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Previously, it has been shown that the direct correlation function for a Lennard–Jones fluid could be
modeled by a sum of that for hard-spheres, a mean-field tail, and a simple linear correction in the
core region constructed so as to reproduce the �known� bulk equation of state of the fluid �Lutsko,
J. Chem. Phys. 127, 054701 �2007��. Here, this model is combined with ideas from the fundamental
measure theory to construct a density functional theory for the free energy. The theory is shown to
accurately describe a range of inhomogeneous conditions including the liquid vapor interface, the
fluid in contact with a hard wall, and a fluid confined in a slit pore. The theory gives quantitatively
accurate predictions for the surface tension, including its dependence on the potential cutoff. It also
obeys two important exact conditions: That relating the direct correlation function to the functional
derivative of the free energy with respect to density and the wall theorem. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2916694�

I. INTRODUCTION

The insights of Van der Waals1,2 �VDW� still underlie
much of the work on nonuniform fluids. One such insight is
that the free energy of a fluid can be separated into two
contributions: The first due to the short-ranged repulsion of
all interaction models and the second due to a long-ranged
attraction. The former is generally treated using an effective
hard-sphere contribution and the latter by a mean-field ap-
proximation. This model is attractive because of its simplic-
ity and the prospect that it can be extended to complex sys-
tems such as molecular fluids, anisotropic interactions, etc.
However, while it can generally give reasonable qualitative
predictions, such a simple model is seldom quantitatively
accurate. It would therefore be highly desirable to modify the
basic VDW model so as to give quantitatively accurate pre-
dictions if this can be done without compromising the basic
simplicity of the model. The goal of this paper is to describe
such a model and to show by application to the liquid-vapor
interface and to fluids in confined geometries that it does
indeed satisfy the twin requirements of accuracy and sim-
plicity.

In the language of the density functional theory, the
VDW model can be described as a particular approximation
to the direct correlation function �DCF� of the bulk fluid,
namely that it is the combination of a hard-sphere DCF and
a mean-field tail. In a previous paper3 it was noted that the
failure of this model for the DCF lies primarily within the
core region and that a good first order correction could be
obtained by adding to the hard-sphere DCF a simple linear
correction with coefficients adjusted to give continuity of the
DCF and to give the correct thermodynamics. �The bulk ther-
modynamics are assumed to be known from, e.g., the ther-
modynamic perturbation theory or liquid state theory.� This

is a satisfying approach as one of the motivations behind
density functional theory �DFT� �particularly the effective-
liquid approaches� has been the idea that the DCF is a rela-
tively simple function which could be easily approximated,
in contrast to, say, the pair-distribution function which is
highly structured. However, having a model DCF for the
bulk fluid is only a first step towards describing nonuniform
fluids: This model must somehow be used to construct a free
energy functional for nonuniform systems. If the DCF for an
arbitrary nonuniform system was known, the free energy
could be obtained immediately since the DCF is the second
functional derivative of the free energy with respect to den-
sity. Thus one approach is to guess a generalization of the
known DCF for a uniform system. In fact, since such func-
tionals are known for the hard-sphere system and since the
mean-field tail is independent of density, the generalization
need only be guessed for the core-correction which limits the
problem. In Ref. 3, the usual ideas from DFT, involving the
introduction of local densities into bulk expressions, were
used to construct such a functional with mixed success:
While the model gave reasonable predictions for the surface
tension of the liquid-vapor interface, it suffered from some
arbitrary elements due to the fact that the DCF and the pro-
posed free energy functionals were internally inconsistent.
That work therefore served to demonstrate the utility of try-
ing to correct the DCF but did not fully address the problem
of constructing a satisfactory free energy functional.

