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The high-temperature behavior of a high-angle twist grain boundary, a free surface, and planar
arrays of voids of various sizes, all on the (001) plane in copper, are studied through molecular-
dynamics simulation using an embedded-atom-method potential. Independently, we determine the
thermodynamic melting point, 7, of this potential through an analysis of the free energies of a per-
fect crystal and the liquid phase. It is found that an ideal crystal consisting of nearly 1000 atoms
may be superheated over 200 K above T,, while the introduction of any of the defects listed above
nucleates melting at any temperature above T,,. We conclude that nucleation of the liquid phase at
extrinsic defects is the most rapid, and therefore the dominant, mechanism of melting.

I. INTRODUCTION

The fundamental concept of melting is based on the
coexistence of the solid with the liquid when the free en-
ergies of the two phases are equal. It is implied that at
temperatures above this coexistence the solid is unstable,
but neither the mechanism of melting nor the kinetics of
the process are considered in the thermodynamic
definition. In reality, melting is observed in the presence
of surfaces and over a finite time interval, and despite a
wealth of experimental data,! it is not clear conceptually
how the observed kinetic behavior is to be interpreted in
the context of the thermodynamic basis of the transition.

A number of theories of melting have been proposed
treating the phenomenon as a homogeneous, bulk process
involving either a lattice instability (see, for example,
Refs. 2 and 3) or the spontaneous generation of thermal
defects (see, for example, Ref. 4). Because these descrip-
tions do not consider the effects of extrinsic defects such
as a free surface or an internal interface, it is an open
question to what extent they are relevant to the phenome-
na physically observed. A variety of experimental data
now exist which point to the controlling role of an extrin-
sic surface.” !! Several recent measurements demon-
strate that when the surface conditions are modified, the
melting point can be depressed® or the solid can be sub-
stantially superheated.’”!! The implication is that melt-
ing is basically a heterogeneous process and the mecha-
nism of nucleation at extrinsic surfaces generally deter-
mines the kinetics.

It is conceivable that a study in which the free energies
of equilibrium solid and liquid phases are explicitly calcu-
lated and the dynamical details of melting initiating at ex-
trinsic defects are examined at the molecular level can
contribute to a clarification of the issues raised above.
Such an approach can be realized through atomistic
simulations using the method of molecular dynamics.'?
Molecular dynamics (MD) and the related method of
Monte Carlo!® have been used successfully to calculate
phase diagrams of model systems;'*!> they also have been
used extensively to study melting and freezing phenome-
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na.'®!” While these are powerful techniques for dealing
with the statistical mechanics of a many-body system,
their applications to real materials have limitations im-
posed by the interatomic potential used and the finite sys-
tem size and time duration of simulation.

Another aspect of molecular dynamics relevant to the
present discussion is the determination of the melting
point T,, of the simulation model. In principle, for a
given potential function adopted for the simulation, free-
energy calculations should be performed to determine
T,,. If this is not done, then one does not know the true
melting point of the model. In some simulations, self-
consistency was attempted by determining a temperature
T, where the lattice collapses, and where system proper-
ties such as the potential energy and the volume show a
stepwise increase. This behavior is the manifestation of
the mechanical instability given by the Born criterion.!®
Since T can be considerably higher than T,,, any failure
to distinguish between these two quantities will result in
confusion in interpreting the melting characteristics of
the model system.

The advent of many-body potentials'®?® for metals
eliminates several basic objections against the use of con-
ventional pair potentials.’??> In particular, it is well
known that cubic systems may, and in reality do, possess
three independent elastic constants while central-force
potentials constrain the number of independent elastic
constants to two.?®> This deficiency is intimately connect-
ed with the fact that bonding in metals is fundamentally
many body in nature. Many-body potentials such as the
embedded-atom-method (EAM) potentials are explicitly
parameterized to give the correct (experimental) elastic
constants and, in total, are fit to at least six experimental-
ly determined parameters. (This should be compared
with, for example, the two parameters used to fit a
Lennard-Jones potential.) As a result, the EAM potential
has proved to be superior to central-force potentials when
used in conjunction with computer simulation to calcu-
late physical properties which can be quantitatively com-
pared with experiment.?*?* For example, the EAM pre-
dicts an inward relaxation of the outermost plane at a
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free surface of comparable magnitude to that observed in
experiment,?® while most central-force potentials predict
an outward relaxation. The EAM potential also has been
used in computer simulations to systematically study
grain boundaries in both fcc (Ref. 27) and bce (Ref. 28)
metals, elastic properties of grain boundary superlat-
tices,?’ and the high-temperature stability of grain boun-
daries.®® In contrast to the free surface, these studies
have shown that the EAM potential predicts the same
qualitative phenomena in grain boundaries as do central-
force potentials.

The purpose of this work is to investigate the role of
lattice defects on melting in metals by means of
molecular-dynamics simulation using an EAM potential
function. As in the companion study of silicon which
makes use of a comparably realistic potential function,’!
we study the melting behavior initiated at a grain bound-
ary and a free surface; in addition the effects of voids are
also considered. Our simulation results on silicon show
that a perfect crystal without a surface can be superheat-
ed substantially above its thermodynamic melting point.
The lattice does become mechanically unstable at a cer-
tain temperature; its precise value can be expected to
vary somewhat with the size of the system considered and
the way in which it is superheated. When an extrinsic
surface is introduced into the crystal, melting at a tem-
perature above the thermodynamic melting point, T,,,
clearly initiates at the surface, and the melt propagates
into the bulk crystal at a rate that can be adequately fol-
lowed on the simulation time scale. It is found that ex-
trapolation to zero propagation velocity leads to T, for
both the grain-boundary system and the crystal with a
free surface. The implication is that the presence of an
extrinsic surface introduces a mechanism for the kinetic
process but does not alter the intrinsic (thermodynamic)
melting point of the system. As we will show in this pa-
per, the same conclusions are reached in the study of
melting behavior in metals.

From the metallurgical standpoint melting at grain
boundaries is a process of great importance because of its
effects on mechanical properties of solids. There are ex-
perimental indications that some kind of structural tran-
sition can take place at temperatures distinctly below
T,.>? On the other hand, measurements carried out
specifically to investigate the possibility of a premelting
transition®> 3% show that complete grain-boundary melt-
ing below T, “premelting,” in the sense of the boundary
being replaced with a liquid layer of several atomic diam-
eters, is not observed. Thermal stability of bicrystal mod-
els has been investigated by molecular-dynamics simula-
tions,>* ™3 with the results leading to inconsistent inter-
pretations. Two observations have been made recently
which should help to clarify the situation, one dealing
with the effects of grain-boundary (GB) migration on lo-
cal disordering® and the other concerning the impor-
tance of a proper determination of T,, for the simulation
model system.3® In our results on silicon where GB mi-
gration does not occur, we observe no indications of
grain-boundary premelting.’"*’ In the case -of metals,
GB migration can be readily activated at temperatures
well below T,,, but here also we do not find premelting
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up to the highest temperature below T, studied (about
0.97,,).

