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AbstractÐA fuzzy decision tree is constructed by allowing the possibility of partial membership of a point in the nodes that make up

the tree structure. This extension of its expressive capabilities transforms the decision tree into a powerful functional approximant that

incorporates features of connectionist methods, while remaining easily interpretable. Fuzzification is achieved by superimposing a

fuzzy structure over the skeleton of a CART decision tree. A training rule for fuzzy trees, similar to backpropagation in neural networks,

is designed. This rule corresponds to a global optimization algorithm that fixes the parameters of the fuzzy splits. The method

developed for the automatic generation of fuzzy decision trees is applied to both classification and regression problems. In regression

problems, it is seen that the continuity constraint imposed by the function representation of the fuzzy tree leads to substantial

improvements in the quality of the regression and limits the tendency to overfitting. In classification, fuzzification provides a means of

uncovering the structure of the probability distribution for the classification errors in attribute space. This allows the identification of

regions for which the error rate of the tree is significantly lower than the average error rate, sometimes even below the Bayes

misclassification rate.

Index TermsÐAutomatic learning, decision trees, fuzzy set theory, global optimization, backpropagation, nonparametric regression,

classification.
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1 INTRODUCTION

THE use of fuzzy set theory and fuzzy membership
functions [1], [2] in decision trees for classification dates

back to early work by Chang and Pavlidis [3] and by Zadeh
(in [4], where a decision tree is referred to as a branching
questionnaire). These papers are devoted to the design of
efficient algorithms that extract a class prediction for an
input from a given fuzzy decision tree. In more recent work
[5], [6], the focus has shifted to the the problem of automatic
induction from a set of training data of the fuzzy
classification tree itself. This task is of practical relevance
because a fuzzy decision trees can be used in the automatic
design of a knowledge-based representation containing
linguistic variables and fuzzy rules, replacing the currently
used heuristic fuzzy-rule search methods [7], [8], [9], [10].

The present research is inspired by the role that

fuzzification has played in the problem of clustering, which

may be viewed as a form of unsupervised learning: The

classical, crisp clustering problem is to assemble a set of

points into a number of groups (clusters) so as to minimize

some cost function. This is essentially a combinatoric

problem. Fuzzifying this problem by allowing a point's

membership in a cluster to be a real-valued variable

transforms the crisp, combinatoric problem into an analytic

problem which can be attacked with all the machinery of

analytic calculus.

In the area of supervised learning, a strong dichotomy
exists between symbolic approaches, such as the generation
of decision trees, and subsymbolic approaches, most
notably, connectionist methods like neural networks [11].
Both types of model have their advantages and drawbacks:
Decision trees are, by their nature, readily interpretable and
well-suited to classification problems. They are a less
natural model for regression and suffer from a well-known
sensitivity to the data used in their construction. A further
advantage of decision trees is that there exist a number of
efficient algorithms that are able to find near-optimal
architectures for the tree. Connectionist models are gen-
erally analytic so that powerful algorithms are available for
determining their parameters, they are robust, and they are
naturally suited for regression or binary classification
problems. However, they are usually difficult to interpret
and are thus less useful when explanation, rather than
prediction, is the goal. Understanding the relation between
these two types of models is one of the motivations that
guides this investigation of fuzzy decision trees.

In the present work, we extend the existing procedures
for the generation of decision trees in order to allow the
possibility of partial memberships in the nodes of the
decision tree. This reformulation of the tree construction
algorithm in terms of fuzzy degrees of membership makes
it possible to employ analytic tools in the construction of
decision trees that are globally optimal. In particular, it
allows the design of an elegant algorithm, analogous to
backpropagation in a neural network, that determines the
parameters of the membership functions in a global
manner. The starting point for the generation of fuzzy
decision trees is a CART tree [12], whose crisp (Boolean)
splits are replaced by fuzzy sigmoidal splits. The para-
meters of the fuzzy splits are then determined by the global
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optimization of a cost function. The learning procedure
involves the propagation of the tree estimates from the
leaves of the tree to the root node. Since this backpropaga-
tion takes place directly on the structure of tree itself, it
maintains the knowledge representation provided by the
decision tree, which is of fundamental value when we are
interested not only in performance, but also in articulating a
representation that is intelligible.

Some of the elements of the present work have already
been addressed separately in the literature: Soft decisions
have been introduced in the work of Schuermann and
Doster [13], Quinlan [14], Jordan and Jacobs [15], and Sethi
[16]. In [17], Wang and Suen use a fixed fuzzification
scheme for the splits in order to improve the efficiency of a
decision tree classifier. They then use a global training
algorithm in order to generate extended terminal nodes that
improve the performance of the classifier. Note, however,
that, in this work, the parameters of the fuzzy splits are not
modified during the global training. The use of CART in the
design of fuzzy inference systems is discussed in [18].

Previous work on fuzzy decision trees (see, for instance,
Janickow [6]), is focused on extensing the capabilities of the
decision tree so that it is able to perform approximate
reasoning with linguistic variables. In contrast to this goal,
the objective of the present research is to use fuzzy set
theory in the construction of decision trees in order to
incorporate into a symbolic method the flexibility char-
acteristic of connectionist approaches.

There have also been some efforts directed toward the
integration of symbolic and subsymbolic approaches. Of
particular relevance are the work initiated by Sethi on
entropy nets [19], [16], [20], and the tree-structured
hierarchical mixture of experts proposed by Jordan and
Jacobs [15]. In Sethi's work, [19], [16], [20], a mapping
between a decision tree and a perceptron with two hidden
layers is proposed. (In fact, it is also possible to construct a
mapping from the decision tree to a single hidden layer
perceptron, as shown by Park in [21].) Making use of this
correspondence, the knowledge representation articulated
by the decision tree is translated into the architecture of a
neural network whose connections can then be retrained by
a backpropagation algorithm. This procedure has the
advantage over the usual connectionist methods that it
provides an automatic procedure to determine the archi-
tecture of the network. Furthermore, the initial values of the
network weights are also fixed by the tree-generation
algorithm. This initialization speeds the training of the
network and, in some cases, prevents the backpropagation
algorithm from getting trapped in local minima [21]. In
more recent work, Sethi and Yoo [20] exploit this mapping
in order to generate decision trees whose hierarchy of tests
is determined in a global fashion by a neural learning
algorithm. Their starting point is a fully developed binary
tree of a fixed depth whose internal nodes are initially
empty. The leaves of the tree are labeled before the learning
process starts. The decision tree is then converted into a
multilayer network whose weights are determined by a
learning scheme that uses backpropagation of the errors on
the auxiliary network. This scheme also involves a softened
form of competition between the output units correspond-