In the case of hard-spheres, the problem of constructing
a widely useful free energy functional has been solved in
recent years by the development of the fundamental measure
theory �FMT�.4,5 Rosenfeld originally proposed FMT as a
generalization of ideas from the scaled particle theory,4 but
for present purposes one of the most interesting derivations
of FMT is that of Kierlik and Rosinberg.6 They get a theory
essentially equivalent to Rosenfeld’s theory by starting with
the same general ansatz for the free energy functionala�Electronic mail: jlutsko@ulb.ac.be.
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�which, they point out, is the obvious generalization of the
exact result known for one-dimensional systems� and requir-
ing that the second functional derivative of this ansatz with
respect to density give the Percus–Yevick DCF in the uni-
form limit. Thus, in this context, FMT can be seen as the
result of a constructive exercise in which one starts with a
known DCF, a particular ansatz for the free energy functional
�which is exact in one dimension� and enforces the exact
relation between the DCF and the free energy functional.
Here, I propose that the the same constructive procedure be
used to incorporate the core correction giving a fully consis-
tent relation between the DCF and the free energy functional.
Since the result is a straightforward modification of the hard-
sphere contribution, while the mean-field tail is unchanged,
the resulting model also satisfies the requirement for simplic-
ity. This model will be referred to as the modified-core VDW
or MC-VDW free energy.

The MC-VDW model requires as input the equation of
state of the bulk fluid. This is in keeping with the view
adopted in Ref. 3 that the main purpose of a model DFT is
not to compute the properties of bulk fluids, which can be
done very accurately using the thermodynamic perturbation
theory or liquid state theory, but to be used to calculate the
properties of inhomogeneous fluids. This requirement is rela-
tively mild compared to older DFTs that required knowledge
of the direct correlation function of the bulk fluid as input. In
the following, the Lennard–Jones system will be studied
using both a perturbative equation of state and an empirical
equation of state.

In the next section, the details of the MC-VDW model
are given. Section III consists of a comparison of the predic-
tions of the model to data from computer simulations. The
first comparison is the surface tension and density profile at
the planar interface between coexisting liquid and vapor
phases. It is shown that not only is the surface tension as a
function of temperature accurately predicted, but so is the
variation of the surface tension with the range of the poten-
tial. The second comparison is that of the structure of the
fluid at a hard wall. It is noted that the theory satisfies the
exact sum rule known as the wall theorem relating the den-
sity at the wall to the pressure far from the wall. The density
as a function of distance to the wall is compared to the simu-
lation results for several different temperatures. The final
comparison is that of the structure of the fluid in slit pores. In
all cases, the theory is found to be in good quantitative
agreement with the simulations. The paper ends with a dis-
cussion of the results and of possible future developments.

II. THEORY

Given a collection of atoms interacting via a spherically
symmetric pair potential v�r� at fixed temperature T, chemi-
cal potential �, and external one-body field Vext�r�, the equi-
librium density distribution ��r� is obtained by minimizing
the following functional:

����� =� dr���r�ln ��r� − ��r� + �f��r;���� − ����r�

+ ��r��Vext�r�� , �1�

where �=1 /kBT and kB is Boltzmann’s constant.7,8 The value
of the functional at its minimum is the grand potential for the
system. The only unknown term here is the excess free
energy density f��r ; ����. It is related to the DCF for a
nonuniform system via

c�r1,r2;���� = −
�2�Fx

���r1����r2�
, �2�

where

�Fx =� �f��r;����dr . �3�

In Ref. 3, it was shown by a direct comparison to computer
simulation that the DCF for the bulk fluid can be adequately
approximated by a model of the form as follows:

c�r12;���� = cHS�r12;d,���� + �a0 + a1
r12

d
���d − r12�

− �w�r12� , �4�

where the first term on the right is the hard-sphere DCF, d is
the Barker–Henderson effective hard-sphere diameter, the
constants a0 and a1, which are functions of both density and
temperature, are determined by requiring that this DCF gives
the correct bulk free energy, and that the DCF be continuous
at the hard-sphere boundary r12=d �see Ref. 3 and the
Appendix for explicit expressions�. The terms involving a0

and a1 are referred to below as the “core correction.” There
are several reasonable choices for the tail function �w�r12�
but here I only consider the simplest choice w�r12�=��r12

−d�v�r12�. The idea is to use this model DCF for the homo-
geneous fluid together with the expression relating the DCF
to the excess free energy functional to guide the construction
of a functional that can be used for inhomogeneous fluids.

