perform
using 500 atoms except where noted below. In all case
cubic simulation cell was used. The equilibration proced
consisted of first creating an equilibrium liquid at the desir
density. After 107 collisions, the shear rate was then insta
taneously set to the desired value and the system allowe
relax under the Lees-Edwards boundary conditions for
other 107 collisions. Finally, the simulation was extended f
another 107 collisions during which statistical averages we
accumulated under the ergodic hypothesis. In order to e
mate the accuracy of the quantities obtained, Erpenbe
pooling method@35# was used whereby averages were ac
mulated over periods of 105 collisions and stored. The re
ported values were subsequently computed by avera
these partial averages and the standard error of these p
averages, i.e., the standard deviation divided by the sq
root of the number of observations, used as an estimat
their accuracy. Except as noted below, the error bars in
figures are smaller than the symbols used to display the d
Finally, all simulations were performed for reduced densit
of n* [ns350.1,0.25,0.5, and 0.75. Based on the differen
of the equilibrium PDF at contact from its low-density valu
namely, x051, these densities correspond to low dens
(x051.14), moderately dense (x051.4), dense (x0
52.15), and very dense (x053) fluids, respectively. Shea
rates are reported in units of the Boltzmann collision tim
a* 5a/(4n* ApkBT).

FIG. 1. Re(M00) as a function of the reduced shear rate,a* for
densities of 0.1~circles!, 0.25 ~squares!, 0.5 ~diamonds!, and 0.75
~triangles!. The lines are the predicted values calculated from
~15!. Note the nonmonotonic behavior at the highest density.
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A. The pair distribution at contact

Figures 1–3 show the projectionsMlm of the PDF at con-
tact onto the spherical harmonics for lm500, 22, and 44 as a
function of shear rate which accounts for angular depend

cies of the form 1,q̂xq̂y , and q̂x
22q̂y

2 , respectively. The
spherical average of the PDF,g00, shows little variation with
shear rate forn* 50.1 and 0.25 and only begins to sho
significant variation abovea* 50.5 for n* 50.5 while at the
highest density, significant variation is observed for all sh
rates and, unlike at lower density, the curve is not monoto
In all cases, the Enskog prediction is a slight decrease w
increasing shear rate which is confirmed in the low-dens
data. The system at intermediate density is consistent w
the model for small shear rates but shows anincreaseat
higher shear rates as does the high-density system at all s
rates, in qualitative disagreement with the model. The ma
nonequilibrium contribution to the structure resides in t
Im(g22) components which show qualitatively similar b
havior: agreement with the model at low density and
shear rates and for low shear rates at moderate density
significant disagreement at moderate density and high s
rates and at all shear rates at high density. The next lar

.

FIG. 2. Same as Fig. 1 but showingM22.

FIG. 3. Same as Fig. 1 but showingM44.
9-8
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ATOMIC-SCALE STRUCTURE OF HARD-CORE FLUIDS . . . PHYSICAL REVIEW E 66, 051109 ~2002!
nonequilibrium contribution, Re(g44), is seen to be nearly a
order of magnitude smaller than Im(g22) and it is also poorly
described by the model.

These results show that the largest nonequilibrium con
butions to the PDF occur in the four directions (61/A2,
61/A2,0). To give a direct overview of the accuracy of t
models, the average of the pdf at contact over a numbe
angular bins, defined as

gmn5E
211mdx

211(m11)dx
d cosuE

ndf

(n11)df
dfg~ q̂!, ~48!

was monitored during the simulations fordx5 1
10 and df

5p/10. Figure 4 shows a comparison between theory
simulation of 1

2 (g9,21g10,2), e.g., of the pair distribution a
contact averaged over the area20.1,x,0.1 and 0.2p,f
,0.3p, for the various densities. This patch is centered
the direction (1/A2,1/A2,0) for which the deviations from
equilibrium are largest. The most striking feature of the
results is that the PDF drops with increasing shear unt

FIG. 4. The value of12 (g9,21g10,2) as defined in Eq.~48!. The
labeling is the same as in Fig. 1.