ing to the terminal nodes of the tree in such a way that the
tree decision hierarchy is established in the course of the
training. Thus, the multivariate splits corresponding to the
inner nodes of the tree are determined simultaneously in a
global fashion. The size and the effective architecture of the
final network can be controlled only in an indirect fashion
by tuning two parameters: the original depth of the tree,
and a growth factor, which limits the number of wins that a
particular output layer unit of the network may accumulate.
The a priori limitation in the depth of the decision tree may
hinder the performance in problems where deep, but not
very complex, trees are the optimal architecture. In the
present work, the global optimization problem is solved by
designing a backpropagation algorithm on the tree itself
without having to resort to an auxiliary neural network.
This has the advantage that it is not necessary to implement
any sort of competitive learning to enforce the decision
hierarchy. The initial values of the fuzzy splits are given by
those of the crisp tree, which have been obtained by a series
of local optimizations presumably leading to a nearly
optimal solution to the inductive learning problem. By
using the skeleton of the CART tree, we take advantage of
the well-studied heuristics developed to extract the tree
architecture directly from the training data and also avoid
limiting a priori the final size, depth, or complexity of the
tree.

In the tree-structured hierarchical mixture of experts
proposed by Jordan and Jacobs [15], a neural learning
algorithm is also used to determine the parameters of the
classifier, but little guide is given as to how to the
architecture of the mixture should be chosen.

The organization of the paper is: In Section 2, the
generation of crisp decision trees is recast in terms of
membership functions. This reformulation permits the
fuzzification of the crisp trees, which is described in
Section 3. Sections 4 and 5 are devoted to the formulation
of the backpropagation algorithm for regression and
classification, respectively. The results of experiments to
demonstrate the performance of the globally optimal fuzzy
decision trees are also presented in these sections. Finally,
Section 6 summarizes the results and conclusions of this
work.

2 CONSTRUCTION OF A CRISP DECISION TREE

The objective of the present research is to take advantage of
extensions of the concept of ªmembership of a point x to a
set Aº beyond the Boolean paradigm (either x 2 A or x 3 A)
in order to improve the automatic construction of binary
trees designed to solve regression and classification
problems.

Traditional set theory considers only crisp sets: The
degree of membership of a point x to a set A is given by the
Boolean variable �A�x�, which can take only the values 1, if
x 2 A, and 0, if x 3 A. Fuzzy set theory [1], [2] expands the
concept of ªbelonging to a setº by introducing the
possibility of partial membership of a point to the set in
question. In particular, the degree of membership of a
point x to a fuzzy set A is allowed to take any real value
between 0 and 1, i.e., �A�x� 2 �0; 1�. By eliminating the
Boolean constraint for the set memberships, we improve
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the knowledge representation capabilities of the decision
tree, incorporating into its construction the flexibility that
is characteristic of neural networks. This should in turn
lead to an enhanced performance in terms of robustness
and quality of results of the trees used to tackle regression
and classification problems.

There are various approaches to the construction
Boolean decision trees [12], [22], [23]. There also exist many
possible strategies to incorporate fuzziness in the architec-
ture of decision trees. We choose to reduce the arbitrariness
in constructing fuzzy decision trees by demanding that
several properties of crisp decision trees are recovered as
the memberships become Boolean. In order to elucidate
how this requirement can be met, as well as to fix notation,
we briefly review the construction of crisp decision trees.
We follow the method CART (Classification And Regres-
sion Trees) developed by Breiman et al. [12].

For the sake of concreteness, we assume that there are D

predictor variables (or independent variables) and that they

are continuous, i.e., x � x�d�
� 	D

d�1
2 S � RD, where S has

finite support. The inclusion of nominal variables presents

no difficulties except that we do not consider the possibility

of fuzzifying nominal splits. The dependent variable, whose

value is the objective of the prediction, can be either

nominal (classification) or real-valued (regression).
We have at our disposal a training set consisting of Ntrain

labeled examples xn; yn� �;n � 1; . . . ; Ntrainf g, where both
the predictor variables (or attributes) and the dependent
variable have been recorded (in a database, for example).
The training set is used to build a tree (T), composed of a
collection of nodes (ti 2 T ; i � 0; 1; 2; . . . ) arranged in a
hierarchical manner. CART uses a top-down approach to
build a binary tree. The first node of a CART tree T is the
root node, denoted by t0. By definition, all examples are
assigned to this node. The tree is constructed by a divide-
and-conquer strategy in which the attribute space is
partitioned by a hierarchy of Boolean tests into a set
nonoverlapping regions, in each of which the decision
problem is simpler. Each of the tests in this hierarchy
corresponds to an internal node of the decision tree.

Assume that the tree has been grown up to a given
configuration and that, at this stage, node ti is a terminal
node of the tree. This node is characterized by a member-
ship function �i�x� which is equal to 1 for those examples x

that satisfy the conjunction of Boolean tests leading to ti,
and 0, otherwise. The number of examples from the training
set in node ti is

Ni �
XNtrain

n�1

�i�xn�: �1�

In a regression problem, node ti gives a prediction of the
value of the dependent variable equal to the average value
of this variable y for the elements of the training set
assigned to ti

�yi � 1

Ni

XNtrain

n�1

�i�xn�yn: �2�

In classification problems, a class label is associated to node

ti according to a majority rule:

�yi � argmaxk N
�k�
i

n o
; �3�

where

N
�k�
i �

XNtrain

n�1

�i�xn���yn; k� �4�

is the number of elements of class k from the training set

assigned by the tree to node ti.
In order to obtain a better prediction for the dependent

variable, we can split the data in ti into two subsets by

means of a question Qi. For continuous attributes, the space

of questions that is explored is given by the (D+1)-

parameter family:

