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Many recent papers have questioned Irving and Kirkwood’s atomistic expression for stress. In Irving and
Kirkwood’s approach both interatomic forces and atomic velocities contribute to stress. It is the velocity-
dependent part that has been disputed. To help clarify this situation we investigate �i� a fluid in a gravitational
field and �ii� a steadily rotating solid. For both problems we choose conditions where the two stress contribu-
tions, potential and kinetic, are significant. The analytic force-balance solutions of both these problems agree
very well with a smooth-particle interpretation of the atomistic Irving-Kirkwood stress tensor.
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I. INTRODUCTION

In 2003 Zhou �1� published his lengthy and detailed paper
“New Look at the Atomic Level Virial Stress” in the
Proceedings of the Royal Society of London. He criticized
the usual Irving-Kirkwood virial expression �2� for the pres-
sure tensor P as a sum of potential and kinetic terms. The
pressure tensor is the same thing as the comoving corotating
momentum flux, and is also minus the stress tensor, ��−P.
The detailed microscopic Irving-Kirkwood approach has
been used for more than 50 years in the interpretation of
atomistic molecular-dynamics simulations �3–6�. Averaged
over a homogeneous periodic volume V, the Irving-
Kirkwood expression for the pressure tensor gives

− �V � PV = P�V + PKV = �
i�j

�Fr�ij + �
i

�pp/m�i.

Here Fij is the force �for simplicity we assume a pairwise-
additive potential� exerted on particle i by particle j, where
the vector from j to i is rij. Particle i, at location ri with mass
mi and momentum pi, obeys Newton’s equation of motion,

mir̈i � Fi
ext + �

j�i

Fij, Fij = − �i���rij��, � � �
i�j

�ij .

Zhou �1� stated that only the tensor force sum, ��Fr�ij
��Fijrij, contributes to the stress, while the tensor momen-
tum sum, ��pp /m�i���pipi /mi�, does not.

This idea—including the forces but not the momenta–is
not quite so outlandish as it seems. In solids, where the long-
time average of the particle location is a sensible quantity,
the virial theorem can be written in a similar tensor form
omitting the momenta:

�PV	 = �
i�j

��FR�ij	, Ri � �ri	 .

This form is derived in Sec. IIC of Ref. �4�. We use angular
brackets here to indicate longtime averages. In situations in-
cluding external forces the tensor force sum must also in-
clude either �Fextr�i or �FextR�i.

Subramaniyan and Sun �7� tested Zhou’s ideas �1� with
molecular dynamics, heating a model atomistic solid subject
to a variety of external boundary conditions on the particle
coordinates. Their simulations showed that only the full
Irving-Kirkwood pressure tensor, potential plus kinetic, was
consistent with macroscopic thermodynamics. Liu and Qiu
�8� recently provided a useful list of references supporting
both sides of the question. In addition they suggested that the
Zhou prescription is correct provided that external fields and
rotation are not involved. Here we explore those latter two
conditions separately and explicitly, showing that both �i� an
external field �gravity� and �ii� a condensed-phase rotation
can be analyzed properly with the Irving-Kirkwood pressure
tensor, in a way compatible with macroscopic continuum
mechanics. This suggests that the original Irving-Kirkwood
approach is more generally useful than is the suggested
modification of it by Zhou �1�.

In order to compute continuous differentiable field vari-
ables �density, velocity, energy, stress, heat flux, etc.� from
atomistic molecular-dynamics simulations, for comparison to
corresponding fields generated by continuum mechanics so-
lutions, we recommend the use of “smooth-particle” aver-
ages. These correspond to smearing individual particle prop-
erties over a spatial region of size h, the range of the smooth-
particle weighting function, as described in a recent text �9�,
summarized in Sec. II, and applied in Sec. III.

Because the derivation of the pressure tensor is familiar
and applies both at and away from equilibrium �4,5�, we do
not repeat that here. Instead, in Secs. III and IV, we describe
and study two especially instructive problems involving
gravitational and rotational forces. We reserve our conclu-
sions and closing remarks for Sec. V.