In contrast to grain boundaries, premelting on a metal
surface has been observed by backscattering measure-
ments on Pb,*! the process occurring at approximately
0.75T,,. The data provide support for the theoretical
prediction that the thickness of the surface-melt layer
should diverge logarithmically as T,, is approached.*
Simulation studies of surface disordering and melting
have been carried out on various model systems.* ™ In
the case of metals, disordering below T, on aluminum
surfaces has been observed recently,* but no studies at
temperatures above T,, have been reported.

The plan of this paper is as follows. In the next sec-
tion, we discuss the EAM potential used in the present
study. In Sec. III, the details of the free-energy analysis
used to determine the thermodynamic melting point of
this potential are described. Section IV contains the de-
tails of the methods used in the simulation of defected
systems including a description of the bicrystal program
used. Sections V-VII contain the results of superheating
a grain boundary, a free surface, and various-sized voids.
Finally, in Sec. VIII, we discuss the implications of our
results on the question of the microscopic mechanism of
melting.

II. INTERATOMIC POTENTIAL

As discussed in the Introduction, the majority of prior
simulations, including almost all studies of melting-
related phenomena in metals, have been performed using
central-force potentials. A serious deficiency of these po-
tentials is that they poorly represent atomic bonding in a
metal. Metallic bonding has long been understood to
arise from the interaction of individual atoms with the
electron gas, or Fermi sea, of the metal. Because the lo-
cal electron density depends on the local arrangement of
atoms, this bonding depends strongly on the local atomic
density in the vicinity of an atom. The embedded-atom
method!®?° is an attempt to model this dependence of the
atomic interactions on the local environment. In this
sense, the EAM potentials currently provide the most
realistic description of interatomic interactions in metals.
Indeed, the EAM has met with considerable success in
describing such properties as the behavior of surfaces in-
cluding surface reconstruction, point-defect properties in
pure metals, and surface segregation.

The EAM potential is a sum of two terms and is usual-
ly written as

V=T ®(q;)+ 3 Fi(p]), (1)
J#i i

where q; is the position of the ith atom and g;; is the dis-
tance between atoms i and j. The first term on the right-
hand side in Eq. (1) represents the screened Coulombic
repulsion of the ion cores and is a sum, therefore, of pair-
wise interactions. The second term is many-body in na-
ture and represents the embedding of the ion cores in the
electron gas. The function F,(p}) is termed the embed-
ding function. The total charge density experienced by
atom I, p,-T, is the sum of the charge densities at the posi-
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tion q; of all atoms except atom i:

JFi

In practice, the atomic-charge densities are approximated
as the isolated atomic-charge distributions as opposed to
the true charge distributions that would result from a
self-consistent first-principles calculation. The embed-
ding function is determined by the universal binding
function of Rose et al. and the free parameters in the
repulsive term are fitted to various bulk properties (see,
i.e., Ref. 24).

The EAM potential used in the present work was
parameterized to describe copper in the context of
copper-nickel alloys. Also, the pair potential and the
charge densities were cut off at r,=1.35a,, where a, is
the zero-temperature lattice parameter. These functions
were then shifted so as to go smoothly to zero at r,. For
example, the shifted charge densities, pj(r), are related to
the unshifted functions, p;(r), by

Pl =p(r)—pr.)—(r—r,)dp;(r)/dr|, . (3)

That the shifted functions and their first derivatives go
smoothly to zero at the cutoff is particularly important in
the study of melting. Otherwise, were the first derivative
of the potential not continuous at r,, atoms in the liquid
state which are constantly passing in and out of the cut-
off range of other atoms would experience discontinuous
forces. For later reference, we note that the equilibrium
lattice parameter at zero temperature is a,=3.6208 A,
and the cohesive energy in the ideal crystal at zero tem-
perature is —3.430937 eV/atom.

Due to the shifting of the potential and the fact that
the potential used was not parametrized to elemental
copper (but copper-nickel alloys, instead), we will see
below that the melting point differs from the experimen-
tal melting point of copper. However, as we are interest-
ed in generic phenomena, and not in predicing experi-
mental results, this is not a limitation. We feel that our
results will be representative of all fcc metals.

III. THERMODYNAMIC MELTING POINT

In this section, we describe the determination at con-
stant (zero) pressure of the thermodynamic melting point,
T,,, defined as the temperature at which the Gibbs free
energy per atom of the solid, g.,q(7), and that of the
liquid, gjquiq( T), are equal:

gsolid( Tm )zgliquid( Tm ). )

(Throughout this section, we will use lower-case symbols
to denote thermodynamic quantities divided by the num-
ber of atoms.) As discussed in the Introduction, T,, may
be considerably lower than the temperature at which the
crystal spontaneously melts, 7. Therefore, to accurately
determine T,, we must determine the liquid and solid free
energies as a function of temperature and thus explicitly
determine T, from Eq. (4). The procedures used follow
closely those described in Refs. 15 and 43.
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A. Simulation procedures

All simulations to be described in this subsection were
performed using periodic-border conditions in the x, y,
and z directions of the (cubic) simulation cell [we shall
call this border condition three-dimensional (3D) PBC’s].
The systems, consisting of 108 particles, were equilibrat-
ed for approximately 1000 time steps (1 time step ~0.002
ps) at the desired temperature, which was maintained by
rescaling the velocities in every time step. Statistics were
then collected while the Nosé thermostat*’” was used to
simulate a canonical ensemble. The lattice parameters
for each temperature were determined using the
Parrinello-Rahman constant-pressure method*® in the
solid-state simulations while the Andersen constant-
pressure method*® was used in the liquid-state simula-
tions. This is because the Parrinello-Rahman scheme al-
lows strain fluctuations against which the liquid is unsta-
ble. All other properties were determined from
constant-volume simulations. Second-order polynomial
fits to the lattice parameter as a function of temperature
are given in Table 1.

B. Free energy in the solid state

The Gibbs free energy per particle at zero pressure,
g (T,P =0), is related to the internal energy per particle,
u(T,P =0), and the specific entropy, s(7,P =0), by the
thermodynamic relation®®

g(T,P=0)=u(T,P=0)—Ts(T,P=0) . (5)

The entropy can be eliminated from Eq. (5) by expressing
it in terms of the Gibbs free energy using the standard
thermodynamic relation:*

s(T,P=0)=—0g(T,P=0)/3T|p—g - (6)

Substituting Eq. (6) into Eq. (5) yields a differential equa-
tion for the Gibbs free energy in terms of the internal en-
ergy. Upon solving this equation, one obtains an expres-
sion, valid for any system, for the difference in the Gibbs
free energy at different temperatures

g(T,P=0)/T=g(T,,P=0)/T,
—7 [ Tdru(r,p=0)/7. )

Equation (7) is the fundamental equation we will use in
determining the free energy as a function of temperature.
It expresses the temperature dependence of the free ener-
gy in terms of that of the internal energy—a quantity

TABLE 1. Coefficients a,f3,7, of a second-order polynomial
fit to the lattice parameter in the solid, a,(7T), and the liquid,
a,(T), as a function of temperature: a,(T)=a~+BT+yT?. Lat-
tice parameters are in units of @, and temperatures are in units
of 1000 K. The “lattice parameter” in the liquid is obtained
from the cube root of the volume.