Qi � ci � x > ai; �5�
where ci � x �

PD
d�1 c

�d�
i x�d�. The vector ci � c

�d�
i

n oD
d�1
2 RD

contains the coefficients that define a new composite

variable that is the linear combination of the primitive

variables. The parameter ai 2 R is the threshold value of the

split. It defines a hyperplane ci � x � ai, perpendicular to

the axis of the composite variable ci � x, along which the

segmentation of the space of attributes is made. Relation (5)

splits the data into two disjoint sets, each of which is

assigned to one the child nodes of the node ti. In this

manner, node ti becomes an internal node, with two child

nodes associated to it.
The Boolean test (5) can be expressed in terms of the

relative degree of membership for the left child node

�
�i�
L �x� � ��ci � xÿ ai�; �6�

where the Heaviside step function is defined as

��z� �
1 if z > 0

1=2 if z � 0
0 if z < 0:

8<: �7�

The case z � 0 does not occur in practice and the degrees of

membership are Boolean variables. For the right node,

�
�i�
R �x� � 1ÿ ��ci � xÿ ai� � ��ai ÿ ci � x�: �8�

The absolute degree of membership is given by

�i��x� � �i�x���i�� �x�; � � L;R; �9�
where �i�x� is the absolute degree of membership for the

parent node, ti, which can be calculated by recursion of (9),

until the root node is reached. All points belong to the root

node and, therefore,

�0�x� � 1:0; 8 x: �10�
This recursion corresponds to the succession of splits

produced by the answers to the corresponding series of

tests connecting the root node to node ti. Note the relative

memberships of a pair of child nodes add up to unity
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�
�i�
R �x� � ��i�L �x� � 1; �11�

and that their absolute memberships add up to the absolute
membership of the parent node

�iR�x� � �iL�x� � �i�x�: �12�
The values of parameters �ci; ai� defining the question Qi

(5) are determined by the local optimization of a cost
function. In regression, one chooses the parameters for
which the reduction mean square error of the tree over the
training set is largest. In classification, the CART method
selects the split that leads to the largest decrease in the
impurity of the tree (Gini criterion). Other local optimiza-
tion criteria may also used (e.g., information gain, informa-
tion-gain ratio [24]).

The set of leaf or terminal nodes tlf g is denoted by ~T , and
its cardinality (i.e., the number of terminal nodes) by j ~T j. In
terms of this parameter, the total number of nodes of the
tree is 2j ~T j ÿ 1 and the number of inner nodes is j ~T j ÿ 1.
This set ~T is used for the actual predictions: Suppose that
we intend to classify an example characterized by the vector
of attributes xtest. We evaluate the succession of tests from
the root node, following a path that is determined by the
results of those tests at each of the internal nodes.
Eventually this path leads us to one of the terminal nodes,
say tl. Equation (9) can be used recursively to find the
degree of membership of xtest to the leaf node tl.

In a regression problem, the value of y assigned by the
tree to a given vector of attributes, xtest, is

�y�xtest� �
X
tl2 ~T

�l�xtest��yl; �13�

where �yl is given by (2) and, by construction, only one of the
�l�xtest�; tl 2 ~T
� 	

is equal to unity, the rest being zeros. The
error rate of the tree on the training set is

Rtrain�T � � 1

Ntrain

XNtrain

n�1

yn ÿ �y�xn�� �2: �14�

For classification problems, the class label assigned to
xtest is

�y�xtest� � �yl; if �l�xtest� � 1: �15�
Assuming equal cost for all misclassified examples, the
classification error as estimated from the training set is
equal to the ratio of points in the training set misclassified
by the tree

Rtrain�T � � 1

Ntrain

XNtrain

n�1

1ÿ ���y�xn�; yn�� �: �16�

Unless we establish stopping criteria, the growing
process of the decision tree may continue until
Rtrain�T � � 0. There is, however, an optimum-sized tree
beyond which, in spite of the fact that Rtrain�T � continues to
decrease monotonically, the quality of the prediction
deteriorates (i.e., the true error rate, or an unbiased
estimate, such as the one given by the error rate evaluated
on a test set, increases). In order to avoid over-fitting the
tree to the data in the training set, and to obtain the
optimally-sized tree, several strategies have been proposed.

The most successful ones involve overgrowing the tree and
then pruning, or eliminating, the branches that contain
nonsignificant splits. There are a wide variety of pruning
methods [25], from simple ones that use an independent
pruning set to estimate the true error rate (Reduced Error
Pruning) to more sophisticated methods using Cross
Validation [12].

3 FUZZIFICATION OF A CRISP REGRESSION TREE

The introduction of membership functions in (1)-(16) sets
the basis for fuzzification, provided that we allow the
degrees of membership to assume nonintegral values in the
range �0; 1�. One possible approach to the automatic
generation of fuzzy decision trees consists of allowing
fuzzy splits to compete with crisp splits at each node: The
split chosen would be the one that yields the best local
improvement of the corresponding cost function, irrespec-
tive of whether it is a crisp or a fuzzy split. The formulas
derived in the previous section are valid also with fuzzy
splits and could, in principle, be used to generate fuzzy
decision trees. However, empirically, we have observed that
fuzzification at this stage, considering only sigmoidal fuzzy
splits (a restricted class of fuzzy splits that will be discussed
in the course of this section), is not likely to improve the
quality of the regression or the classification in a significant
manner. We believe that this behavior can be accounted for
by the local nature of the optimizations carried out in the
process of generating the decision tree: Fuzzy rules are, by
their nature, only meaningful taken as a whole, globally. It
is natural that a local method developed for constructing
disjoint rules fails to find good, mutually dependent fuzzy
rule sets. Instead of this direct approach, we have found it
preferable to introduce the fuzzy character once the tree
architecture has been fixed by means of a standard decision
tree generator (e.g., CART). This procedure is analogous to
first fixing the architecture and then finding the parameters
in a neural network, with the advantage that, here, the
architecture is automatically generated by the data.

