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Abstract. – We consider the general problem of the first-passage distribution of particles
whose displacements are subject to time delays. We show that this problem gives rise to a
propagation-dispersion equation which is obtained as the large-distance (hydrodynamic) limit
of the exact microscopic first-visit equation. The propagation-dispersion equation should be
contrasted with the advection-diffusion equation as the roles of space and time are reversed,
hence the name temporal diffusion, which is a generic behavior encountered in an important
class of systems.

One of the fundamental physical paradigms, applicable to a wide variety of physical pro-
cesses, is that of spatial diffusion. The textbook example is of a random walker on a one-
dimensional lattice (see, e.g., [1]). At each tick of the clock, the walker takes a step either
left or right, the direction chosen randomly with equal probabilities, and one asks what is
the probability that the walker will be at a given position after a given time. If the walker
starts at a known point, the answer is a binomial distribution which, in the continuum limit,
becomes a Gaussian. The variance of the Gaussian grows with time, so that the localization
of the walker decreases and we say that the walker disperses. If the probability for the walker
to step in one direction is greater than that for the opposite direction, then the walker prop-
agates in the direction of higher probability and will eventually visit each site of the lattice in
that direction. The typical diffusive behavior is then manifested in the continuum limit as a
Gaussian about a most-likely position which moves at a constant velocity. However, there are
a number of situations in which it is more natural to ask how long it will take to reach a given
point —more precisely for a stochastic process, what is the distribution of times taken to reach
that point [2]. Everyday examples involve processes in which the goal is to arrive at a given
point as quickly as possible: for example, a marathon (wherein we ask for the distribution of
finishing times), certain financial instruments, such as stock options (wherein we ask for the
distributions of times needed for an asset to reach a certain value), traffic flow (wherein we
ask for the distribution of arrival times at destination), and packet transport over the inter-
net. A more technical example, which inspired the present work, is the behavior of certain
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cellular automata which model the motion of a particle on a substrate of scatterers (in 1 or
2 dimensions) where, for certain types of scatterers, the particle ends up propagating along a
particular channel [3–5], and, again, the first-passage time is the physical quantity of interest.

In this letter, we show that this general problem gives rise to a propagation-dispersion
equation, much like the biased random walker, with the important difference that the roles of
space and time are reversed: the distribution of first-passage times is Gaussian in the time
variable with a variance that grows with increasing distance from the origin. In analogy with
spatial diffusion that occurs in ordinary diffusive phenomena, we call this generic behavior
temporal diffusion.

Consider a walker on a one-dimensional lattice and let f̂(t/δt; r/δr) be the probability
that it takes t/δt time steps to reach the lattice position r/δr, given that the walker is at the
origin at time t = 0. Whatever the microscopic dynamics, we assume that we are given, or
can work out, the set of probabilities {pj(r)}∞j=1 that the time between the first visit of the
lattice site r/δr and the first visit of the next position, r/δr + 1, is jδt. Conceptually, these
represent the probabilities of various waiting times from the first visit of lattice site r/δr until
the first visit to r/δr + 1, i.e. the distribution of single-step waiting times. It is then clear
that the probability that it takes the walker time t to reach the lattice site r + δr is equal to
the probability that it takes time t to reach lattice site r and that the waiting time is zero,
plus the probability that it takes time t− δt and that the waiting time is δt, plus . . . so that
the master equation is [6]

f̂(t/δt; r/δr + 1) =
∞∑

j=0

pj(r)f̂(t/δt− j; r/δr). (1)

Rather than solving this equation directly, we appeal to a more intuitive picture. Let t̂l be
the time that transpires from the first visit of lattice site l to the first visit of lattice site
l + 1. The probability distribution for this discrete stochastic variable is precisely the set
of probabilities {pj(lδr)}∞j=0 defined above. Next, define T̂l+1 =

∑l
i=0 t̂i which is the total

time required to reach the lattice site l + 1: the probability that T̂l+1 takes on the value t is
precisely f(t/δt; r/δr+1). Since each of the elementary stochastic processes t̂i is independent,
the distribution of T̂l+1 in the limit of large l is immediately known, by application of the
central limit theorem, to be

f(t, r) = lim
r/δr�1

1
δt
f̂(t/δt; r/δr + 1) =

√
1

2πσ2(r)
exp

[
− (t− τ(r))2

2σ2(r)