FIG. 5. The PDF at contact averaged over a solid angle defi
by 20.1,x,0.1 andm/10,f/p,(m11)/10 for 210<m<10.
The shear rate is fixed ata* 51.0 and the information forn*
50.1,0.25 is labeled as in Fig. 1.
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becomes vanishingly small, indicating that no collisions ta
place in that direction. The figure also shows the predic
values based on the generalized assumption of molec
chaos, Eq.~16!, averaged~numerically! over the same solid
angle. It is evident that the model works quite well at t
lowest densities, is reasonable at the intermediate den
and is only qualitatively correct at the highest density.
order to visualize the full directional variation of the PDF
contact, Fig. 5 shows the spatial variation of the PDF av
aged over the same sized solid angle for the whole rang
values off from 2p to p for fixed shear rates of 1.0 fo
n* 50.1,0.25 and Fig. 6 shows the same fora* 50.6 and
n* 50.5,0.75.~The reason for choosing a lower shear for t
higher densities will become apparent below.! For all but the
highest densities, the spatial variation is consistent with
model, Eq. ~15!, whereas forn* 50.75 the agreement is
poor. Indeed, the simulation data in the latter case are er
and appear to be a superposition of a periodic function w
spikes nearf50 andf5p, which corresponds to the di
rections parallel and antiparallel to the flow~i.e., 6 x̂). Fig-
ure 7 shows the same quantity forn* 50.5 anda* 51.0 and
the same superposition of features is apparent. There

d

FIG. 6. The same as Fig. 5, but fora* 50.6 and n*
50.5,0.75.

FIG. 7. The same as Fig. 5, but fora* 51.0 andn* 50.5.
9-9
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JAMES F. LUTSKO PHYSICAL REVIEW E66, 051109 ~2002!
three possible causes for deviations from the model: sh
induced ordering, inaccuracy of the one-body distributi
and breakdown of the assumption of molecular chaos.
structural anomalies at high shear rate and high density
gest the former.

It has been known for some time that hard spheres
dergo an ordering transition at high shear rates@36#. The
nature of the ordered phase remains uncertain and appea
depend on the type of thermostat used@27#. For the simple
rescaling thermostat used here, an ordering first into pla
perpendicular to the direction of the gradient~here, they
direction! and then into strings oriented along the directi
of flow, and in a hexagonal pattern in the plane perpendic
to the flow, has been reported@36#. As a quantitative measur
of such an ordering, the average density in a tube, orien
along the direction of flow has been monitored@2#. This is
defined as

t~u!5
1

npu2L
K 1

N (
iÞ j

Q~u22qi j ,y
2 2qi j ,z

2 !L , ~49!

which can be written in terms of the PDF as

t~u!5
1

pu2L
E dr g~r !Q~u22y22z2!

5
L22

L
1

2

3L
u41

1

pu2L
E dr h~r !Q~r 221!

3Q~u22y22z2! ~50!

and gives the average density, relative to the bulk, obse
along a tube of lengthL and radiusu centered on an atom. In
the limit of largeL, the last term on the right will only give
a nonzero contribution if long-range correlations in the
rection of the flow are present~as they would be for a ‘‘string
phase’’! so that any deviation from the equilibrium valu
could be attributed to the formation of such correlatio
However, for the small systems considered here, the last
will give a nonzero contribution in all circumstances a
variations of the tube density with the shear rate could be
to variations in the PDF which nevertheless do not invo
long-ranged correlations. Figure 8, therefore, shows the t
density for a radius of half the hard-sphere diameter a
function of shear rate for systems of both 108 atoms and
atoms ~giving L56 and 10, respectively!. For the lowest
densities, the tube density actually decreases with increa
shear rate with the decrease being larger for the smaller
tem. Noting that the size of the effect is roughly in inver
proportion to the length of the systems and independen
the density, this would appear to be primarily a finite s
effect leading to the conclusion that in neither case is th
evidence of shear-induced changes in the density in the
nite system limit. Forn* 50.5, the tube density is roughl
constant until abovea* 50.6 at which point it begins to rise
steadily for both system sizes. Although the magnitude of
increase is also a function of system size, the relative va
tion between the two systems is much less than the ove
05110
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increase leading to the conclusion that the increase is du
the development of long-range order. This is consistent w
our previously reported results indicating that shear-indu
ordering takes place at this point@2#. Finally, at high density,
the tube density increases dramatically abovea* 50.2, indi-
cating an ordering transition at that point. This behavior,
this case nearly independent of system size, supports
conclusion that the deviation of the data from the molecu
chaos hypothesis is due to shear-induced ordering forn*
50.5 anda* .0.6 and for virtually all of the data for the
high-density system. It is also consistent with the structu
data which show spikes in the PDF corresponding to an
crease in collisions in the direction of the flow.