In order to fuzzify the crisp decision tree, we make the
observation that a crisp test can be thought of as the limiting
case of a fuzzy test. In particular, consider the crisp split
associated to the inner node ti, which is given by the
question ci � x > ai. This test results in the splitting of the
data in ti into two disjoint subsets characterized by the
relative membership functions (6), (8). We can think of
replacing the Heaviside step-functions in these membership
functions with a sigmoidal function of inverse width bi

�
�i�
L �x� �

1

1� exp ÿbi ci � xÿ ai� �� � ;

�
�i�
R �x� �

1

1� exp bi ci � xÿ ai� �� � � 1ÿ ��i�L �x�:
�17�

Equations (17) correspond to a fuzzy sigmoidal split on the
composite variable ci � x centered at ai, with an inverse
width given by bi. The splitting threshold is thus broadened
into a splitting band. Outside this band, the examples from
the data are assigned to one of the child nodes with a degree
of membership close to unity (i.e., they behave almost as if
the split were crisp). Examples that fall within the splitting
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zone are assigned with significant degrees of membership
to both child nodes. The inverse of the parameter bi
measures the width of this region. A crisp split can be
thought of as the limit of a sigmoidal fuzzy split where the
parameter bi is very large. At the other extreme is a split
where bi � 0. Such a split assigns all examples in the parent
node to both child nodes with equal degrees of member-
ship. The parent node is thus replicated into two equivalent
nodes and the global effect is tantamount to having no split
at all.

In order to illustrate the idea, consider the regression
problem of fitting the Lorentzian

y � 1

0:1� x2
; �18�

from 100 points �x; y�, uniformly distributed at random in
the interval �ÿ1; 1�, by means of a decision tree. The crisp
tree generated by CART is depicted in Fig. 1. Based upon
this tree architecture, we generate a fuzzy tree by replacing
the crisp splits by fuzzy splits whose parameters are
summarized in Table 1. These parameters are determined
with the help of a global optimization algorithm that is
discussed later on in this paper. Fig. 2 shows the regression
curves proposed by the crisp tree (dotted line) and by the
fuzzy one (dashed line). The crisp tree divides the interval
�ÿ1; 1� into three segments. For each of these segments, the
prediction for the value of y is equal to the average of the

dependent variable in that segment. It is clear that the
constraints used in the generation of the crisp tree are too
rigid and that they limit the representation capacity of the
tree. Allowing the use of fuzzy tests for the splits leads to a
marked improvement in the quality of the regression. This
improvement can be ascribed to the augmented expressive
power and flexibility of the fuzzy decision tree.

Once we have established the manner in which the fuzzy
character is introduced in the structure of the decision tree,
we are left with the problem of specifying a procedure to
determine the set of parameters defining the tree in an
efficient manner. This objective is accomplished by a
backpropagation algorithm that solves the problem of
optimizing the corresponding cost function for the tree as
a whole. The details of the implementation of this back-
propagation algorithm are different for regression and for
classification problems. Hence, these two cases will be
treated separately.

4 REGRESSION

The objective of this section is to design an algorithm to
estimate the parameters of a fuzzy regression tree by the
minimization of the mean square error, as estimated on the
training set (14). According to the fuzzification procedure
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Fig. 1. Crisp decision tree for the regression of a Lorentzian generated

by CART with the restriction that there be a minimum of 20 points in the

terminal nodes.
Fig. 2. Regression curves proposed by crisp (dotted line) and fuzzy

(dashed line) trees for the regression of a Lorentzian (full line).

TABLE 1
Parameters of Regression Tree for Fitting a Lorentzian



discussed in the previous section, the crisp split at the inner
node of a CART tree is replaced by a fuzzy split, defined by
the relative membership functions

�
�i�
L �x� �

1

1� exp ÿ��i � ~xf g
�
�i�
R �x� �

1

1� exp ��i � ~xf g :
�19�

with

~x � 1; x�1�; x�2�; . . . ; x�D�
n o

; ��i � ÿbiai; bicif g: �20�

In contrast to the crisp case, a fuzzy decision tree assigns
each example to several leaf nodes with different degrees of
membership. Given a vector of attributes x, the value
predicted for the dependent variable is a combination of the
predictions at the leaves

�y�x� �
X
tl2 ~T

�l�x�dl; �21�

where �l�x� is the membership of the point to the terminal
node tl, which yields a prediction dl for the dependent
variable.

The optimization problem is reminiscent of that encoun-
tered in a neural network with hidden layers, where one
has to deal with the credit assignment problem (i.e., in what
measure does a given node contribute to the global error).
For neural networks, the problem is solved by propagating
errors backward in the network (the backpropagation
algorithm) [26]. Similarly, for a fuzzy decision tree, the
problem can be solved by a global optimization algorithm
in which the estimations at the leaves are propagated
upward in the tree to the root node.

Let �yi�xn� denote the partial estimate of y at any node ti
for the point xn. For a leaf node tl 2 ~T , this quantity is some
number dl. In the case of a crisp tree, the value of dl is equal
to �yl, which is computed from the training set through (2).
For a fuzzy tree, we do not make any a priori assumptions
about dl, although, as a result of the global optimization, it
turns out to be a kind of average over the training data
assigned to the leaf. For an internal node, we define �yi�xn�
as the prediction of the subtree T �ti� (i.e., the subtree of T
composed of ti as the root node, and the descendent nodes
of ti). It can be computed by the recursive relation

�yi�xn� � ��i�L �xn��yiL�xn� � ��i�R �xn��yiR�xn�; �22�
in terms of the partial estimates of its children nodes

�yiL�xn�; �yiR�xn�. The relative degrees of membership

�
�i�
L �xn�, ��i�R �xn� are given by (19). Note that, for an inner

node, �yi�xn� is different from the quantity �yi defined by (2).
The basis of this backpropagation algorithm is the

observation that the value predicted by the full regression
tree for the dependent variable, given the set of attributes
xn, can be obtained by iterating (22) from the predictions at
the leaves �yl�xn� � dl, upward, until the root node is
reached

�y�xn� � �yroot�xn�: �23�

The optimization of the error rate (14) with respect to the
parameter �j of node tj yields the equation