Coefficient a,(T) a,(T)
a 1.0000 0.9922
B 0.01545 0.0400
Y 0.005 159 0.0000
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which is easily and reliably obtained from simulation.

In order to use Eq. (7), it remains to determine the ab-
solute free energy at some temperature, T,. However,
rather than directly determining g;;4( T, P), we consider
the difference in free energy 8g (T, P) of the perfect solid
and the same system in the harmonic approximation

5g (T,P =0)/T=>8g(Ty,P =0)/T,
— [Tarsu(r,p=0)/7,  ®

where du (T,P =0) is the difference between the internal
energy of the fully interacting solid, u (7, P =0), and
the harmonic reference system, wu,, (7,P=0). For a
classical system at low temperatures*®
8g (T, P =0)x Ty? so we can take the zero-temperature
limit of Eq. (8). Upon rearrangement, this yields

8ootial TP =0)=g. (T,P=0)
—7 [Tdrsu(r,p=0)/7,  (9a)
where
8u(T,P =0)=uq(T,P =0)—3kz T(N —1)/N—¢, .
(9b)

Here, N is the number of atoms, kp is Boltzmann con-
stant, and ¢o=u;u(T =0,P =0) is the potential energy
per particle in the static (zero-temperature) lattice with
the original potential. The factor (N —1) occurs because
the center of mass is fixed in our simulations, since the
systems are conservative, and there are, therefore, only
N —1 degrees of freedom. This technique, using the har-
monic reference system to avoid lengthy MD simulations
which would otherwise be necessary to determine
Zsotia( To, P =0), was first described by Broughton and
Li.®

We have performed simulations of the 108-particle per-
fect crystal at ten different temperatures ranging from
200 to 1400 K and determined u;4(7T,0) at each temper-
ature. (The upper limit of 1400 K was chosen because
the crystal spontaneously melts above this temperature.
This is discussed in greater detail in the following sec-
tion.) After 10000 time steps, the time average of
u;qa(7,0) at each temperature showed fluctuations of
less than 0.01% which we take as the errors in these
numbers. Table II gives a second-order polynomial fit to
8u (T,P=0)/T? The expression for g, (T,P=0) is
given in the Appendix. The result of an evaluation of
that expression yields, for our system,

har( T, P =0)=¢,—0.3888T —0.2585T In(T) , (10)

where g, is in units of eV, the temperature is in units of
1000 K, and ¢y=—3.430937 eV represents the zero-
temperature cohesive energy given in Sec. II. Equations
(8)—(10) and Table II completely characterize the free en-
ergy of the perfect solid as a function of temperature. Be-
cause U y;4q(T) was determined from T'=0 K to T = 1400
K, we expect the values of gy,;q(7T) determined by this
method to be accurate over the same range of tempera-
tures.

J.F. LUTSKO, D. WOLF, S. R. PHILLPOT, AND S. YIP 40

TABLE II. Coefficients of a second-order polynomial fit to
the difference between the solid and harmonic internal energies
divided by the squared temperature, u,(T)/T?, and the liquid
internal energy divided by the squared temperature, u,(T)/T?,
as functions of temperature: du,(T)/T*=a+BT+yT>. Ener-
gy is in units of eV and temperature is in-units of 1000 K.

Coefficient Su (T)/T? u(T)/T?
a 0.014410 —8.036
B —0.001956 6.933
Y 0.005436 —1.660

C. Liquid-state free energy

To determine giq,iq( T, P =0), we begin again with Eq.
(7). The internal energy of the liquid was determined at
ten different temperatures from 1350 to 1800 K. The
liquid was first created by equilibrating the 108-particle
system at 2500 K for 20 000 time steps. The temperature
was then stepped down 100 K every 10000 time steps un-
til a temperature of 1800 K was achieved. The internal
energy was then determined at ten temperatures ranging
from 1800 to 1350 K following the same procedure, and
with comparable accuracy, as in the case of the solid.
Table II also gives a second-order polynomial fit to
Uyquia( T, P =0)/T>.

To determine gjiquiq(To, P =0) we, again, need a con-
venient reference system. The only fluid system for
which it is possible to analytically calculate the free ener-
gy is the ideal gas. This can indeed be used as a reference
by first noting that at zero pressure, the Gibbs free energy
is equal to the Helmholtz free energy,® a(T,¥), evalu-
ated at V=V (T,P =0). The variation of the Helmholtz
free energy with respect to volume, while holding temper-
ature constant, is given by

da(T,,V)=—(1/N)P(T,,V)dV , ’ an

so that, upon integration along an isotherm,
a(To, V)=a(To, Vo)—(1/N) [ Vdv P(Tp) . (12)

The same expression holds for an ideal gas. Denoting the
difference in the Helmoltz free energy of the liquid and
the ideal gas by 8a (T, V), we have that

8a (T, V)=8a(To, Vy)—(1/N) [ "dv 8P(Ty,v)
=8a(To,Vo)+ ["dn 8P(Ty,n)/n?, (13)

where 8P (T,v) is the difference in pressure between the
liquid and the ideal gas. Notice that we have changed
variables in the integration from volume to number densi-
ty, n. As the volume becomes infinite (or the density goes
to zero) the liquid becomes a noninteracting ideal gas so
that 8a (T, V,)) becomes zero and we have

yiguia(To, VI=a,(To, V)+ [ "dn 8P(Ty,n)/n?, (14)

where a,(T, V) is the ideal-gas free energy. Unfortunate-
ly, this expression cannot be usefully evaluated by simula-
tion because the liquid undergoes a phase transformation
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to a gas as the volume is expanded. The pressure is there-
fore not a continuous function and the numerical integra-
tion of Eq. (14) cannot be performed accurately.

The liquid-gas phase transition can be circumvented by
first modifying the potential. We replace the EAM po-
tential ¥ with a new potential ¥, given by

Vi=3 ®(g;)+A 3 Fi(p]) . (15)
i) i

When A is unity, V, represents the original Cu potential,
whereas when A is zero the potential is purely repulsive.
The purely repulsive system is useful because no phase
_transition occurs as the volume increases.*’ Its free ener-
gYs @rep( T, V), may therefore be computed using Eq. (14),
i.e., by expanding the system towards the ideal-gas,
infinite-volume limit. The free energy of the original
liq}lsid is then related to that of the purely repulsive liquid

by

aliquid( T,V) =arep( T,V)

+ [ a1 /N 3 FipD)y (16)

where the integrand in Eq. (16) is simply the average
value of the embedding function when the potential given
by Eq. (15) is used.