In the simplest form of FMT,4 the excess free energy for
hard-spheres of diameter d is given by

fHS
� �r;���� = s�r��1�	�r�� + �2�	�r���s2�r� − v2�r��

+ �3�	�r��s�r��s2�r� − 3v2�r�� , �5�

where the explicit form of the algebraic functions �i�	� are
given in Ref. 4. The quantities n
�r�= �	�r� ,s�r� ,v�r��
are linear functionals of the density as follows:

n
�r� =� w
��r − r1����r1�dr1. �6�

The weights w
�r� are ��d /2−r�, ��d /2−r�, and r /r��d /2
−r�. In the uniform limit, the density becomes a constant
��r�→ �̄ and the quantity 	�r�→��̄d3 /6, which is the usual
expression for the packing fraction. The other functionals
become s�r�→��̄d2 and v�r�→0. It is useful to introduce
dimensionless quantities via
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�1�	� =
1

�d2h1�	� ,

�2�	� =
1

�d
h2�	� , �7�

�3�	� =
1

�
h3�	� .

It is then straightforward to show that

lim
��r�→�̄

�2�FHS
x

���r1����r2�

= 2��d − r12�	�6	h1��	� + �6	�2h2��	� + �6	�3h3��	��

�� 1

12
−

1

8
x +

1

24
x3� + �2h1��	� + 4�6	�h2��	�

+ 6�6	�2h3��	���1

4
−

1

4
x� + �2h2�	� + 6�6	�h3�	��

��1

2
x�
 , �8�

where x=r12 /d. For hard-spheres, one way to determine the
functions hi�	� is to compare this expression to that for the
Percus–Yevick DCF.

Here, it is proposed to use the modified-core VDW free
energy functional,

�Fx =� ��fHS
� �r;���� + �fcore

� �r;�����dr

+
1

2
� ��r1���r2���r12 − d�v�r12�dr1dr2, �9�

where the core correction is of the FMT form as follows:

�fcore
� �r;���� =

1

�d2 j1�	�r��s�r� +
1

�d
j2�	�r���s2�r�

− v2�r�� +
1

�
j3�	�r��s�r��s2�r� − 3v2�r�� .

�10�

The functions ji�	� are introduced as analogs of the
h-functions described above. They are determined by requir-
ing that the model DCF be recovered in the uniform limit.
Comparing Eq. �8� and the core correction in Eq. �4� gives

0 = j1� + �6	�j2� + �6	�2j3�,

− a0 − a1 = 2j2 + 6�6	�j3, �11�

− a0 = j1� + 2�6	�j2� + 3�6	�2j3�.

Its worth noting that the use of these relations together with
the explicit expressions for the coefficients a0 and a1 allows
one to prove that these expressions do indeed reproduce the
input bulk free energy in the uniform limit,

1

N
�Fcore

x �
1

N
�Fx −

1

N
�FHS

x −
1

2
�̄� ��r − d�v�r�dr

= j1�	� + 6	j2�	� + �6	�2j3�	� , �12�

where N is the number of atoms, Fx is the �known� bulk free
energy of the fluid, and FHS

x is the FMT hard-sphere free
energy functional. The remainder of the derivation is given
in the Appendix and only the final results will be given here.
The function j3�	� turns out to be

j3�	� =
1

36	2	1

2
� 1

N
�Fcore

x − �
�

��

1

N
�Fcore

x −
1

N
�Fcore

x �0��
+ 3	�HS�	� − 3�

0

	

�HS�	�d	
 , �13�

where �HS�	�=limr↑dcHS�r ;� ;d� is the hard-sphere DCF at
the core boundary evaluated at the density corresponding to
the packing fraction 	. �The hard-sphere DCF is completely
determined by the hard-sphere FMT model: In the Rosenfeld
model it is just the Percus–Yevick DCF.� Note that despite
the fact that this expression results from the integration of
the differential equations in Eq. �11�, there are no integration
constants. As shown in the Appendix, any integration con-
stants are forced to be zero by the requirement that the func-
tions ji�	� be finite at 	=0. While this is not shown to be
strictly necessary, it seems likely that divergences at zero
density could lead to problems in inhomogeneous systems.
Once j3�	� is determined, the remaining functions, namely,
j1�	� and j2�	�, follow immediately using the second line of
Eqs. �11� and �12�.