II. SMOOTH-PARTICLE AVERAGES OF ATOMISTIC
PROPERTIES

Irving and Kirkwood �2� chose to localize particle prop-
erties at the particle locations using delta functions. Though
this is convenient for formal analyses, and even natural for
mass and momentum, a smoothed or smeared-out particle
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contribution to potential energy and to fluxes often simplifies
comparisons with continuum mechanics. The smeared ap-
proach can provide field variables with two continuous spa-
tial derivatives, as we show below.

Because “action at a distance” makes the exact location of
momentum and energy fluxes ambiguous, we choose to
smear out particle contributions within a spatial region some-
what larger in extent than the spacing between particles. We
use a local weight function with a range h, w�r ,h�, to convert
particle properties to continuum field properties. Consider,
for example, the density � and the velocity v in a fluid or
solid composed of particles with individual masses and ve-
locities 
mi ,vi�. In the smooth-particle approach �9,10� field
variables, such as the density and velocity at the point r, are
defined as h-dependent �range-dependent� sums of nearby
particle contributions:

��r� � �
j

mjw��r − rj�� ,

��r�v�r� � �
j

mjv jw��r − rj�� .

The sums include all particles within a distance h of point r.
A good feature of this approach is that these definitions
of density and velocity satisfy the continuity equation
�̇ /��−� ·v exactly. Here, as usual, the dot indicates a co-
moving time derivative following the motion.

Lucy �10� was one of the inventors of the smooth-particle
approach. For convenience we use his form for the weighting
function in all of our smooth-particle sums,

wLucy
D ��r� � h� = CD�1 − 6x2 + 8x3 − 3x4�, x = �r�/h .

This form has two continuous derivatives everywhere. The
normalizing prefactor CD depends on the dimensionality D,

C1 = �5/4h�, C2 = �5/�h2�, C3 = �105/16�h3� .

C is chosen so that the spatial integral of the weight function
is unity:

�
0

h

w1�r�2dr = �
0

h

w2�r�2�rdr = �
0

h

w3�r�4�r2dr � 1.

Lucy’s polynomial form �10� is the simplest normalized
weight function with a maximum value at the origin and two
continuous derivatives everywhere. In Sec. III, where we
consider the mechanical equilibrium of a two-dimensional
fluid in a one-dimensional gravitational field, we compute
average values of the pressure tensor using the one-
dimensional form of Lucy’s weight function �10�.

III. GRAVITATIONAL EQUILIBRATION

Gravitational equilibration is a problem in which both the
potential and kinetic contributions to stress can play a role.
Where a constant gravitational acceleration acts downward
in y, the simple force-balance equation for mechanical equi-
librium is

dP/dy = �dP/d���d�/dy� = − �g .

The stationary density profile ��y� can be found provided
that the dependence of pressure P on the density � is known.
As a simple example problem, chosen to highlight the kinetic
and potential contributions to the virial, we choose to study
the molecular dynamics of an atomistic system which closely
approximates the isothermal fluid equation of state

P��,T� = ��2/2� + �T, T � 1.

This equation of state closely corresponds to the virial equa-
tion of state for two-dimensional particles of unit mass at
unit temperature interacting with a “cusp” potential chosen
to have a spatial integral of unity:

�cusp�r � h� = �10/�h2��1 − x�3, x = �r�/h

→�
0

h

2�r�cusp�r�dr � 1.

�px
2/m	 = �py

2/m	 = kT � 1.

We use this cusp interaction for the interparticle forces
because the model closely corresponds to the simple and
useful thermodynamic equation of state given above. We
choose the range of the cusp pair potential h=3, so that the
deviation of the potential part of the pressure tensor from
that macroscopic equation of state is on the order of 1%.

For periodic two-dimensional systems the virial-theorem
expression for the potential part of the pressure tensor can be
expressed in terms of sums over all N�N−1� /2 pairs of in-
teracting particles �4,5�. For a hydrostatic fluid, where Pxx

�

and Pyy
� are each equal to the potential part P� of the hydro-

static pressure P, we have

Pxx
�V = � �xFx�i�j

= Pyy
� V = � �yFy�i�j = �1/2� � �F · r�i�j = P�V .

For a completely random distribution of particles in the vol-
ume V, the potential part of the pressure is then given by a
force integral. The integral can be related to the integral of
the pair potential using integration by parts. With our par-
ticular choice of pair potential �, with an integral of unity,
and particle mass, unity, the resulting hydrostatic pressure is
simply half the square of the density:

P�V = �1/2� � �F · r�i�j

 − �N�N − 1�/�4V���
0

h

2�r2��dr

� + �N�N − 1�/�2V���
0

h

2�r�dr

� N�N − 1�/�2V�  N�/2 → P�  �1/2��2.