The calculation of aj;qq(Tp, ¥) thus consists of three
steps. The first is to determine the integrand of Eq. (16)
for several values of A and to numerically evaluate Eq.
(16). At this point, the liquid is purely repulsive. The
second step is to expand the system and to determine the
pressure as a function of density at several different
points. These data are used to numerically evaluate Eq.
(14) in which ayiq,iq(T, V) is replaced by a,.,(T,V). The
final step is to. analytically evaluate the ideal-gas free en-
ergy a;(T, V).

We have carried out this procedure at a temperature of
T,=1800 K. The integrand in Eq. (16) was evaluated at
five values of A between 0 and 1. A second-order polyno-
mial fit to these data is given in Table III. After 10000
time steps at each value of A, the average of the embed-
ding function converged to four significant figures. By
using various polynomial fits to evaluate Eq. (16), we find
that

Byiquia( To» V) =0,ep(To, V) —4.43910.001 €V . (17)

The pressure of the purely repulsive liquid was evaluated
for ten values of the density from n =3.321 atoms/a}
(the density of the Cu liquid at 1800 K and zero pressure)
to n =0.300 atoms/a 8. At the higher densities, simula-
tions of 10 000 time steps yielded convergence of the pres-
sure to 0.01%. At the lower densities, however, there are
fewer collisions and the statistics become poorer. There-
fore, the length of the simulations was increased by a fac-
tor of 4 in order to yield similar accuracy. A second-
order polynomial fit of 8P (T,n)/n? is given in Table III,
- where the second virial coefficient was used to provide an
additional point at zero density. From various such poly-
nomial fits we estimate that

Arep( Ty, V)=a;(Ty, V)+1.86941+0.002 eV (18)
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TABLE III. Coefficients of second-order polynomial fit to
the average of the embedding function, { F ),, as a function of A
and of 8P(n)/n? as a function of density: {(F),=a+pBA+yA?
and 8P(n)/n*=a+pBn+yn? Energy is in units of eV and
length is in units of a,.

Coefficient (F), 8P(n)/n?
a —4.395 0.1699
B —0.3605 0.1132
Y —0.07723 0.05570

at T=1800 K. Finally, a;(Ty, V) is calculated to be
—1.947 eV at T;=1800 K and n =3.321 atoms/a} (see
the Appendix for details). Combining Egs. (17) and (18)
we have that

Liquial To=1800 K,P =0)=—4.517£0.003 eV . (19)

Equations (19) and (7) and u,(T,P =0) as given in Table
II completely specify the liquid free energy as a function
of temperature. This method of determining the free en-
ergy of the liquid is identical to that used by Broughton
et al.!>*

D. Thermodynamic melting point

The thermodynamic melting point T,, is determined
by equating the liquid and solid free energies. By using
various polynomial fits to the MD data and taking into
account the known errors, we estimate T, for our system
to be 1171130 K. Figure 1 shows the solid-phase and
liquid-phase free energies as a function of temperature
near T,,. In fact, the error in this value may be some-
what larger than indicated. The reason for this is that
the liquid free energy is extrapolated from a value deter-
mined at 1800 K and the absolute value of the liquid free
energy undoubtedly becomes less reliable the further one
extrapolates away from this value. This source of error
could be reduced by redetermining gjiquiq( 7o, P =0) at a
lower value of T,. In addition, u;q,iq(7) was necessarily
extrapolated below temperatures at which it had been ex-
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FIG. 1. Free energy of the solid phase (open symbols) and the
liquid phase (solid symbols) as a function of temperature near
the melting point.
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plicitly determined from simulation. We do not consider
this to be a serious source of error since the internal ener-
gy is expected to be a smooth function of temperature.
Finally, we note that 7, as determined here is
significantly lower than the experimentally determined
melting point for copper (T, o, ~ 1350 K). This is be-
cause (a) the potential was not parameterized to elemen-
tal copper and (b) the potential was shifted as described
in Sec. II. In practice, when the elemental potential is
used the temperature scales at which various phenomena
occur are shifted up about 100 K relative to the potential
used here, in better agreement with experiment.

IV. SIMULATION METHODS
FOR DEFECTED SYSTEMS

In this section, we describe several aspects of our
methods for the simulation of defect-induced melting
which are essential for the appreciation of the results to
be presented. These include the use of a recently
developed bicrystal simulation model and the methods of
data analysis used to monitor the local order in the sys-
tem. In the following sections, the results of simulations
of three types of defects, a grain boundary, a free surface,
and various sized voids, will be discussed. For clarity in
the discussion of the results, the different considerations
which enter into the method of simulation of each system
will be described here.

A. Bicrystal simulation method

In simulation studies of interfaces a technical problem
arises in the implementation of border conditions on the
simulation cell which properly represent the effects of the
medium beyond the cell. As long as the interface is pla-
nar and coherent, i.e., as long as it can be characterized
by a periodic planar unit cell, 2D periodic borders (2D
PBC’s) are appropriate in the plane of the interface (what
we shall call the x-y plane, see Fig. 2). However, perpen-
dicular to the interface, i.e., in the z direction, the system
is inhomogeneous and the imposition of periodic borders
in this direction (i.e., the use of 3D PBC’s) gives rise to a
second interface in the simulation cell. Recently a new
border condition has been proposed which introduces
moveable perfect-crystal blocks at the two ends of the
simulation cell in the z direction.’® This model allows the
simulation of isolated interfaces embedded in otherwise
perfect crystal. The present simulation makes use of this
2D PBC model.”!

Figure 2 shows the simulation cell consisting of a re-
gion I in which atoms move according to Newtonian
equations of motion and a region II which consists of two
rigid blocks of atoms. The simulation cell is periodic in
the x and y directions. The extent of the rigid blocks in
the z direction is determined by the range (i.e., the cutoff
radius) of the potential. Initially, the positions of the rig-
id blocks are fixed by taking the distance between the
outermost plane of region I and the first plane of region
IT to be the perfect-crystal interplanar spacing. Such a
region I-region II strategy is commonly used in zero-
temperature (lattice statics) simulations of grain boun-
daries.
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FIG. 2. Schematic of our simulation cell. Region I contains
32 planes with 29 atoms in each plane. Initially, the GB lies be-
tween planes 16 and 17.

The new border conditions specify how the rigid blocks
move during the simulation. Each rigid block is allowed
to move as a unit parallel to the interface in response to
the total force exerted on it by the atoms in region I. In
addition, a restricted Parrinello-Rahman constant-
pressure scheme*® is used to allow the length of the simu-
lation cell in the z direction to fluctuate in response to the
pressure in region I. The dimensions of the simulation
cell in the plane of the interface are fixed by the semi-
infinite bulk regions the interface is embedded in; they
are, therefore, determined by the lattice parameter of the
ideal crystal at the simulation temperature. This lattice
parameter is determined from an independent simulation
of an ideal crystal with 3D PBC’s at the desired tempera-
ture. Further details are given in Ref. 51.