@Rtrain�T �
@�j

� 1

Ntrain

XNtrain

n�1

ÿ2 yn ÿ �y�xn�� �� � @�y�xn�
@�j

� 0: �24�

For a leaf node tl, �l � dl, using

@�y�xn�
@dl

� �l�xn�; �25�

we get

XNtrain

n�1

yn ÿ �y�xn�� ��l�xn� � 0 tl 2 ~T: �26�

The optimization equation for the parameters at the
inner node ti is

XNtrain

n�1

yn ÿ �y�xn�� ��i�xn� �yiL�xn� ÿ �yiR�xn�� � @�
�i�
L �xn�
@��i

� 0

�27�
with

@�
�i�
L �x�
@��i

� ~x�
�i�
L �x���i�R �x�: �28�

Equation (27) has been derived from (24) using the fact that
for an inner node ti, �i � ��i and, thus,

@�y�xn�
@��i

� �i�xn� �yiL�xn� ÿ �yiR�xn�� � @�
�i�
L �xn�
@��i

: �29�

The solutions of the system of equations (26)-(27),

���i ; d�l
� 	j ~T j

l�1

� �
;

are the parameters that characterize the globally optimal
fuzzy tree. In the set of experiments presented in this work,
the optimization problem is solved by a quasi-Newton
method (the Broyden-Fletcher-Goldfarb-Shanno optimiza-
tion algorithm [27]). Backpropagation is used in order to
obtain, from the estimations at the leaves, dl, the values of
�yi�xn� which are needed in the computation of the error
function (14) and its derivatives with respect to the
parameters characterizing the fuzzy tree.

4.1 Interpretation of the Prediction Given
by a Fuzzy Tree

As indicated in the previous section, the solution to the
regression problem by a fuzzy decision tree involves
estimations made at all the leaf nodes of the tree: The
decision path obtained by the successive application of the
crisp tests at the inner nodes of a crisp decision tree
becomes a decision pattern by the successive application of
fuzzy splits. This decision pattern is, in fact, a bundle of
alternative decision paths that branch out from the root
node and end at a leaf of the fuzzy decision tree. One may
view the value of the dependent variable produced by each
of the different leaves as an estimate given by a single
prediction unit. The final prediction is then made by
combining these estimates: For a given vector of attributes,
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the value of the dependent variable is equal to the weighted
average of the values given by each of the leaves; the weight
of a given leaf in the average is the degree of membership of
the example to the leaf in question. In the terminology of
fuzzy sets, this defuzzification scheme is known as the
center-of-gravity method [10]. Although other defuzzifica-
tion procedures could be used, we have found that this
particular one exhibits a good performance in most
regression problems. This processing is substantially
different from the regression given by the tree-structured
hierarchical mixture of experts proposed by Jordan and
Jacobs [15], where each of the experts produces an
individually meaningful prediction. Regression in a fuzzy
decision tree is a global process involving the estimates
given by each of the terminal nodes, each of which need not
be a significant prediction when considered individually
(see, for instance, the leaf estimations in the problem of
fitting a Lorentzian).

There are several advantages derived from the use of
fuzzy splits instead of Boolean ones for a regression
problem. First, the expressive capability of the fuzzy tree
is enlarged with respect to a crisp one. In particular, the
representation is no longer restricted to a set of piece-wise
constant approximations. Second, fuzzification imposes a
continuity constraint at the boundaries of the splits, which
acts as a mechanism to limit the degree of overfitting of the
decision tree. Thanks to this feature, we also recover the
notion of locality, which is absent in crisp decision trees:
Two examples that are close to each other in the space of
attributes are treated in a similar fashion; therefore, the
values of the dependent variable predicted by the regres-
sion tree are also similar, in agreement with the assumed
properties of smoothness and continuity of the multivariate
function we intend to approximate. Furthermore, this
feature implies that all decision patterns can be transformed
one into another in a smooth fashion, allowing the design of
a global optimization algorithm for the fuzzy decision tree.
This is in sharp contrast to the counterintuitive behavior of
crisp decision trees, where two examples on opposite sides
of a crisp split, no matter how close they may be, are
handled by separate branches of the tree and can, therefore,
be assigned very different values for the dependent
variable. This separation into disjoint sets also implies that
information present in examples assigned to a given subtree
is never used in the generation of a separate subtree.

4.2 Experiments

The objective of this section is to show how fuzzification,
together with backpropagation optimization, leads to a
systematic improvement in the performance of a regression
tree. As discussed in the introduction, the crisp tree is
generated by the CART algorithm. In regression problems,
we have not detected significant differences between
fuzzifying a CART tree with only univariate splits or with
univariate and multivariate splits. Unless otherwise stated,
we take as the starting point for fuzzification a CART tree
with multivariate splits. The CART tree is then fuzzified by
replacing the crisp splits by sigmoidal fuzzy splits of
nonzero width. The parameters of the tree, which include
both the coefficients of the linear combinations that appear
at the inner leaves and the leaf predictions, are then

determined by minimization of the error function (14),

using the backpropagation described in the previous

section. Given the large dimensionality of the optimization

problem, it is possible that the algorithm becomes trapped

in one of the local minima of hypersurface. Consequently,

the starting values for the optimization parameters should

be carefully selected. The center of the fuzzy split is initially

set to be equal to the threshold of the corresponding crisp

split. The choice for the initial widths of the splits is less

straightforward

1

biniti

� 2 min max
Train
�ci � xn ÿ ai�; max

Train
�ai ÿ ci � xn�

� �
=f �i�:

�30�
The factor in the numerator corresponds to scaling the

width of the split to the range of the splitting variable in that

node. The factor in the denominator of (30), f �i�, appears so

that splits that lead to a larger improvement of the quality

of the regression in the crisp tree are initialized to be crisper

than those that appear less significant:

f �i� �
�����������������������������������������������

NiR�ti�
NiLR�tiL� �NiRR�tiR�

s
ÿ 1; �31�

where the error rate for a node is

R�ti� � 1

Ni

XNtrain

n�1

�i�xn� yn ÿ �yi� �2: �32�

If the crisp split on node ti leads to a perfect regression, it

remains crisp and if it leads to no improvement, it is made

to be maximally fuzzy (i.e., as if no split were present).
In a first set of experiments, we evaluate the performance

of the decision trees in a series of noiseless regression

problems. We first consider the problem of fitting a two-

dimensional Gaussian

f�x; y� � exp ÿ2 x2 � y2�ÿ �� 	 �33�
from 250 training examples uniformly distributed at

random in the square x 2 �ÿ1; 1�, y 2 �ÿ1; 1�. The original

function is displayed in Fig. 3a. The approximations given

by the crisp CART tree (univariate splits) and by the

globally optimal fuzzy tree with the same architecture as

the crisp tree are plotted in Fig. 3b and Fig. 3c, respectively.