A snapshot from an isokinetic �constant-kinetic-
temperature� simulation appears in Fig. 1.

For convenience we have chosen a situation in which the
potential and kinetic parts of the pressure are equally
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important. At unit temperature �kT=1� and a density of
2��=Nm /V=N /V=2�, we have

P�  �N2/2V2� = �2/2 = 2, PK = �kT = 2.

We choose the gravitational acceleration g so that the
“weight” of a column of unit width and containing ny par-
ticles is equal to the maximum pressure, 4, at the maximum
density, ��y=0�=2. In this case the mechanical equilibrium
force-balance density and pressure profiles are

�� + 1��d�/dy� = − �g → � − 2 + ln��/2� = − gy ,

P�y� = P��y� + PK�y� = g�
y

�

��y�dy .

We test these analytic results against a molecular-
dynamics simulation carried out isothermally �4–6� at a con-
stant temperature of unity. At and below the bottom y=0 of
the column, we place 6nx boundary particles in an area of
3nx �corresponding to the maximum density, 2�. See Fig. 1.
We also include a short-ranged repulsive force,

Frep�y � 0� � − 100y3,

which is applied to those few moving particles which occa-
sionally penetrate the boundary at y=0.

With periodic boundaries in x and a repulsive boundary at
y=0, a 9216-particle simulation gives the typical configura-
tion we showed in Fig. 1. The corresponding kinetic and
potential pressure profiles, averaged vertically with Lucy’s
one-dimensional weight function �10�, are compared to the
analytic force-balance profile in Fig. 2. Evidently the agree-
ment is quite good, and would be qualitatively in error were
the kinetic contribution to the pressure tensor omitted.

IV. ROTATIONAL EQUILIBRATION

Next we consider the influence of the kinetic pressure on
the mechanical equilibrium of a rotating solid. We can use
molecular dynamics to determine the thermal �velocity-
dependent� properties of an isolated rotationless crystal. For
this study we have chosen a nearest-neighbor Hooke’s-law
interaction,

�Hooke =
	

2
��r� − d�2,

with the force constant 	, characteristic length d, and particle
mass m all set equal to unity. To make contact with con-
tinuum mechanics we write the stress tensor in terms of the
displacement vector u and elastic constants 
 and �:

� = 
 � · uI + ����u� + ��u�t� ,

where I is the unit tensor, with Ixx= Iyy �1 and Ixy = Iyx=0.
For the nearest-neighbor Hooke’s-law crystal the Lamé con-
stants are known,


 = � = �3/16	 ,

as is also the complete vibrational frequency distribution
along with the bulk and surface entropies. See Chap. 4 of
Ref. �5� for details.

-50 < x < +50
FIG. 1. Gravitational isothermal equilibrium at unit temperature

for nxny =96�96=9216 moving particles above 6�96=576
boundary particles fixed at the bottom of the system. The width of
the system is nx=96. The height is unbounded. The field strength
g=4 /ny is chosen so that the maximum density matches that of the
fixed particles at the bottom: �=N /V=2 at y=0. This snapshot is
typical of a long simulation used to calculate the smooth-particle
pressure profiles shown in Fig. 2. In all of the figures dimensionless
�or “reduced”� units are used. These follow from the definitions of
unity for the particle mass, Boltzmann’s constant, and the length
and energy scales in the interparticle forces derived from the cusp
potential in Sec. II and the Hooke’s-law potential in Sec. IV.

0

1

2

3

4

N = 9216 + 576
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FIG. 2. Comparison of the observed and analytic pressure pro-
files for the gravitational problem shown in Fig. 1. From top to
bottom the three curves are the total �T or Irving-Kirkwood�, kinetic
�K�, and potential �� or Zhou� contributions to the pressure profile.
These observed pressure contributions are calculated as smooth-
particle averages. The points correspond to the analytic expressions
from the isothermal equation of state PT= P�+ PK= ��2 /2�+�.
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The radial displacement in a rotating disk of radius R,
u�r�, as well as the corresponding stress tensor �, is well-
known result of linear-elastic theory �11�. A derivation for
our two-dimensional situation is sketched in the Appendix.
The results are

u�r� = �2r/18��5R2 − 2r2� ,

�rr = ��2/12��5R2 − 5r2�, ��� = ��2/12��5R2 − 3r2� .