]
, (2)

where the most likely time is

τ(r) =
r/δr∑
k=1

〈
t̂k−1

〉
= δt

r/δr∑
k=1

∞∑
j=0

jpj((k − 1)δr), (3)

and the width of the distribution is

σ2(r) =
r/δr∑
k=1

(〈
t̂ 2
k−1

〉 − 〈
t̂k−1

〉2
)

= (δt)2
r/δr∑
k=1

[ ∞∑
j=0

pj((k − 1)δr)j2 −
( ∞∑

j=0

pj((k − 1)δr)j

)2]
. (4)
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(We note in passing that the exact solution to eq. (1) is a multinomial distribution, as discussed
in detail in [7].) If the probability distribution of single-step waiting times is independent of
position, then τ(r) and σ2(r) reduce, respectively, to

τ(r) = r
δt

δr

∞∑
j=0

jpj , (5)

σ2(r) = r
(δt)2

δr

[ ∞∑
j=0

j2pj −
( ∞∑

j=0

jpj

)2]
, (6)

which prompts us to define an inverse propagation speed as

1
c

=
τ(r)
r

=
∞∑

j=0

jpj
δt

δr
, (7)

and a temporal dispersion coefficient as

γ =
σ2(r)
r

=

[ ∞∑
j=0

j2pj −
( ∞∑

j=0

jpj

)2]
(δt)2

δr
. (8)

So the distribution of first-passage times is

f(t, r) =
√

1
2πγr

exp

[
− (t− r/c)2

2γr

]
, (9)

which is in precise analogy to the spatial distribution of a simple, biased random walker:
the most likely first-visit time grows linearly with increasing distance and the width of the
distribution grows as the square-root of the distance.

The distributions given in eqs. (2) and (9) are particular solutions for the initial condition
that the walker is localized at r = 0 and t = 0, or f(t/δt; r/δr = 0) = δ(t). To complete
our description of the first-passage time problem, it is interesting to display the continuum
equivalent of the first-passage equation, eq. (1), which would govern the problem for all initial
conditions. First, we notice that, since the exact first-passage time equation is linear, the
particular solutions given above are the Green’s functions for the general problem. Explicitly,
if f(t/δt; r/δr = 0) = f0(t) then the distribution for finite distances must be

f(t, r) =
∫ ∞

−∞

√
1

2πσ2(r)
exp

[
− (t− t′ − τ(r))2

2σ2(r)

]
f0(t′)dt′, (10)

from which one finds the equation of motion, the propagation-dispersion equation,

∂

∂r
f(t, r) +

1
c(r)

∂

∂t
f(t, r) =

1
2
γ(r)

∂2

∂t2
f(t, r) (11)

with

1
c(r)

=
∂

∂r
τ(r), (12)

γ(r) =
∂

∂r
σ2(r). (13)
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Equation (11) can also be derived directly from eq. (1) by means of a multi-scale expansion
(see [7]). Finally, we note that the derivation given here applies as well to the case in which the
waiting times are continuous stochastic processes with the result that eq. (2) is again obtained.

As a first example, consider a biased random walker in one dimension. At each tick of
the clock, the walker moves to the right with probability p and to the left with probability
q = 1 − p. If the walker is at some particular lattice site, say l, then the probability that it
moves to l + 1 with the next step is p, the probability that it takes three steps to move to
l + 1 is p(pq) since the probability of moving left, to l − 1, and back is pq and in general, the
probability that it takes 2m+1 steps to reach l+1 is evidently of the form p2m+1 = am(pq)mp,
where am is a combinatorial factor independent of p, since a delay of 2m ticks, starting and
ending at lattice site l, requires some combination of m steps to the left and m steps to the
right. (Obviously, the probability to reach l + 1 in an even number of steps is zero.) If p > q,
we expect that the walker must eventually reach the next lattice site to the right so that∑∞

m=0 am(pq)mp = 1. Introducing y = p(1− p), one has p = 1
2 (1±√

1 − 4y) with the positive
sign appropriate for p > 1/2 and the negative sign otherwise; the normalization condition can
then be written as (for p > 1/2)