A second example, which exhibits a more complex

structure, is the function

f�x; y� � sin�r�=r; r �
���������������
x2 � y2

p
�34�

from 1; 000 training examples uniformly distributed at

random in the square x 2 �ÿ1; 1�, y 2 �ÿ1; 1�. Fig. 4a displays

the original function, Fig. 4b is the approximation given by

the CART crisp tree (with univariate splits). Fig. 4c presents

the results of the globally optimal fuzzy regression tree.
In both of these examples, the crisp decision tree gives a

piecewise constant representation of the function, which is

qualitatively correct, in that it correctly captures the salient

features of the objective functions. Nonetheless, the approx-

imation is rather coarse. Fuzzification, together with global

SU�AREZ AND LUTSKO: GLOBALLY OPTIMAL FUZZY DECISION TREES FOR CLASSIFICATION AND REGRESSION 1303



optimization, provides a continuous representation with the
flexibility necessary to reproduce the finer details.

A second set of experiments focuses on a series of
regression problems in the presence of noise, which are
summarized in Table 2. They are taken from [28], where
they are used to compare various methods for nonpara-
metric regression: Multivariate Adaptive Regression Splines
(MARS) [29], Constrained Topological Mapping (CTM),
Generalized Memory-Based Learning (GMBL), and k-
nearest neighbors [28], [30]. The sets are constructed in
the following fashion: a and b are random variables with a
uniform distribution within a range indicated in the fourth
column of Table 2. The formulas used to calculate the

predictor variables are indicated in the second column of

the aforementioned table. Data is assumed to be noisy. The

value of the dependent value y is obtained by adding a

noise component to the formula in the third column:

y � f�x� � noise:
The noise term is a random variable with a Gaussian

distribution centered around 0 and with a standard

deviation � tabulated in the fifth column of Table 2.
Tables 3 and 4 compile the results for 10 realizations of

each of the sets studied under the experimental conditions

reported in [28], [30]. Experiments are carried out with

1304 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 12, DECEMBER 1999

Fig. 3. Approximations given by a regression tree to a two-dimensional

Gaussian: (a) original function, (b) crisp CART tree, and (c) fuzzy tree.

Fig. 4. Approximations given by a regression tree to the function (34): (a)

original function, (b) crisp CART tree, and (c) fuzzy tree.



training sets of 100 samples. The quality of the regression is
measured in terms of the root mean square (RMS) error of
the regression in a test set of 100 samples, normalized by
either by the standard deviation of the realization of the
noise (Tables 3 and 5) or by the standard deviation on the
dependent variable, y (Table 4). Table 3 summarizes the
results for the 10 realizations of the data. The numbers
reported are the averages over the different realizations
followed by the standard deviations between parentheses.
In the second column, the average and standard deviation
of the crisp regression tree size are tabulated. The third and
fourth columns give the value of the normalized RMS
(NRMS), which is obtained by dividing the root mean
square error by the standard deviation of the noise for the
crisp and for the globally optimal fuzzy regression tree,
respectively. A value NRMS close to 1:0 indicates that the
regression is exact up to the noise level. Inspection of Table 3
leads to the conclusion that the quality of the regression by
the fuzzified tree is significantly better that of the
corresponding crisp tree. Table 4 presents, in parallel, the
results reported in [28] and those obtained in this work. The
second column of this table displays the two best results of
the RMS normalized by ��y�, the standard deviation of y, for
a single realization of the data, as reported in [28]. The third
column reports the best result for a single realization in this
investigation. The fourth column gives the average and
standard deviation over 10 realizations of the data.
Unfortunately, these two sets of results cannot be directly
compared, given that, in [28], the values of the normalized
RMS are for a single realization of the data [31] and that, in
[28], the smoothing parameters of the various methods were
varied to achieve the best results. Nevertheless, the results
reported in [28] are all, except for set 6 (where the fuzzy
tree results are clearly inferior), within about one standard
deviation of the averages in the fourth column (this work).
This indicates that the fuzzification of a basic CART tree
yields a regression tree whose performance is comparable
with sophisticated regression schemes, such as MARS,
CTM, or GMBL.

The previous set of experiments was made with a rather

small training set. We expect that, with a larger amount of

training data, the global optimization algorithm should

exhibit a better performance. In Table 5, we present the

results for 10 realizations of the nine sets with

Ntrain � Ntest � 300. Under abundant training data, such

as this case, we observe indeed that the results of the

globally optimal fuzzy tree significantly improve the error

given by the crisp CART tree. In all cases, the normalized

error rates are close to one, which indicates that the

regression is close to being optimal.

5 CLASSIFICATION

Similarly to regression, the starting point for the construc-

tion of a globally optimal fuzzy classification tree is a crisp

CART classification tree. The Boolean tests at the internal

nodes of the decision tree are replaced by sigmoidal fuzzy

splits with membership functions

�
�i�
L �x� �

1

1� exp bi
1
cij j ci � xÿ ~ai

� �n o ; �
�i�
R �x� � 1ÿ ��i�L �x�;

�35�
where bi is a parameter controlling the inverse width of the

fuzzy split and the remaining parameters are

cij j2� ci � ci; ~ai � ai= cij j: �36�
The normalization constant cij j is introduced so that the

inverse width of the split depends only on bi. The

expressions derived for crisp trees in terms of membership

functions are still valid in the case of fuzzy trees: Node ti is

characterized by the set of quantities fN�j�i ; j � 1; . . . ; Jg, the

number of examples from the training set in that node of

class j, which are given by (4). A class label is assigned to ti

by the majority rule (3).
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Classification takes place at the terminal nodes: Suppose

we want to classify the example characterized by the vector

of attributes x by means of a fuzzy tree. We apply the series

of fuzzy tests until we determine the degree of membership

of this example to each of the leaves. Thus, for each leaf tl,

the degree of membership is �l�x� and the classification

label �yl is determined by (3). In order to arrive at a single

prediction, we apply the defuzzification scheme

Class�x� � argmaxj
X
l2 ~T

�l�x���j; �yl�
( )

; �37�

which has been chosen among several possible defuzzifica-

tion rules because of the consistency of the classification

results obtained with this prescription.