B. Free-surface simulation

The simulation of a free surface on a bulk substrate
may be treated within the framework of the bicrystal
simulation model described above by the removal of ei-
ther one or both of the region-II rigid blocks. The remo-
val of one block would correspond to the simulation of a
free surface on a bulk substrate. This method has been
used in many simulation studies of free surfaces.*>*°
Since the greatest pressure fluctuations are expected to
take place near the free surface, which is free to respond
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to them, it is inappropriate in this case to use the
Parrinello-Rahman constant-pressure scheme.

In our simulations, we have chosen to remove both rig-
id blocks thus creating a thin-slab geometry. The advan-
tage of this is that, with two free surfaces present, we
gain twice as much data as we would if we only removed
one rigid block. In order to simulate free surfaces on a
bulk substrate, we continue to hold fixed the lattice pa-
rameter in the x-y plane of the thin slab at the value ap-
propriate for a bulk ideal crystal. Provided the surfaces
are far enough apart that they do not interact, we then
expect each free surface to behave as if it were attached
to a bulk substrate. In the simulations described in Sec.
VI, the free surfaces are initially nearly 60 A apart and
the energy and surface relaxation indicate that the sur-
faces do not interact. The interaction of the two liquid-
solid interfaces which exist after the surfaces melt will be
discussed in Sec. VI.

C. Void simulation

The bicrystal simulation model has also been used in
the simulation of small voids to be discussed in Sec. VII.
In this case, the region I-region II geometry was used
even though region I contained no interface. This allows
us to simulate a periodic planar array of voids (periodic
due to the periodicity in the x-y plane) by removing
atoms from the center of region I to create a single void
in the simulation cell. Such a system bears an obvious
analogy to a grain boundary (both are more or less pla-
nar, periodic defects) with the additional degree of free-
dom of controlling the amount of disorder introduced by
the defect simply by varying the size of the void.

D. Equilibration procedure and superheating

We find that the degree to which an ideal crystal may
be superheated in a computer simulation depends strong-
ly on the size of the system and the equilibration pro-
cedure (i.e., the method by which the temperature is
varied and maintained). Because we are interested in
comparing different possible mechanisms of melting, a
single equilibration procedure has been used in all simula-
tions. In addition, the size and geometry of the various
systems are chosen to be as similar as possible.

The systems were initially instantaneously raised to a
temperature of 600 K which was maintained for 1000
time steps. The time step used in all simulations was ap-
proximately 0.002 ps, which provided energy conserva-
tion at constant volume to six significant figures over an
interval of 1000 time steps. Because we are interested in
studying the melting transition, which requires a latent
heat, the velocities of the atoms were rescaled after every
time step so as to maintain a constant temperature. This
thermostating, which provides a crude approximation to
a canonical ensemble, acts as a thermal reservoir allowing
the system to give up or absorb energy as needed.

After the equilibration at 600 K, the temperature was
raised 100 K every 200 time steps until the temperature
reached 1000 K. This temperature was maintained for
1000 time steps to allow at least partial equilibration.
Following this, the temperature was then raised 100 K
every 1000 time steps until the desired temperature was

2847

reached. With this equilibration procedure, we were able
to superheat an ideal crystal using the region I-region II
simulation method to between 1400 K, where the crystal
was stable, and 1500 K, where the crystal spontaneously
melted. Therefore, all simulations to be discussed below
were in the range from 1100 to 1400 K. The limit to su-
perheating that we were able to obtain will be discussed
in Sec. VIII in the context of the Born criterion,'® which
gives an upper limit to superheating.

E. Characterization of planar disorder and melting

The detailed information obtained from MD simula-
tions is commonly condensed into standard thermo-
dynamic and structural quantities. However, as we are
interested in the present study in monitoring the thermal
disorder associated with essentially planar defects, it is
important to monitor the spatial variations of the
relevant properties in the direction perpendicular to the
plane of the defects. To obtain such information, we
divide region I into slices along the z direction. The
widths of the slices are chosen so that each slice contains,
initially, one lattice plane. Properties such as the internal
energy and mean-square displacement (MSD) were then
monitored in each slice. )

To investigate the breakdown of crystalline order upon
melting, we define the squared magnitude of the static
structure factor, S (k), which for brevity we denote sim-
ply as S}(k),

SH k)= [1/Nzcos(k~q,.) ]2 (20)
+ [1/N2sin(k-q,.) ]2 ,

where q; is the position of atom i. For the overall S%(k),
all atoms in the simulation cell are included in the sums
in Eq. (20), whereas for the planar structure factor, S[f(k),
only atoms in a given lattice plane are considered. For an
ideal-crystal lattice at zero temperature, sz(k) then
equals unity for any wave vector k which is a reciprocal
lattice vector in that plane. By contrast, in the liquid
state (without long-range order in the plane) sz(k) fluctu-
ates near zero.

In the case of a GB, the two halves of the bicrystal are
rotated relative to one another. Therefore, a reciprocal-
lattice vector in one-half of the bicrystal is not a
reciprocal-lattice vector in the other half. Thus, two
different wave vectors are required to monitor planar or-
der in the two halves. We shall call these wave vectors k;
and k,. They are related by the relative rotation of the
two halves of the bicrystal. For a well-defined lattice
plane, say in crystal 1, sz(kl) then fluctuates near a finite
value (< 1) appropriate for the temperature of the crys-
tal, whereas sz(kz) fluctuates near zero. In the interface
region, due to local disorder, one expects somewhat lower
values of sz(kl ). By monitoring sz(kl) and S}(kz), every
plane may be characterized as (a) belonging to crystal 1
[for S’pz(k,) finite, S2(k,) near zero], (b) belonging to crys-

p

tal 2 [for S}(kl) near zero, sz(kz) finite], or (c) disordered

[for sz(k,) and sz(kz) near zero]. The vectors k; and k,
were chosen, in the present case, to be reciprocal-lattice
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vectors in the { 100) direction.

As a further measure of the overall disorder in the sys-
tem, we introduce a quantity N4 which is a measure of
the number of ‘“defected” atoms in the system. To deter-
mine whether or not an atom is defected, we first define a
distance r4,¢ Which in our case is taken to be halfway be-
tween the first- and second-nearest-neighbor shells in the
ideal-crystal lattice (with the lattice parameter appropri-
ate for the temperature of the crystal). An atom, say
atom n, is then classified as defected if the number of
atoms k within a sphere of radius r 4 is not equal to the
number in the ideal-crystal lattice (i.e., if the local density
near atom n differs from that in the perfect lattice). For
our choice of 74, k is the number of nearest neighbors in
the perfect lattice. Because of the change in density in
going from the solid state to the liquid state, an atom in
the liquid is, usually, characterized as defected. On the
other hand, ry; is large compared to the amplitude of
atomic vibration in the perfect crystal, even at high tem-
peratures, so an atom in the solid is classified as not de-
fected.