It is easy to see that, by construction, this free energy
functional is consistent in the sense that Eq. �2�, evaluated in
the bulk limit, gives the assumed model DCF �Eq. �4��.

III. COMPARISON TO SIMULATION

In this section, the results of the MC-VDW model will
be compared to simulation results for the Lennard–Jones
potential,

vLJ�r� = 4
���

r
�12

− ��

r
�6� . �14�

Some results will also be given for the truncated and shifted
potential,

vLJ�r;rc� = �vLJ�r� − vLJ�rc� , r � rc

0, r � rc,

 �15�

which is typically used in Monte Carlo simulations. The only
input required for the model is the equation of state of the
bulk fluid. To test the idea behind the model, apart from other
approximations, the very accurate, but empirical, 33-
parameter equation of state of Johnson, Zollweg, and
Gubbins9 �JZG� will be used. In order to illustrate the accu-
racy using more approximate methods that can be applied to
other problems, the results using the first-order thermody-
namic perturbation theory of Barker and Henderson8,10 �BH�
and Weeks, Chandler, and Anderson8,11–13 �WCA� will also
be given. To provide some context, Fig. 1 shows the phase
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diagram calculated using all three of these together with
simulation data. Clearly, the empirical equation of state is in
close agreement with the simulations whereas the perturba-
tive theories are reasonable at low temperatures but increas-
ingly inaccurate as the critical point is approached, as is to be
expected.

Details concerning the numerical methods used in mini-
mizing the free energy functional can be found in Ref. 3. In
the following, temperature T and distance z will be expressed
in reduced units as T*=T /� and z*=z /�, respectively. A re-
duced density �*=��3 will also be used. The hard-sphere
contribution to the free energy was modeled using the
White–Bear FMT functional14,15 which is somewhat more
accurate than the simplest FMT discussed above. However,
for the class of problems considered here, it probably makes
little difference which functional is used.

A. The planar liquid-vapor interface

The planar liquid-vapor interface is determined by mini-
mizing the free energy functional for a value of the chemical
potential corresponding to liquid-vapor coexistence and only
allowing the density to vary in one direction �the z-direction�
and with no external field. If the densities of the coexisting
liquid and vapor are �l and �v, respectively, then by defini-
tion of coexistence, the grand potentials of the two bulk
phases are identical, ����l�=����v�. The excess free
energy per unit surface, the surface tension, is then
unambiguously defined as

� =
1

A
����� − ���l�� , �16�

where A is the area of the surface perpendicular to the z-axis.
The dimensionless surface tension is �*=�2� /�. Figure 2
shows the surface tension as a function of temperature as
calculated from the theory and determined from simulations.
Using the empirical equation of state, the calculated surface
tension is consistent with the data given the scatter in the
latter. The perturbative equations of state given reasonable
values although the BH perturbative theory is somewhat

superior to the WCA theory. Both are increasingly inaccurate
at higher temperature due to their poor estimation of the
critical point, where the surface tension vanishes.

The figure also shows the calculated surface tension for
a cutoff of r

c
*=2.5 which corresponds to that used in the

simulations of Haye and Bruin.16 Using the empirical equa-
tion of state, the theory is somewhat less accurate in predict-
ing the surface tension than in the case of the full potential,
but the agreement is still reasonable. This is particularly the
case when it is noted that the theory and simulation appear to
extrapolate to slightly different critical temperatures which
would account for most of the discrepancy and which indi-
cates that it originates in the input equation of state. �Note
that the modification of the JZG equation of state needed to
account for the cutoff is not exact and is most inaccurate for
very short cutoffs.9� The results using the approximate equa-
tions of state are similar to those found with the full poten-
tial: The BH theory gives quantitatively better results, again
probably due to the fact that it gives a better estimate of the
critical point.

The density profile at the interface is shown in Fig. 3 for
several different temperatures and values of the cutoff. In all
cases, the theory is in good agreement with the profiles de-
termined from simulation.17 For T*=0.7, near the triple
point, and with a large cutoff, the theory predicts oscillations
in the profile at the interface, as does for example the theory
of Katsov and Weeks.18 However, the predicted oscillations
here appear to be somewhat smaller than their prediction and
more in line with the profiles observed in simulation.17 As
the temperature is increased, the oscillations are quickly sup-
pressed. A similar effect results from using a shorter cutoff.