5.1 Backpropagation for Classification

The objective is to find the values of the parameters

bi; ci; ~aif g that optimize a global quality function. From

the different possible alternatives, we choose to optimize

the global impurity of the tree

I �
X
l2 ~T

Nl

Ntrain
1ÿ

XK
k�1

N
�k�
l

Nl

 !2
0@ 1A; �38�

1306 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 12, DECEMBER 1999

TABLE 3
Summary of Results for the Regression Problems (Ntrain � 100, Ntest � 100)

TABLE 4
Comparison with Earlier Work



with the usual definitions for N
�j�
l , the population of leaf

node tl in class j.
The impurity criterion presents the advantage that it is

consistent with the criterion used to construct the tree and

that it does not require that the class label of a leaf node be

fixed by the crisp tree. However, empirically, we find that it

has the drawback that, in almost every case, the fuzzy tree

has a higher impurity than the crisp one. In order to avoid

the fuzzy tree collapsing into a crisp tree, the parameter bi is

kept fixed in the course of the optimization. In order to

determine the value of the inverse width parameter, we

perform a series of preliminary optimizations of the tree

using only 2=3 of the training data, with different values of

the bi

biniti � 2n=f �i�;n � ÿ4;ÿ3; . . . ; 3; 4; �39�
The factor f �i� in the denominator (39) corresponds to

scaling the width of the split to the range of the splitting

variable in that node:

f �i� � min max
Train
�ci � xn ÿ ai�; max

Train
�ai ÿ ci � xn�

� �
: �40�

We select the value of bi that leads to the lowest

misclassification error as estimated the remaining 1=3 of

the training data. Once the value of bi is chosen by this

procedure, we perform a final optimization with all the

training data. The optimal value of the parameters is

obtained from the solution of the system of equations

@I

@�
�
X
l2 ~T

XNtrain

n�1

@�l�xn�
@�

	l�yn� � 0; �41�

where

	l�yn� � ÿ
XK
k�1

N
�k�
l

N2
l

2Nl ��yn; k� ÿN�k�l
h i

; �42�

� stands for each of the parameters characterizing the fuzzy
decision tree.

We can define at each node ti the quantity 	i�xn; yn�

	i�xn; yn� � ��i�L �xn�	iL�xn; yn� � ��i�R �xn�	iR�xn; yn�; �43�
which is obtained by backward recursion from the leaves of
the tree. With the help of these auxiliary quantities, (41) can
be reformulated as

@I

@�i
� �i�xn� 	iL�xn; yn� ÿ	iR�xn; yn�� � @�

�i�
L �xn�
@�i

� 0; �44�

where �i stands for either ~ai or ci and

@�
�i�
L �xn�
@~ai

� bi��i�L �xn���i�R �xn�

@�
�i�
L �xn�
@ci

� ÿbi 1

cij j xÿ ci � x
cij j2

ci

 !
�
�i�
L �xn���i�R �xn�:

�45�

In practice, we optimize the cost function (38) using a
variable metric method [27], where the auxiliary quantities
	i�xn; yn� at the inner nodes are calculated by back-
propagation of the values 	l�yn� at the leaves.

5.2 Classification Experiments

In order to test the fuzzification method proposed, we apply
it to a collection of standard classification problems from
the UC Irvine Machine Learning Database Repository and
to the waveform recognition problem proposed by Breiman
et al. [12]. The waveform recognition problem is a synthetic
set with a known Bayes misclassification rate (around 0:14),
where the number of instances that can be generated is
unlimited. The rest of the datasets allow us to assess the
performance of fuzzy classification trees in real-world
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examples. These are: diabetes, German (numeric), sonar
(aspect-angle independent), breast-cancer (Wisconsin),
heart (Cleveland).

Tables 6 and 7 present the results for classification in the
data sets investigated for two different tree architectures: In
Table 6 (first architecture), the architecture of the fuzzy
classification tree is given by a CART tree with only
univariate splits. In Table 7 (second architecture), the
architecture of the fuzzy classification tree is fixed by a
CART tree allowing the possibility of multivariate splits
(� � 0:1). The second and third columns display the
number of points used for training and testing in each of
the sets. The remaining columns summarize the results of
10 different random partitions of the data into training and
testing sets. The results are given as averages over these 10

different partitions, with the standard deviation reported
between parentheses. The size of the tree is reported in the

fourth column of this table and its classification error in the
fifth column. The sixth column shows the results for the
globally optimal fuzzy decision tree. Finally, the last
column gives the number of cases in which the fuzzy tree
performs better (w) or worse (l) than the crisp one. Ties are
omitted.

We see that, in the waveform dataset, there is a very
significant improvement of the classification performance
for both architectures. In this example, it is clear that the
presence of multivariate splits, whose coefficients are
determined by a global optimization, markedly improves
on the error rate, bringing it closer to the Bayes limit
(estimated to be around 0:14). For the remaining sets, the
improvement of performance is only apparent in three of
the datasets (sonar, cancer-w, heart-c) for the first archi-
tecture. In fact, there seems to be a slight deterioration of
performance in the second architecture (Table 7), which
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Summary of Results for the Classification Problems (First Architecture)

TABLE 7
Summary of Results for the Classification Problem (Second Architecture)



may indicate that the size of the tree generated by the CART
algorithm including multivariate splits is smaller than
optimal. It is also likely that, in these datasets, the crisp
tree performance is already close to being optimal. The best
overall results seem to be given by globally optimal fuzzy
decision tree with the architecture fixed by a crisp CART
with univariate splits.