V. GRAIN-BOUNDARY NUCLEATED MELTING

A. Grain-boundary geometry

The grain boundary chosen for the present study is the
so-called 229 (001) symmetrical twist boundary. This
GB, on the (001) plane, is obtained by rotating one per-
fect semicrystal relative to another by an angle of 43.60°
about the (001) plane normal. The system is oriented, as
indicated in Fig. 2, with the (001) planar normal along
the z axis and, consequently, the x-y plane is parallel to
the GB plane. The principal {001) axes of each semi-
crystal are rotated by 21.80° relative to the x-y axes of the
simulation cell.

Because of the interface there is no periodicity in the z
direction. However, in the x-y plane, the structure is
periodic possessing a square-planar repeat unit with an
area which is =29 that of the corresponding primitive
planar unit cell (2=1) on the (001) plane in a perfect sin-
gle crystal. Prior to the finite-temperature simulations,
the GB was relaxed at zero temperature and zero pres-
sure to its minimum-energy configuration. The resulting
geometry used in the simulations consisted of 32 (001)
planes containing 29 atoms per plane for a total of 928
atoms. The dimensions of the simulation cell at zero
temperature are 3.808a,, 3.808a,, and 16.08a, in the x,
», and z directions, respectively, and the GB energy is?’
710.7 ergs/cm?>.

The primary considerations underlying the choice of
this GB are (a) its relatively large planar unit cell and (b)
the large spacing of the (001) planes; (the spacing d is
dy=0.5a, at zero temperature). Because of the large
interplanar spacing, the lattice planes are easily dis-
tinguished thus making clear the onset of disorder associ-
ated with melting. The large planar unit cell allows us to
consider this a “generic” high-angle GB as opposed to
boundaries with small planar unit cells for which the en-
ergy is known to be highly, and unusually, sensitive to
translations.”? Similarly, we choose a twist rather than a
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tilt boundary because the symmetrical tilt boundary on a
given lattice plane has the smallest planar unit cell of all
GB’s on that plane and, hence, is also highly sensitive to
translations.>?

B. Simulation results

Shown in Figs. 3(a) and 3(b) are the profiles of the pla-
nar structure factor after the GB has been equilibrated at
1100 K for 1000 and over 16 000 time steps, respectively.
The profiles are remarkably similar aside from the fact
that the position of the GB, as determined from the
crossing of sz(kl) and sz(kz), has shifted. This thermal-
ly activated GB migration has been discussed previous-
1y.3%3° However, for the present study we simply observe
that at this temperature (about 94% T,,), the grain
boundary is completely stable and sharply defined. Other
properties such as the plane-by-plane profile of potential
energy and MSD are similarly sharp and also indicate
that the GB is stable with respect to a spontaneous disor-
dering transition.

Figures 4(a) and 4(b) show the profile of the structure
factor after 5000 and 10000 time steps, respectively, at
1300 K. In contrast to the behavior at 1100 K, a region
of disorder forms at the GB and spreads rapidly away
from it. It is interesting to note that, from the structure

1.0
.29 (001) GB
)
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N
() T = 1100K

t= 16,400

Plane

FIG. 3. Instantaneous values of S3(k,) and S3(k,) for the 32
slices parallel to the (001) 229 GB after 1000 [panel (a)] and
16 400 [panel (b)] time steps at 1100 K.
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FIG. 4. Instantaneous values of S3(k,) and S3(k,) for the 32
slices parallel to the (001) 229 GB after 5000 [panel (a)] and
10000 [panel (b)] time steps at 1300 K.

factor profiles, the widths of the liquid-solid interfaces
appear to be only about two atomic planes in contrast to
a GB width, at 1100 K, of about four planes. Figure 5
shows the instantaneous MSD, averaged over planes
15-18, about 116 atoms, as a function of time over the
final 10000 time steps of the simulation. The MSD in-
creases nearly linearly, and from its slope a diffusion cos-
tant of 4 X 107° m?/s is calculated. This is of the correct
order of magnitude for a metal in the liquid state and
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FIG. 5. Instantaneous mean-square displacement averaged
over four slices in the disordered region as a function of time.
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leads us to conclude that the spreading disorder is a re-
sult of melting nucleated at the GB.

The growing liquid region may also be detected by ex-
amination of the number of defected atoms. Figure 6
shows Ny as a function of time for the GB at 1200,
1300, and 1400 K. In all cases, the number of defected
atoms is seen to increase linearly until the liquid-solid in-
terface begins to interact with region II. Because region
IT consists of rigid blocks of atoms which do not move
relative to one another, it cannot melt. Therefore, as the
liquid-solid interface approaches region II the rate of
melting slows. Figure 7 shows a fit of Ny to a linear
function of time. In this fit only the points corresponding
to Ngyr<800 have been used to eliminate the data
affected by region II. As the figure shows, the rate of in-
crease of Ny is, indeed, remarkably linear indicating a
constant rate of propagation of the two liquid-solid inter-
faces.

Figure 6 indicates that the 1400-K system is complete-
ly melted after about 15000 time steps. Further evidence
that the disordered region is truly liquid is the volume ex-
pansion that accompanies it. Because the dimensions of
the simulation cell in the x and y directions are held fixed,
all volume expansion must be accommodated by a change
of the length of the simulation cell (i.e., region I) in the z
direction. Shown in Fig. 8 is the length of the simulation
cell as a function of time for the GB at 1400 K. It is clear
that the volume expansion levels off after about 7000 time
steps. From Table I, giving the thermal expansion of the
liquid and solid states as a function of temperature, we
calculate that the length of the simulation cell in the z
direction at 1400 K should be 17.31a, when the system is
completely melted. The value obtained by averaging over
the last 3000 time steps of the 1400-K simulation is
17.27a, in close agreement with the liquid value. (The
small difference is most likely due to incomplete melting
at the region I-region II interface.) It is thus quite clear
that what is being observed is, indeed, thermodynamic
melting.

The velocity of melting may be extracted from the rate
of increase of N4 by assuming that (a) the liquid-solid in-
terface is planar and that (b) an increase of Ny by 58
atoms corresponds to each liquid-solid interface propaga-

1000 :
329 (001) GB

o 10000 20000
Time Step

FIG. 6. Number of defected atoms as a function of time for
the GB at 1200, 1300, and 1400 K.
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FIG. 7. Fit of N4 to a linear function of time.

ting by one interplanar spacing. Under these assump-
tions, the velocity of propagation at a given temperature
v (T) of one liquid-solid interface is given by

v(T)=(dy/58)0N 4(t,T) /0t , 21

where d, is the interplanar spacing. The velocity of
propagation at various temperatures is shown in Fig. 9
where the error bars were taken to be twice the standard
deviation in the fit of Ny to a linear function of time.
The values of the velocity of propagation at various tem-
peratures are given in Table IV. A quadratic extrapola-
tion to zero velocity of propagation yields a temperature
of 1179£20 K—in striking agreement with the thermo-
dynamic melting point (7',, =1171£30 K). The obvious
conclusion is that thermodynamic melting has been nu-
cleated at the GB.