B. Hard wall

The next test is the determination of the density profile
for a fluid in contact with a hard wall. In other studies, this
comparison has been made using the simulation data of
Balabanic et al.19 However, as this data are not readily avail-
able and as certain details such as the potential cutoff are

FIG. 1. �Color online� The coexistence curve for the Lennard–Jones fluid as
calculated using both the WCA perturbation theory, the BH theory, and the
empirical JZG equation of state. The full lines are the liquid-vapor coexist-
ence curves, the dashed-lines are the spinodals, and the symbols are the
simulation data from Ref. 38 �circles� and from Ref. 39.

FIG. 2. �Color online� The surface tension as a function of temperature. The
symbols are measurements from simulations �circles from Ref. 40, squares
from Ref. 17, diamonds from Ref. 39 and triangles from Ref. 16�. The lines
are the results of the MC-VDW model evaluated with the JZG empirical
equation of state �full line�, the BH perturbation theory �dashed line�,
and the WCA theory �dash-dotted line�. The lower curves and data are for a
truncated and shifted potential with r

c
*=2.5.
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unclear,20 new simulations were performed using the grand
canonical Monte Carlo �GCMC� method.21 The simulation
procedure consisted of several steps. First, the chemical po-
tential was estimated using the empirical equation of state.
Then, an initially random configuration of atoms was run for
107 attempted Monte Carlo moves with periodic boundary
conditions. The simulation cell had length L in the x and y
directions, and nL in the z direction where n is a parameter
characterizing the geometry. This initial equilibration was
followed by a further equilibration of 107 attempted moves,
but this time with hard walls at z=0 and z=nL. Finally, fur-
ther runs of 107 attempted moves were performed during
which the density profile in the z-direction was tabulated
after every N attempted moves using 200 equally spaced bins
where N is the expected average number of atoms. To control
for the effect of system size, runs were performed at all
densities involving approximately 2000 atoms, correspond-
ing to n=2, and approximately 4000 atoms corresponding to
n=4. In all cases, the potential cutoff was r

c
*=4, correspond-

ing �roughly� to that used in Ref. 19 �see the discussion in
Ref. 20�.

Figures 4 and 5 show a comparison of the theory �evalu-
ated using the empirical equation of state� and simulation for
temperature T*=1.35 and chemical potentials corresponding
to bulk densities of �̄*=0.5, 0.65, and 0.82, respectively.
�These conditions are the same as those used in previous
studies.19,20,22� The theory clearly captures the very different
qualitative behavior across the range of densities and is
quantitatively accurate for the lower densities. At the highest
density, there is some difference in the calculated and mea-
sured profiles away from the walls which can mostly be ac-
counted for as an error in the phase of the oscillations with
the theory. This is interesting as the FMT for hard-spheres
gives, in the bulk, the Percus–Yevick structure and it has
long been known that the Percus–Yevick approximation for
the the pair-distribution funciton of bulk hard-spheres is also
somewhat out of phase at high densities.23 Given that the
MC-VDW is a modified version of FMT, it is possible that
the error in phase observed here is related. It should also be

noted that this phase error would be partially or even totally
negated if the points in the measured profile were incorrectly
plotted at the left coordinate of the bins rather than at there
center as has been done here. In all of the figures, it is clear
that the agreement between simulation and theory is particu-
larly good near the wall where the transition from drying at
low bulk density to wetting at high density is correctly pre-
dicted. This is not an accident as it is known that DFTs of
this form satisfy the exact sum rule ��0�=�Pbulk, where Pbulk

is the pressure in the bulk far from the wall, a condition
known as the wall theorem.24,25

C. Slit pore

The final system considered is the Lennard–Jones fluid
confined between two infinite walls �i.e., a slit pore�. Unlike
the previous case of a hard wall, the walls of the slit pore
interact with the fluid via a modified Lennard–Jones poten-
tial intended to mimic the interaction between the fluid and a
Lennard–Jones solid. The potential used here is the so-called
10-4-3 potential of Steele,

FIG. 3. �Color online� Density profiles at the liquid-vapor interface calcu-
lated at different temperatures and values of the potential cutoff. From left to
right, the curves correspond to T*=0.7 and r

c
*=5.0, T*=0.7 and r

c
*=2.5,

T*=0.8 and r
c
*=5.0, T*=0.8 and r

c
*=2.5, and T*=1.1 and r

c
*=5.0. The sym-

bols are the data reported in Ref. 17 and extracted from Ref. 18 as the
original is no longer available �Ref. 41�.