We conclude that the fuzzification of the classification
tree followed by optimization in general does not signifi-
cantly modify the overall quality of the classification.
Nonetheless, there is a different aspect where fuzzification
of the classification trees is advantageous: With a fuzzifica-
tion scheme based on allowing sigmoidal fuzzy splits, the
hyperplanes defining the crisp splits become splitting
volumes, where examples belonging to different classes
could in principle coexist. Instances within these regions
are, in general, more difficult to classify. In this manner,
fuzzification introduces a natural metric in the space of
attributes that measures the distance of that point to the
relevant splits. Indirectly, this metric also quantifies the
intrinsic difficulty of classifying points in a given region of
the space of attributes. The picture is no longer one in which
the probability of making a classification error is uniformly
distributed in attribute space. By fuzzifying a classification
tree, we obtain not only an average error rate, but also the
structure of the error probability distribution in attribute
space for a given decision tree, as is demonstrated by the
experiments presented in the following section.

5.3 Fuzzy Entropy and Accuracy of the
Classification

The classification of a given instance in a fuzzy tree is made
jointly by the different leaves (the terminal nodes tl 2 ~T ) of
the decision tree. The extent of this effect can be quantified
by defining the fuzzy entropy of an example characterized
by the vector of attributes x

SFuzz�x� � ÿ
XK
k�1

��k��x��1ÿ ��k��x��; �46�

with the definition

��k��x� �
X
l2 ~T

�l�x����yl; k�: �47�

The experiments performed on different datasets show
that there is a strong correlation between how fuzzy a
classification of an instance is (as measured, for instance, by
its fuzzy entropy) and the likelihood of its being mis-
classified. This correlation should be expected, given the
fact that examples with a high fuzzy entropy are in a region
(in the relevant variable) where one of the splits is made. It
seems natural that regions close to a split (where points of
two or more different classes are close to, and possibly,
mixed with, each other), are more difficult to classify.

Thus, the fuzzy entropy of a point in attribute space
introduces a natural measure of the proximity of a given
instance in the space of attributes to the relevant splits.
Proximity to a split indicates that the example is located in a
region where classes coexist. This in turn implies that it is
more difficult for the tree to classify those instances
accurately. By rank-ordering the examples according to
their fuzzy entropy, we are able to uncover the structure of
the probability of misclassification in attribute space. The
results for the six datasets studied are reported in Table 8
(first architecture) and Table 9 (second architecture). The
first column is the average error rate for the fuzzy
classification tree. The remaining columns give the error
percentages for each of the quartiles of the test data, where
the examples have been ordered by their fuzzy entropy.
These results show that the error rate is not uniform in
attribute space: Points with lower fuzzy entropy have a
much lower classification rate than points with higher
entropy. In the waveform data, it is striking to see how the
error rate in the first and second quartiles are well below the
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Bayes error rate (which is only an average rate). Once more
it is seen that the results are better for the fuzzy tree
generated from the CART tree with only univariate splits
(Table 8).

Similar measures of the distance to the relevant split
have been introduced for other classifiers, such as nearest
neighbors or linear classifiers. The measure proposed here,
based on the fuzzy entropy, has the advantage that it does
not depend on the metric structure of the original attribute
space or on the linear separability of the problem at hand.
Furthermore, it is readily available since it can be calculated
concurrently with the classification of the example.

6 SUMMARY AND CONCLUSIONS

A fuzzy decision tree has been generated by replacing the
Boolean tests in a standard CART decision tree by fuzzy
sigmoidal splits. The result of these splits is a function
giving the degree of membership of an example in a node of
the decision tree. In contrast with a crisp CART tree, where
a single leaf is responsible for the prediction, the classifica-
tion or regression is made jointly by all the terminal nodes
of the decision tree using the full set of membership values
to the terminal nodes of the tree, which are computed by
evaluating the hierarchy of fuzzy tests on the internal nodes
linking the root to the leaves. The structure of the models
allows us to construct an elegant backpropagation algo-
rithm. Furthermore, the use of the crisp tree as a starting
point allows the models to scale favorably with the number
of attributes, in contrast to methods that partition the space
of (nominal) variables maximally [5], [6] or artificially
restrict the size of the tree or auxiliary network [20].

In regression problems, the crisp CART tree gives a
piece-wise constant representation of the unknown objec-
tive function, which has the disadvantage of being dis-
continuous. Fuzzification of the regression tree yields a
more flexible representation. Furthermore, the functional

representation is continuous. This continuity constraint acts
as an efficient mechanism that limits the amount of
overfitting to the training data. The experiments carried
out show that the fuzzification followed by backpropaga-
tion optimization of the parameters of the tree leads to a
marked improvement with respect to the performance of a
CART tree. Furthermore, the efficiency of the fuzzy
regression tree does not deteriorate in the presence of
noise. The results are generally better when abundant
training data is available to carry out the training.

For classification problems, the results, as far as
classification performance is concerned, are less clear. In
the waveform dataset, where there is large room for
improvement over the CART results, the globally optimal
fuzzy classification tree gives an error rate which is
significantly lower than CART and fairly close to the Bayes
limit. In other datasets, the performance of the fuzzy tree is
comparable to that of the crisp CART tree. However, in
classification problems, the fuzzy tree has an additional
advantage over the crisp one: It is possible to give a
measure of the proximity of a given point in the space of
attributes to a decision boundary and, therefore, identify
those points whose classification is more prone to errors.
This measure is evaluated simultaneously with the classi-
fication of the example and is independent of the metric of
the original attribute space. Thus, fuzzy classification trees
have some of the characteristics of nearest-neighbor models,
in which such proximity measures arise naturally.

Besides extending the expressive capacity of the decision
tree, fuzzification incorporates into a symbolic method the
flexibility and robustness of a subsymbolic one. In
particular, it allows the design of a backpropagation
algorithm that fixes the parameters of the tree by the global
optimization of a cost function. While we have concentrated
in this paper on the global optimization of the models given
a static dataset, the backpropagation method can be used,
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Classification Error per Quartile for Examples Rank-Ordered According to Their Fuzzy Entropy (Second Architecture)



just as in standard connectionist methods, to train and/or
correct a model in real-time.
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