VI. FREE-SURFACE NUCLEATED MELTING

A. Free-surface geometry

As discussed in the Introduction and in Sec. IV, the su-
perheating limit for an ideal crystal varies, in practice,
with the geometry of the simulation cell. In order to
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FIG. 8. Length of the bicrystal computational cell in the z
direction (parallel to the GB-plane normal) as a function of time
at 1400 K. The length of the cell at 7=0 K is 16.08a,. The
length for a liquid at 1400 K is 17.31a,.

Temperature (K)

FIG. 9. Velocity of melting for GB-nucleated melting as a
function of temperature and extrapolation to zero velocity. The
error bars are twice the standard deviation of a fit of Ny to a
linear function of time.

avoid any such effects which might invalidate the com-
parison of the free-surface and the GB results, we have
chosen to use a free-surface geometry as similar as possi-
ble to the GB geometry. Specifically, the free-surface
(i.e., thin-slab) geometry has the same planar unit cell, the
same number of lattice planes, and, consequently, the
same number of atoms as the GB geometry. Because
there is no (internal) interface, this system consists of an
ideal crystal with free (001) surfaces in the z directions.

B. Simulation results

Analogous to the GB, the present system is stable at
1100 K. Shown in Figs. 10(a) and 10(b) are the planar
structure-factor profiles after 5000 and 10000 time steps,
respectively, at 1300 K. Again, it is seen that a region of
disorder nucleates at the site of the defect (i.e., at the sur-
faces), and spreads throughout the system as time
progresses. An examination of the MSD averaged over

‘several planes in the disordered regions yields a diffusion

constant which is comparable to that found in the GB
simulations. This again indicates that melting has nu-
cleated at the defect and, once having nucleated, spreads
throughout the system. Unlike the GB simulation, in
which the position of the rigid blocks in region II defined
the length of region I in the z direction, there is not a
well-defined volume. We are therefore unable to compare
the volume expansion with that expected when the sys-
tem melts.

Figure 11 shows the number of defected atoms as a
function of time at both 1300 and 1400 K. An interesting
difference from the GB results is the long nucleation time

TABLE 1IV. Velocity of melting for the GB, vy, the free sur-
face, vgs, and the void, v,, as functions of temperature.

Temperature (K) UGB Uks v,
1200 9.67 12.4
1300 63.8 60.4 62.5
1400 145.7 141.0 138.2
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(about 5000 time steps) before melting begins at 1300 K.
We believe that this is due to the larger amount of intrin-
sic disorder present in the GB than in the free surface.
While the free surface does undergo some small relaxa-
tion at zero temperature, its planar structure factor is vir-
tually unity while the planar structure factor in the GB
shows considerable disorder even at zero temperature.
Therefore, it is reasonable to speculate that the rate of
nucleation of melting at a defect depends on the amount
of structural disorder present in the defect. Because of
the long nucleation time near T,,, no attempt was made
to obtain data at 1200 K.

Under the same assumptions as were made in the
preceding section, a rate of growth of the disordered re-
gion may once again be extracted. In the present case
only the data for which Ny <100 were used. The lower
limit is necessary to avoid the data during the time of nu-
cleation. As the liquid-solid interfaces approach one
another, the free surfaces appear to attract each other as
evidenced by the rapid increase in the rate of growth to-
wards the end of the 1400-K simulation (see Fig. 11).
The linear behavior prior to the onset of this interaction
indicates that the surfaces do not interact substantially.
Therefore, in analogy to the GB analysis, we also exclude

data for which Ng,,>600. Altogether, the range
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FIG. 10. Instantaneous values of S3(k,) and S3(k,) for the
32 slices parallel to the (001) free surfaces after 5000 [panel (a)]
and 10000 [panel (b)] time steps at 1300 K.
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FIG. 11. Number of defected atoms as a function of time for
the free surfaces at 1300 and 1400 K.

100 < N4 <600 allows for the melting of more than 17
planes. The velocities obtained are not very sensitive to
the precise limits chosen. Shown in Fig. 12 is the rate of
growth as a function of temperature for the free surface;
the values are listed in Table IV. Extrapolating the two
points yields a limiting temperature at which the solid-
liquid interface does not propagate (i.e., temperature of
coexistence) of 1217130 K, which is in fairly close agree-
ment with T,, as determined from the free-energy
analysis. It is worth noting that without the point at
1200 K, the GB would give a coexistence temperature of
1222 K which is equally high.

VIL VOID-NUCLEATED MELTING

A. Void geometry

To generate a void, we begin with the same ideal-
crystal orientation as in the case of the free surface. As
discussed in Sec. IV, the region I-region II geometry is
used in the present case so as to simulate a planar array
of voids. A planar array of one-atom voids (i.e., monova-
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FIG. 12. Velocity of melting for free-surface nucleated melt-
ing as a function of temperature and extrapolation to zero ve-
locity. The error bars are twice the standard deviation of a fit of
N e to a linear function of time.
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cancies) is created be removing a single atom from the
center of region I. An array of five-atom planar voids is
created by removing a single atom from the center of re-
gion I as well as its four nearest neighbors in the (001) (x-
y) plane. An array of 13-atom voids is created by remov-
ing an atom from the middle of region I as well as all of
its twelve nearest neighbors. We note that in the latter
two cases, the radii of the voids are between the nearest-
neighbor distance, 0.707a, and the second-nearest neigh-
bor distance, lay, depending on the definition used. Tak-
ing the largest value for the radius, and given the planar
dimensions of the simulation cell, we find that the dis-
tance of the edge of a void from the edge of one of its
periodic images is about 1.8a,. This is outside the cutoff
of the potential so the voids and their images do not in-
teract directly. However, there is an indirect interaction
due to interactions between atoms near the void and
atoms near its image.

B. Simulation results

No melting was observed in the simulations of a one-
atom (monovacancy) void even at 1400 K. In view of the
discussion in the preceding section concerning the role of
localized disorder in nucleating melting, it is not surpris-
ing that the introduction of a single vacancy had no
effect. The same was true of the five-atom void where,
again, very little disorder was introduced by the defect.
This is illustrated in Fig. 13 which shows the profile of
the planar structure factor after equilibration at 1100 K.
The figure shows that the local planar structure is practi-
cally unaffected by the void.

A close examination of the number of atoms per plane
shows that during the equilibration at 600 K two atoms
from plane 15 “drop” into plane 16 where the five-atom
void was initially located; i.e., the void becomes unstable.
As the temperature is raised, the void continues to disso-
ciate until it is finally replaced by five highly mobile
single-atom vacancies. As in the case of a single vacancy,
there is apparently not enough localized disorder to nu-
cleate melting even at 1400 K.

In contrast, the 13-atom void is stable at temperatures
below T, and does nucleate melting above 7,,. This is il-
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FIG. 13. Instantaneous value of S3(k) for the 32 slices paral-
lel to the array of five-atom planar voids in the (001) plane after
10000 time steps at 1100 K.
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lustrated by Figs. 14(a) and 14(b) showing the profile of
the planar structure factor after 5000 and 10000 time
steps, respectively, at 1300 K. The MSD in the disor-
dered region and the overall volume expansion produced
by the disordering once again confirm that the system is
indeed melting.