We are then only left with the poor agreement of t
model for theg44 to explain. It seems likely that this is sim
ply due to the inadequacy of the information supplied for t
one-body distribution. Since the distribution is accurate o
up to second moments of the velocity, it is reasonable t
the calculation is only accurate up to second order in the
vectors. Since these contributions are in any case small c
pared to the dominantg22 terms in the region of validity of
the model, this aspect of the problem has not been purs
further.

B. The pair distribution function at finite separations

Here, attention is restricted to the domain of densities a
shear rates below the ordering transition. In general,
componentsglm(r ) were estimated during the simulations b
evaluating

glm~r !5
1

Nsamples
(

samples

1

4pr 2dr

3(
i , j

Q~r i j 2r !Q~r 1dr2r i j !Ylm* ~ r̂ i j !, ~51!

where the inner sum is an estimate ofglm(r ) based on a
snapshot of the system and the outer sum indicates an a

FIG. 8. The tube densityt(s/2) as a function of the shear rate
The labeling is the same as in Fig. 1 except that here the lines
only a guide to the eye with the baseline,t(s/2)50 indicated by
the thick line. Open symbols are from simulations of 108 atoms
9-10
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ATOMIC-SCALE STRUCTURE OF HARD-CORE FLUIDS . . . PHYSICAL REVIEW E 66, 051109 ~2002!
age over many different snapshots. The results prese
here are based on snapshots taken every 10 000 collis
Ideally, one would like to replace the outer sum by a co
tinuous time average in the spirit of the ergodic theorem
the computational expense would be prohibitive.

Figures 9–11 show Re(g00(r )) and Im(g22(r )) for n*
50.1, 0.25, and 0.5 anda* 51.0, 1.0, and 0.6, respectively
as determined from the simulations. While the spherica
symmetric component is little changed from equilibrium, t
main nonequilibrium component, Im„g22(r )…, is comparable
in magnitude near the core to the equilibrium PDF but
cays rapidly and is difficult to measure beyond about t
hard-sphere diameters. Also shown in these figures are
results of the GMSA model with both the Yukawa closu
described above and the simpler closure in which the
DCF is set equal to zero outside the core. Both give a g
description of the main features of the structure including
location of the sign changes and the amplitude and wa
length of the oscillations ing22 with the Yukawa closure
being obviously superior in all cases. It is interesting that

FIG. 9. The functions Re„g00(r )…/A4p, upper curves, and
Im„g22(r )…, lower curves, forn* 50.1 anda* 51.0 from simula-
tion~circles!, the GMSA with the Yukawa closure~full lines!, and
the GMSA with the tail of the DCF set to zero~dotted lines!.

FIG. 10. Same as Fig. 9, but forn* 50.25 anda* 51.0.
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largest discrepancy occurs for the lowest density. Based
the observed fluctuations in the identical determination
glm(r ) for this density in equilibrium, the statistical error
for this system appear to account for no more that half
deviation seen in Fig. 9. One noticeable characteristic of
simulation data forn* 50.1 is that Im(g22) appears to be
systematically below the GMSA model and indeed syste
atically below zero away from the core. This suggests t
the deviation might be a sign of the slow, algebraic dec
predicted by mode-coupling theory@34# and which is not
incorporated in the GMSA model.