∞∑
m=0

amym+1 =
1
2
(
1 −

√
1 − 4y

)
, (14)

and expansion of the right-hand side gives am = (2m)!
(m+1)!m! . Then, having the single-step

waiting-time probabilities, and noting that

∞∑
m=0

(
2m + 1

m

)
pm+1qm = (p− q)−1, (15)

the first and second moments of the waiting times can be evaluated to give

1
c

=
δt

δr

1
(p− q)

, (16)

γ =
(δt)2

δr

4pq
(p− q)3

, (17)

and the distribution of first-passage times is given by (9). The continuous limit, in which both
δr and δt go to zero, gives finite results for both the propagation speed and the dispersion
coefficient only if we simultaneously require that p−q go to zero (just as in the usual discussion
of the spatial-diffusion of the biased random walker [1]). Writing δr → εδr0, δt → εαδt0 and
p− q → kεβ , we find that

1
c

−→ δt0
kδr0

εα−β−1 , (18)

γ −→
(
1 − k2ε2β

)
(δt0)2

k3δr0
ε2α−1−3β , (19)

which are finite provided that α = 2 and β = 1. This scaling is identical to that used to
obtain the spatially diffusive limit of the biased random walker: the propagation speeds are
identical, but the dispersion coefficients are quite different, because in spatial diffusion the
diffusion coefficient is independent of the scaling of the probabilities (D → (δr0)2/δt0). The
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temporal dispersion coefficient is γ = D/c3, which is also what one obtains by performing a
change of variables (r → ct, t → r/c) in the advection-diffusion equation.

For the biased random walker in the continuum limit, the exact first-passage time distri-
bution is known [1,8] to be

f(t; r) =
r√

2πDt3/2
exp

[
− (r − ct)2

2Dt

]
. (20)

The difference between this expression and our result is due to the fact that the latter is an ap-
proximation which is only valid for large r. In this regime, the exact result only gives a non-zero
probability for (r−ct)2/2Dt = O(1) which implies ct = r+O(

√
2Dr/c) = r(1+O(

√
2D/cr)).

So, for large r we can use this approximation to write the exact distribution as

f(t; r) =
c3/2

√
2πDr1/2

exp
[
− (r − ct)2

2Dr/c

](
1 + O(√

2D/cr
))
, (21)

which, with D/c3 = γ, agrees with the large-distance result (9). We emphasize that eq. (20)
is exact in the continuum limit, i.e. for vanishing δr and δt, whereas the only restrictions on
the general result, (9), are that r is large and that the first two moments of the elementary
waiting time distribution, τ(r) and γ(r), exist. The latter condition precludes the limit of the
symmetric random walker, c → 0, for which τ = r/c diverges (see eq. (7)).

A more complex example is provided by a walker moving on a lattice with scatterers
inducing time delays at some (or all) lattice sites, a model which may serve as a paradigm for
various processes such as signal propagation in computer networks [9], traffic flows [10], and
evolutionary dynamics [3]. Of particular interest are models in which the properties of the
scatterers also change with each scattering process. As a simple example, consider a particle
moving on a one-dimensional lattice which has scatterers at each lattice site. The scatterers
can be in one of two states characterized by their “spin” which can take on the values “up”
and “down”. When a particle moves to a lattice site with spin-up, nothing happens to it
whereas at a spin-down site, its velocity is reversed. In both cases, the spin of the lattice site
is reversed. This model was solved in [5], where it was shown that, for any initial distribution
of spins (including the random distribution), the particle always ends up propagating in one
direction or the other at a constant (average) rate. More surprisingly, the same result is
obtained on a 2D triangular lattice with an analogous dynamics (spin-up (-down) rotates the
velocity by +(−)2π/3) [5] and on the square lattice (when all scatterers are initially in the
same state and rotate the velocity of the particle by ±π/2 depending on the state). The latter
model is known in the literature as “Langton’s ant” [3]. As discussed in [6], the distribution
of first-passage times along the direction of propagation in all of these examples can be cast
in the general form

f̂
(
t/δt; (r + ρ)/δr

)
=

∞∑
j=0

p̃j f̂
(
(t− τj)/δt; r/δr

)
, (22)

where ρ represents the elementary space increment along the propagation strip and τj =
(1+aj)bδt (a and b are lattice-dependent integer constants [6]). Equation (22) can be mapped
onto the form given in eq. (1) by setting p(1+aj)b = p̃j and all other pj ’s = 0. All of these
models will therefore, in the limit of large spatial separations, be described by the propagation-
dispersion equation and the distribution of first-passage times will be Gaussian.