The process of melting is initially very different when
nucleated by the void than in the case of GB-nucleated or
free-surface nucleated melting since the liquid-solid inter-
face now propagates in the x, y, and z directions. Howev-
er, since the simulation cell is relatively small in the x-y
plane, the complete melting of the plane appears to occur
rapidly. Nonetheless, it is interesting to compare Figs.
14(a) and 14(b) with the corresponding structure-factor
profiles when the melting is nucleated at a GB [Figs. 4(a)
and 4(b)]. It is apparent that the transition from the
liquid region to the solid region is more gradual in the
present case; i.e., the width of the liquid-solid interface
appears to be greater. This is consistent with a nonplanar
liquid-solid interface as might be expected from the non-
planar nature of the initial defect.

, Shown in Fig. 15 is the number of defected atoms as a
function of time for melting nucleated by the 13-atom
void at 1200, 1300, and 1400 K. If we approximate the
liquid-solid interface as being planar, the velocity of melt-
ing can be extracted as in the case of the grain boundary.
The velocities obtained are listed in Table IV. Figure 16
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FIG. 14. Instantaneous values of S3(k) for the 32 slices
parallel to the array of 13-atom voids in the (001) plane after
5000 [panel (a)] and 10000 [panel (b)] time steps at 1300 K.
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FIG. 15. Number of defected atoms as a function of time for
the 13-atom void at 1200, 1300, and 1400 K.
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shows the velocity of melting as a function of tempera-
ture as well as an extrapolation to zero velocity. The
temperature at which no propagation occurs is found to
be 1171+20 K which is again very close to T,,.

VIII. DISCUSSION

In this paper, we have presented the results of a
molecular-dynamics study on the role of extrinsic defects
in the melting process. We have shown that grain boun-
daries, free surfaces, and voids can act as nucleation sites
for melting. By extrapolating the rate of spreading of the
melted region away from the nucleation site to zero rate
of growth, we found that the defects nucleate melting at
all temperatures above T,, and that no melting occurs
below T,,. From these results, we draw the following
conclusions regarding melting and superheating in real
systems.

First, it appears that extrinsic defects are the dominant
mechanism for the initiation of melting. This conclusion
follows from the fact that MD probes the shortest time
scales present in the system simulated. Because an ideal
crystal of almost 1000 atoms, simulated with 2D PBC'’s,
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FIG. 16. Velocity of melting for the 13-atom void-nucleated
melting as a function of temperature and extrapolation to zero
velocity. The error bars are twice the standard deviation of a fit
of N to a linear function of time. '
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remains stable above T,,, thermally generated defects do
not appear to cause melting on as short a time scale as do
extrinsic defects. Therefore, in any system containing,
say, a grain boundary, melting will nucleate at the GB
long before any instability due to intrinsic defects takes
effect. As was discussed in the Introduction, this obser-
vation is in accord with experiment.

Our second conclusion is that nucleation requires /ocal-
ized disorder. This is indicated by the long nucleation
times at a free surface as well as the absence of melting
when a single vacancy or five-atom void is present.
Again, this suggests that intrinsic defects are an unlikely
source of melting. Indeed, it is interesting to note that
even the five-atom void, which did not nucleate melting,
represents a defect concentration of about 0.5% which is
substantially higher than the 0.37% called for in theories
of melting based on thermally generated defects (see, for
example, Ref. 4). We also note that it does not appear
that melting requires the presence of an extended defect.
Although the 13-atom void does interact indirectly with
its periodic images, thus creating a kind of extended de-
fect, the same is true of the five-atom void. Since the
latter did not give rise to melting, it appears that the
dominant consideration is the amount of disorder present
and not the extent of the defect.

We can also identify the mechanical instability which
causes spontaneous melting of the ideal crystal at about
1450 K as being that described by the Born criterion.
Specifically, Born observed'® that an fcc crystal becomes
unstable when a certain pair of its elastic constants are
equal (i.e., when C;; =C|,) and that this occurs when the
crystal is sufficiently expanded. We have calculated the
elastic constants of our system at zero temperature as a
function of lattice expansion and find the instability to
occur at an expansion of 4.3%. Although this is only a
(quasiharmonic) approximation to the finite-temperature
elastic constants, it is interesting to note that at 1450 K,
the thermal expansion of the ideal crystal is 3.3%. Since
the Born criterion provides an absolute upper limit, and
since the elastic-constant calculation is only approximate,
we consider these numbers to be remarkably close. This
leads us to identify the mechanical instability which lim-
its the degree of superheating one can achieve as arising
from this elastic instability. Physically, Young’s modulii
are zero at this point indicating an instability against
variations in the lattice parameter.

The only defect that we have studied extensively below
the melting point is the GB. Its behavior below T, has
been discussed in detail elsewhere.’® Here we only note
that the GB appears to be stable below the melting point,
in accord with our previous studies using a central-force
potential®® and with experiment.>3~35 This agreement be-
tween simulation and experiment concerning the behav-
ior of GB’s both below and above T,, indicates that the
high-temperature behavior of metal GB’s can be reliably
investigated by simulation using the currently available
techniques.

Finally, the conclusions obtained from the present
work are in full agreement with those of paper I which
discuss a similar study of melting in silicon. Our results
therefore appear to be independent of the nature of bond-
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ing. Since the same simulation methods, including the
border condition,’! were used we believe in the broad ap-
plicability of this simulation technique to bicrystals.
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APPENDIX

The free energy of a harmonic system is given by!®
Ghar(T,P=0)=—kp T In(mV?*ky T /27h?)
+kpT 3 Inthw, /kpT)+¢y, (Al
n

where V is the volume of the system, & is Planck’s con-

stant, @, is the energy of the static lattice, and {w, } is the

set of vibrational frequencies of the lattice. The sum in
Eq. (A1) extends over 3N —3 degrees of freedom since it
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does not include the three zero frequencies associated
with center-of-mass motion. The first term on the right-
hand side in Eq. (A1) is the contribution of the center of
mass. In applying this expression to the reference har-
monic solid in the free-energy analysis of Sec. III, the
center-of-mass contribution is dropped since the MD sys-
tem has a fixed center of mass.

}:)he (Helmholtz) free energy of an ideal gas is given
by

A(T,P=0)=kpT[In(nA})—1], (A2)
where 7 is the number density; the de Broglie wavelength
is given by

Ar=27h?/mkyT , (A3)
where m is the mass of an atom. Again, the simulations
do not allow for center-of-mass motion. Therefore, in us-
ing Egs. (A2)-(A3) in the free-energy analysis, the de-
grees of freedom associated with the center of mass must
be eliminated. In the present case, this is accomplished
by evaluating Eqs. (A2)-(A3) for N —1 particles.*’ Ex-
plicitly, we then have

a,(T,V,N)=1/NA(T,V,N —1) . (A4)
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