Figures 12 and 13 show the same simulation data as
11, together with the numerical evaluation of the models
Hess@Eq. ~20!# and Ronis@Eq. ~27!# performed by means o
a Monte Carlo integration using theVEGAS algorithm @37–
39#. Because it can be formulated in real space, the H
model requires one fewer integral than the Ronis mode
that the evaluations are quicker and more accurate. In b

FIG. 11. Same as Fig. 9, but forn* 50.5 anda* 50.6.

FIG. 12. The functions Re„g00(r )…/A4p and Im„g22(r )… for
n* 50.5 anda* 50.6 from simulation~squares and circles, respe
tively!, the Hess model with the smaller parameter~full and dotted
lines, respectively!, and with the larger parameter~dashed and dot-
dashed lines, respectively!.
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JAMES F. LUTSKO PHYSICAL REVIEW E66, 051109 ~2002!
cases, the parameters were adjusted so as to reproduc
calculated value of Im(M22). Curiously, there are two value
of the free parameter in the Hess model that satisfy this c
straint. For the smaller of the two values, Re„g00(r )… is al-
most unchanged from equilibrium and Im„g22(r )… is only
nonzero in a very small region near the core. Both com
nents are nonzero in a small region inside the core.
larger value of the parameter gives rise to a substantial
viation in Re„g00(r )…, which is therefore not in good agree
ment with the simulation data. In contrast, Im„g22(r )… is in
qualitative agreement with the data outside the core. In
case, both components take on substantial values inside
core. The Ronis model, shown in Fig. 13, is similar to t
large-parameter version of the Hess model. The spheric
symmetric component is modeled somewhat better
Im„g22(r )… is somewhat worse than with the Hess mod
The behavior inside the core is also worse, with Re„g00(r )…
even taking on negative values.

V. DISCUSSION

The goal of the work presented here has been to desc
the density-density correlation function in a sheared ha
sphere fluid over a range of densities, length scales,
shear rates. It was shown that the Enskog approximation
the velocity correlations provides a basis for calculating
the density-density correlation function at contact and t
the results hold up well when compared to simulation, ev
for conditions of moderate density and high shear rates.
deed, deviations from the Enskog predictions are prima
attributable to the high shear rate phase transition and
noted previously@2#, appear to signal its onset. For fini
separations, the nonequilibrium GMSA was shown to p
vide a framework within which the known information abo
the correlation function at contact, coming from the Ensk
approximation could be used to provide an accurate desc
tion of the dominant effects at finite separations. Wh

FIG. 13. The functions Re„g00(r )…/A4p and Im„g22(r )… for
n* 50.5 anda* 50.6 from simulation~squares and circles, respe
tively!, and the Ronis model~full and dotted lines, respectively!.
The error bars are the standard errors reported by theVEGAS algo-
rithm used to evaluate the model.
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power-law decays arise naturally in the solution of the ani
tropic OZ equation, the inverse-cubic decay ing22(r ) is in
contradiction to the 1/r 17/3 decay predicted by recent mode
coupling calculations@34#. Furthermore, those calculation
indicate a 1/r 11/3 decay ing00(r ) for which there is no analog
in the OZ solution. Of course, such algebraic decays co
find their origin in the auxiliary functions and, indeed, mig
be used as boundary conditions in place of the Yukawa
sure of the GMSA. However, the mode-coupling results
the result of a number of approximations~linearized Navier-
Stokes-Langevin model solved perturbatively! and may not
be giving the true asymptotic behavior. Altogether, the qu
tion of the actual form of these algebraic decays must
considered to be unresolved at this point since the data
sented here are adequately fitted without them~except, pos-
sibly, for n* 50.1). More extensive simulations that can pr
vide better statistics for the decay at separations significa
above two or three hard-sphere diameters would be requ
in order to resolve this issue. What can be said here is
even if algebraic tails exist, they must be significan
weaker than the dramatic nonequilibrium contributions se
near the core.

Two other, closely related, theories for the PDF were a
considered and shown to capture some of the qualitative
havior of the PDF but both suffer from the unphysical pr
diction of nonzero probabilities inside the core. Before d
missing this class of theory on this basis, it is interesting
consider whether the main failing could be eliminated.
order to show that this is indeed the case, consider the
ond equation of the BBGKY hierarchy for hard spheres

F ]

]t
1 (

i 51,2
S pi8•

]

]qi
1qi•aJ•

]

]qi
1

]

]pi8
•F~xi !D

1T̄2~12!Gr2~x1 ,x2 ;t !