In fig. 1 we give an illustration of temporal diffusive behavior in an inhomogeneous system,
where we compare the theoretical large-distance solution with simulation data. The time
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Fig. 1 – Temporal-dispersion curve: f(t, R) at R/δr = 2000 and 8000 (in lattice units). Simulation
data (dots) are obtained from the first-visit equation (22) with p̃j=k = p(1 − p)k−1, where p ≡
p(r) = 0.1+ 10−4r/δr. The theoretical curve (solid line) is the Gaussian solution of the propagation-
dispersion equation (11) with τ(R)/δt = Rc−1(R)(δt)−1 =

∑r=R
r=1 p−1(r) = 10989 and 21977, and

half-width [2Rγ(R)]1/2(δt)−1 = [
∑r=R

r=1 (1− p(r))p−2(r)]1/2 = 334 and 366, at R/δr = 2000 and 8000,
respectively.

delay probability is taken to be p̃j=k = p(1 − p)k−1, where p is linearly space dependent:
p ≡ p(r) = p(0) + χr/δr. The dots are the simulation data obtained by solving numerically
the microscopic equation (22) and the solid line is the solution of the propagation-dispersion
equation (11). Notice that for space-independent probabilities, the width of the Gaussian
in (9) increases like

√
r, i.e. in the example given in fig. 1 the width at 8000δr should be twice

that at 2000δr. Here we observe essentially no change in the respective widths, a consequence
of the spatial dependence of the waiting-time probabilities.

Recently, Buminovich and Khlabystova [11] have studied models in which the scatterers
only change state after multiple scattering events. In this case, the distribution of elementary
waiting times becomes dependent on the lattice position, and the propagation speed and
dispersion coefficient acquire a spatial dependence. Thus, while the distributions of first-
passage times are still Gaussian, they are not “diffusive” in the usual sense since the inverse
propagation speed and dispersion coefficient are not constants (eqs. (11)-(13) and ref. [7]).

A more practical example is found in a recent report [12] which describes an experiment
where small beads are dropped into a container filled with larger beads. The small beads,
driven by gravity, percolate through the array of larger beads, and their propagation is care-
fully measured. Intuitively, one would imagine that the various deflections of the small bead
as it collides with the larger ones would induce time delays in its downward propagation, in
which case the distribution of arrival times would be given by eq. (9). This is indeed confirmed
by the experimental results which exhibit the signature of a temporal-dispersion process (see
fig. 9 in ref. [12]).

In summary, we have demonstrated that the distribution of first-visit times of a particle
propagating with stochastic time delays on a one-dimensional lattice, or the one-dimensional
version of a multidimensional process, satisfies a temporal propagation-dispersion equation
in the limit of large separations. This generic behavior is analogous to the generic diffusive
behavior which describes the spatial distribution of the same process as a function of time. For
a simple biased random walker, the propagation speed is the same in the temporal and spatial
descriptions, while the temporal- and spatial-dispersion coefficients differ. The temporal-
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dispersion description is relevant to a class of one- and two-dimensional cellular automata
in which mobile particles and fixed scatterers interact with one another. Experiments in
granular media also show behavior described by temporal dispersivity. We have restricted our
discussion to the case where the variance of the elementary time delay processes exists. There
is an interesting class of similar processes which are described by power law distributions, e.g.
pj ∼ j−(1+ν), in which case, for 0 < ν ≤ 1, the distribution appearing in the central limit
theorem is no longer Gaussian (see, e.g., [13] and the appendix in [14]). This and the related
problem of absorbing barriers [15] will be treated in a forthcoming publication.
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