The stress components satisfy the radial force-balance equa-
tion for a plane-polar-coordinate volume element rdrd� ro-
tating at the angular frequency :

+ �r̈ = − �r2 = �d�rr/dr� + ��rr − ����/r .

In the comoving and corotating frame, where stress is the
negative of the momentum flux, rotation provides a centrifu-
gal force per unit mass varying as 2.

To compare these results from linear elasticity to
molecular-dynamics simulations, consider the stationary ro-
tation of a Hooke’s-law lattice. Figure 3 shows two nomi-
nally stationary states of a 2335-particle solid with an angu-
lar velocity of =0.01. The cold crystal is shown at the left.
The kinetic temperature of the warm crystal shown on the
right is kT=0.01. The 2335-particle crystal is nearly circular.
It is the smallest with 36 particles equidistant from the origin
�at �63725.239�. Both these rotational problems were ini-
tialized by thermostating the radial momenta �4,5� while res-
caling the angular momenta to generate thermally equili-
brated, steadily rotating solid disks. During the first half of
each run two separate rescaling, or “Gaussian,” thermostats
were applied, so as to keep the radial temperature and the
angular velocity constant.

Figure 4 illustrates the approximately quadratic depen-
dence of the maximum tensile stress on the rate of rotation
for small angular velocities. For comparison with the simu-
lation results the linear-elastic stress at the center of a disk
with the same mass, Nm=2335, and a series of rotation rates
 is also shown. The agreement is correct to four figures as
→0.

Let us next consider the stresses in a thermally excited
rotating crystal, computed according to the virial theorem
using the formulation of the atomistic stresses by Irving and

Kirkwood �2�. The Hooke’s-law nature of the particle inter-
actions guarantees that our model crystals will not melt. But
as temperature rises the deformation can become quite large,
so that linear-elastic theory no longer applies. Figure 5 is a
typical view of a rotating specimen at a rotation rate of
=0.01 and a kinetic temperature �relative to rigid-body ro-
tation� kT=0.02.

The simplest route to the polar-coordinate stress tensor is,
first, to calculate the kinetic and potential parts of each par-
ticle’s pressure tensor in Cartesian coordinates:

�Pxx
K V�i = �px

2/m�i, �Pxy
K V�i = �pxpy/m�i, �Pyy

K V�i = �py
2/m�i,

�Pxx
�V�i =

1

2�
j

�xxF/r�ij, �Pxy
� V�i =

1

2�
j

�xyF/r�ij ,

�Pyy
� V�i =

1

2�
j

�yyF/r�ij .

In keeping with the Irving-Kirkwood picture, the potential
contributions to the pressure tensor are divided evenly be-
tween pairs 
i , j� of interacting particles. The polar-
coordinate representation for each particle’s pressure tensor
follows from the Cartesian representation by a simple rota-
tion, which can be written as a pair of matrix multiplications:

�PV�polar = R · �PV�Cartesian · Rt,

-30 < ( x,y ) < +30 -30 < ( x,y ) < +30-30 < ( x,y ) < +30

FIG. 3. Stationary rotation snapshots of two 2335-particle
Hooke’s-law crystals. In the rotationless stress-free case all 6828
nearest-neighbor distances are unity. In the steady rotational situa-
tions shown here, both with an angular frequency =0.01, the ten-
sile strain offsetting the centrifugal forces is maximized at the cen-
ter of the rotating solid. The left view is a cold solid. The right view
has a temperature kT=0.01.

0.00

0.01

0.02

0.03

0.0000 < < 0.0001ω2

σ(ω) Stress for N = 2335

FIG. 4. Angular velocity dependence of the cold-crystal maxi-
mum tensile stress on rotation rate. The molecular-dynamics data,
shown here as points, for nearly circular solids of the type shown in
Fig. 3, agree with the linear-elastic result �shown as a straight line
in the figure� for disks to four figures as the rotation rate goes to
zero. The linear-elastic result is �maxV /N= �5N�3 /4 /12��2.