52NE d3@ T̄2~13!1T̄2~23!#r3~x1 ,x2 ,x3 ;t !. ~52!

First, observe that in the most general case the distribu
must have the form

r2~x1 ,x2 ;t !5Q~r 122s!r̄2~x1 ,x2 ;t ! ~53!

since the atoms cannot interpenetrate. Substituting this
Eq. ~52!, one finds two terms proportional tod(r 122s): the
first coming from the action of the spatial gradients on t
step function in Eq.~53! and the second from the collisiona
operatorT̄2(12). These must cancel so that their coefficie
must be equal and this just gives the relation between
collisional and postcollisional distribution functions used
derive Eq. ~6!. The remaining regular part of the kineti
equation then reads
9-12
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Q~q122s!F ]

]t
1 (

i 51,2
S pi8•

]

]qi
1qi•aJ•

]

]qi

1
]

]pi8
•F~xi !D G r̄2~x1 ,x2 ;t !

52NQ~q122s!E d3@ T̄2~13!

1T̄2~23!#r̄3~x1 ,x2 ,x3 ;t !, ~54!

where an analogous decomposition of the three-body di
bution has been introduced. Integrating over all mome
and discarding surface terms then yields

Q~q122s!F ]

]t
1q12•aJ•

]

]q12
Gy~q12;t !

52Q~q122s!nE dp1dp2E d3@ T̄2~13!

1T̄2~23!#r̄3~x1 ,x2 ,x3 ;t !, ~55!

where y(q1 ,q2 ;t) is the nonequilibrium cavity function
and is related to the PDF byg(q1 ,q2 ;t)5Q(q12
2s)y(q1 ,q2 ;t). This suggests that a more physical appro
mation would be to make a relaxation approximation@in the
same spirit as the approximation leading from Eq.~19! to Eq.
~20!# for the cavity function of the form

Q~q122s!F ]

]t
y~q12;t !1q12•aJ•

]

]q12
y~q12;t !

2E dr A~q122r !@y~r ;t !2y0~r !#G50. ~56!

There is no reason at this point to keep the step-functio
this equation since any solution valid for all separations w
be valid outside the core. Then, this gives in Fourier spa

]

]t
ỹ~k;t !2k•aJT

•

]

]k
ỹ~k;t !5Ã~k!@ ỹ~k;t !2 ỹ0~k!#

~57!

and for steady-state shear flow the solution is

ỹ~k!5 ỹ0~k!1E
0

`

dtS akxky~2at!

k
ỹ08„k~2at!…D

3expS 2E
0

t

dt8Ã„k~2at8!…D . ~58!

An extension of the Hess model would be to takeÃ(k)
5( lmAlmYlm( k̂) for some set of constantsAlm adjusted to
give the correct moments at contact. A similar extension
the Ronis model is also possible. An investigation of the
models will be left to a future study.

In conclusion, it has been shown that the Enskog appr
mation for the pair correlations at contact, together with
05110
ri-
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GMSA model, provides a good description of the dens
autocorrelation function in a sheared fluid. The same te
niques also give a good description of the PDF in granu
fluids ~modeled as inelastic hard spheres! @4# giving evidence
that the approach is applicable to a variety of nonequilibri
systems. In both cases, simply knowing the value of the P
at contact, from the Enskog approximation, and applying
standard formalism of liquid-state theory are enough to g
a description of features of the system arising solely from
nonequilibrium state. Further work will include the extensi
of this model to the description of static correlation functio
involving temperature and velocity.
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APPENDIX: SOLVING THE OZ MODEL FOR USF

The OZ equations written in terms of the auxiliary fun
tions are

h̃lm8 ~k!5 c̃lm8 ~k!1n
1

A4p
(

u l 82 l 9u< l< l 81 l 9
(

m852 l 8

l 8

3A~ l ,l 8,l 9,m,m8!c̃l 8m8
8 ~k!h̃l 9m2m8

8 ~k!, ~A1!

and the boundary conditions, which follow directly from E
~38!, are

Q~s2r !hlm8 ~r !52A4pd l0dm01~12d l0!

3 (
n50

~ l /2!21

Blm,nr 2n, ~A2!

Q~r 2s!clm8 ~r !5v lm8 ~r !,

where the constant coefficients are functionals of the str
ture function

(
n50

~ l /2!21

Blm,nr 2n

52
1

r Es

`

dr8(
n50

k21

~4n13!P2n11S r

r 8
D hlm~r 8;t !. ~A3!

Note that Eq.~A3! is not a self-consistency condition: rathe
it will automatically be satisfied for any solution of Eqs.~A1!
and ~A2! as can be verified using the relation
9-13
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hlm~r ;t !5hlm8 ~r ;t !2
1

r 2 (
n50

~ l /2!21

~4n13!

3E
0

r

r 8dr8P2n11S r 8

r Dhlm8 ~r 8;t !. ~A4!

Instead, the significance of the constants is revealed by
sidering the equivalent relation for the DCF,

clm~r ;t !5clm8 ~r ;t !2
1

r 2 (
n50

~ l /2!21

~4n13!

3E
0

r

r 8dr8P2n11S r 8

r D clm8 ~r 8;t !, ~A5!

which implies that

Q~r 21!clm~r ;t !

5Q~r 21!v lm9 ~r ;t !2Q~r 21!
1

r 2 (
n50

~ l /2!21

~4n13!

3E
0

1

r 8dr8P2n11S r 8

r D @clm8 ~r 8;t !2v lm8 ~r 8;t !#, ~A6!

where

v lm9 ~r !5v lm8 ~r !2
1

r 2 (
n50

~ l /2!21

~4n13!

3E
0

r

r 8dr8P2n11S r 8

r D v lm8 ~r 8!. ~A7!

The reason for definingv lm9 (r ) is precisely due to the nonu
niqueness of this transformation, as discussed below Eq.~39!
of the text. The point is that if we assumed a closu
of the full DCF of the form v lm(r )5f lm(r )
1(n51

[( l 21)/2]Alm,nr 2(2n11), then onlyf lm(r ) would con-
tribute tov lm8 (r ) and we would find thatv lm9 (r )5f lm(r ). We
would then complete the problem by adjusting the consta
Blm,n so that the boundary condition is satisfied, meaning

(
n51

[( l 21)/2]

Alm,nr 2(2n11)

5
1

r 2 (
n50

~ l /2!21

~4n13!E
0

r

r 8dr8P2n11S r 8

r D v lm8 ~r 8!.

However, in the present application, we are not concer
about the full DCF and so theBlm,n are simply treated as fre
parameters.

If we retain only thel 50,m50 and l 52,m562, com-
ponents, the model can be reduced to the solution of a
dimensional OZ. The explicit form of the OZ equations
this case are
05110
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h̃008 5 c̃008 1nA 1

4p
@ c̃008 h̃008 1~ c̃228 h̃2228 1 c̃2228 h̃228 !#,

h̃228 5 c̃228 1nA 1

4p
~ c̃008 h̃228 1 c̃228 h̃008 !, ~A8!

h̃8 2225 c̃2228 1nA 1

4p
~ c̃008 h̃2228 1 c̃2228 h̃008 !,

with the boundary conditions

Q~s2r !h008 ~r !52A4p,

Q~s2r !h2628 ~r !52B262,0,

Q~r 2s!c008 ~r !5v008
(0)~r !,

~A9!
Q~r 2s!c2628 ~r !5v228

(0)~r !,

lim
e→0

h008 ~s1e!5M00,

lim
e→0

h2628 ~s1e!5M2621B262,0.