-30

0

30

-30 0 +30

FIG. 5. View of a rotating 2335-particle Hooke’s-law crystal at
an angular velocity of 0.01 and a temperature kT=0.02.
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Ri = �+ cos��i� + sin��i�
− sin��i� + cos��i�

�, �i = arctan�y/x�i.

Figure 5 illustrates a thermally excited rotating Hooke’s-
law crystal. For the figure we have chosen the temperature so
that the thermal stresses make a significant contribution to
the pressure tensor. The radial stress vanishes at the disk
boundary, while the circumferential “hoop” stress remains
tensile there in conformity to the predictions of linear elas-
ticity.

The stresses in two rotating crystals, one cold and one hot,
are compared with the theoretical results from elastic theory
in Figs. 6 and 7. The agreement is nearly perfect, and would
be spoiled if the kinetic contributions were not included. In
particular, omitting the kinetic contribution to the radial
stress would be quite inconsistent with the vanishing of that
stress component at the boundary of the disk.

V. CONCLUSION

Both the gravitational and the rotational problems show
excellent correspondence between conventional continuum
mechanics and atomistic mechanics provided that both the
kinetic and potential parts of the pressure tensor are in-
cluded in the analysis. Although for stationary solids the
solely potential form for the virial theorem is correct, the
number and type of problems which can be studied numeri-
cally are greatly enhanced by including the ideas of Irving
and Kirkwood �2� coupled with the smooth-particle averag-
ing introduced by Lucy and Monaghan in 1977. For well-
defined local properties, both at and especially away from
equilibrium, it is essential that these properties be measured
in a coordinate frame that moves with the material. It is no
accident that the fundamental equations of continuum me-
chanics take their simplest form in the comoving frame. In
particular, the pressure �or stress� and temperature tensors, as
well as the heat flux, only make sense in this frame. Stress
and pressure cannot depend upon the chosen coordinate sys-
tem. Hence we must choose the “comoving” “corotating”
“Lagrangian” frame. In that frame the pressure tensor is sim-

ply the momentum flux, and has both potential and kinetic
contributions, as shown clearly in the two problems solved
here.

APPENDIX

The stationary rotation, at angular velocity , of an elastic
disk of radius R with equal Lamé constants 
=�=�3 /16
obeys the force-balance equation in the comoving frame,

0 = + �2r + ���rr/�r� + ��rr − ����/r .

This macroscopic problem corresponds to a microscopic
model composed of unit-mass particles linked by nearest-
neighbor Hooke’s-law springs. Both the spring constant and
the rest length of the springs are taken equal to unity. The
displacement responsible for the radial strain �rr= �durr /dr�
causes a corresponding strain in the circumferential direc-
tion, ���= �u /r�. The stresses

�rr = ��3�du/dr� + �u/r��, ��� = ���du/dr� + 3�u/r��

convert the force balance to an ordinary differential equation,

r2�d2u/dr2� + r�du/dr� − u = − 2r3�/�3�� ,

with a unique solution such that the radial stress vanishes at
R:

u�r� = ��2r/48���5R2 − 2r2� = �2r/18��5R2 − 2r2� .

This solution can be used to generate the maximum tensile
stress in the disk as well as the stress and strain profiles,

�rr = ��2/12��5R2 − 5r2�, ��� = ��2/12��5R2 − 3r2� .

-0.03

-0.02

-0.01

0.00

0.01

0 < r < 30

ω= 0.01, kT = 0, N = 2335

rr

θθ

FIG. 6. PV in the rotating cold crystal in Fig. 3 with =0.01.
The theoretical radial and circumferential components are shown as
lines based on the expressions derived in the Appendix.

-0.03

-0.02

-0.01

0.00

0.01

0.02

0 < r < 30

ω= 0.01, kT = 0.01, N = 2335

rr

θθ

FIG. 7. Time-averaged stresses in the warm rotating thermally
excited crystal in Fig. 3 with =0.01 and kT=0.01. The thermal
contributions to �PV�rr and �PV��� are the points at the top. The
theoretical expressions for the stress �based on the cold-crystal elas-
tic constant� shown as lines in the figure agree well with the points
representing results from molecular dynamics. The molecular-
dynamics results include both the potential and kinetic contributions
to the comoving corotating stresses.
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