First, note thathl 2m5(21)mhlm* , etc., which follows from
the equivalent property of the spherical harmonics. Then
is useful to separate the equations into their real and im
nary parts to get

h̃008 5 c̃008 1nA 1

4p
@ c̃008 h̃008 12~ c̃22,r8 h̃22,r8 1 c̃22,i8 h̃22,i8 !#,

h̃22,r8 5 c̃22,r8 1nA 1

4p
~ c̃008 h̃22,r8 1 c̃22,r8 h̃008 !, ~A10!

h̃8 22,i5 c̃22,i8 1nA 1

4p
~ c̃008 h̃22,i8 1 c̃22,i8 h̃008 !,

where h̃22,r8 [Re(h̃228 ), etc. Second, because of the linear
in the 22 components of the last two equations and
boundary conditions on the core values of the component
the structure function are constants, these equations
solved by taking

h̃22,r8 5xh̃8 22,i ,
~A11!

x5M22,r /M22,i ,

giving

h̃008 5 c̃008 1nA 1

4p
@ c̃008 h̃008 12~11x2!c̃22,i8 h̃22,i8 #,

~A12!
9-14
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h̃22,r8 5 c̃22,r8 1nA 1

4p
~ c̃008 h̃22,r8 1 c̃22,r8 h̃008 !,

provided Re(v22
0 )5xIm(v22

0 ), which we are free to impose
Now, defineh(r ;u)5h008 (r )1uh22,i8 (r ), which satisfies

h̃~k,u!5 c̃~k,u!1nA 1

4p
@ c̃008 h̃8 001u~ c̃008 h̃22,r8 1 c̃22,r8 h̃008 !

12~11x2!c̃22,i8 h̃22,i8 #

5 c̃~k,u!1nA 1

4p
c̃~k,u!h̃~k,u!, ~A13!

where the last line follows if and only ifu56A2(11x2).
The boundary conditions are then

Q~s2r !h~r ;u!52A4p2uIm~B22,1!, ~A14!

Q~r 2s!c~r ,u!5v008
(0)~r !1uv228

(0)~r !.

Finally, introduce scaled quantities defined byh(r ;u)
5@A4p6uuuIm(B22,1)#H6(r ) and c(r ;u)5@A4p
1uuuIm(B22,1)#C6(r ),

which give

H̃6~k!5C̃6~k!1n6C̃6~k!H̃6~k!,

Q~s2r !H6~r !521, ~A15!

Q~r 2s!C6~r !5@A4p6uuuIm~B22,1!#
21v008

(0)~r !

6uuu@A4p6uuuIm~B22,1!#
21v228

(0)~r !,

which can be recognized as the OZ equation for a~possibly
negative! density n65n@16uuuA(1/4p)Im(B22,1)# and
some particular closure condition~so that this resembles th
usual GMSA!. For the simplest case, in which one tak
v008

(0)(r )50, we haveH6(r )5hpy(r ;n6) and the solution is
trivial. If the tail functions,v008

(0)(r ) andv228
(0)(r ) are Yukawa
em

03
. A

05110
terms, then we can make use of the solution of Hoye a
Blum for a closure consisting of a sum of Yukawa term
@33#. For completeness, we collect together the various tra
formations to see that

h008 ~r !5
A4p

2n
@n1H1~r !1n2H2~r !#,

h22,i8 ~r !5
A4p

2uaun @n1H1~r !2n2H2~r !#, ~A16!

h22,r8 ~r !5xh22,i8 ~r !.

The value of Im(B22,1) is, of course, fixed by requiring tha

lim
e→01

h22,i8 ~s1e!52Im~B22,1!1Im~M22!, ~A17!

while the full PDF is

h~r !5h008 ~r !Y00~r !12h22,r9 ~r !ReY22~ r̂ !

22h22,i9 ~r !ImY22~ r̂ !

5
1

A4p
h009 ~r !1A 5

8p
h22,r9 ~r !~ r̂ x

22 r̂ y
2!

2A 5

2p
h22,i9 ~r ! r̂ xr̂ y, ~A18!

where

h229 ~r !5E
0

`

r 82dr8U2~r 8,r !h228 ~r 8;t !

5Q~r 21!Fh228 ~r 8;t !1
Im~B22,1!

r 3

2
3

r 3E1

r

r 82dr8h228 ~r 8;t !G . ~A19!
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