FIG. 4. �Color online� The structure of the fluid near a hard wall as deter-
mined from simulation �symbols� and the theory �lines�. The simulations
come from two runs each using cells with aspect ratio 1�1�2 �circles� and
1�1�4 �squares�. The upper curve and data are for a chemical potential
corresponding to bulk density �*=��3=0.65 and the lower curve for density
�*=0.50.

FIG. 5. �Color online� Same as Fig. 4 except that the bulk density is
�*=0.85.
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Vwall�z� = 2�
�2

5
��

z
�10

− ��

z
�4

−
�2

3� z

�
+ 0.61/�2�3� ,

which is specifically meant to model the interaction between
the fluid and a �100� plane in a fcc solid.26–28 Since the
existing simulation data28–30 were obtained using very small
numbers of atoms, new GCMC simulations with much larger
systems were performed following the same protocol as for
the hard wall. In the present case, the intermolecular poten-
tial was cutoff at r

c
*=6 and no cutoff was applied to the wall

potential. Figures 6–8 show a comparison between theory
and simulation for the same conditions studied in
Refs. 28–30, namely, the chemical potential was set to the
value corresponding to a bulk density of �

b
*=0.5925 and the

temperature was T*=1.2. The slit sizes in the five simula-
tions are H*=3, 4, 5, 6, and 10 and the simulations involved
approximately 1300, 2100, 2400, 3000, and 5000 atoms,
respectively.

The calculations are in good agreement with the simula-
tions. For the pores of intermediate size, the calculations tend
to overestimate the peak near the wall and to underestimate

the amplitudes of the subsequent oscillations but are never-
theless reasonable. These results are in broad agreement with
previous models such as that of Tang and Wu.22 Further cal-
culations, not shown here, confirm the conclusions of Snook
and van Megen28 that the profiles are insensitive to the value
of the chemical potential so that errors in the equation of
state are not as important as in the case of the liquid-vapor
interface. Thus, the differences observed between theory and
simulation must be attributable to the theory itself and can
serve as a sensitive test for further improvements.

IV. CONCLUSIONS

In this paper, the modified-core VDW approximation for
the direct correlation function has been used to construct a
free energy functional based on ideas from the fundamental
measure theory. The resulting MC-VDW theory was shown
to give accurate predictions for the surface tension of the
liquid-vapor interface and the density profile near a wall and
in slit pores.

There are several advantages to the MC-VDW free en-
ergy functional. It has the practical advantage that it is no
more complex than the mean-field model constructed using
the FMT for the hard-sphere contribution. However, unlike
mean-field theory, it reproduces the input bulk free energy
function so the bulk thermodynamics are automatically cor-
rect. It also satisfies two important exact relations. First, the
exact relation between the free energy functional and the
direct correlation function of the bulk phase is maintained:
The second functional derivative of the free energy evaluated
in the bulk phase gives the correct bulk DCF. Second, the
wall theorem—relating the density at a hard wall to the pres-
sure far from the wall—is satisfied. These relations are dif-
ficult to preserve in theories which are based on the intro-
duction of the local density into bulk thermodynamic
relations such as those discussed in Ref. 3. The same com-
ment applies to theories which attempt to localize first order
perturbation theory as discussed, e.g., in Ref. 31. In fact, the
only theories based on these ideas which maintain the rela-
tion between the free energy functional and the bulk DCF are
those which eliminate all density dependence beyond second
order—which is basically the same as the earliest perturba-
tive DFT of Ramakrishnan and Yussouff.32

FIG. 7. Same as Fig. 6 for H*=5 and H*=6.

FIG. 8. Same as Fig. 6 for H*=10.

FIG. 6. Comparison of the density distribution within slit pores of size
H*=3 and H*=4 as calculated from the theory �lines� and as determined
from simulation �symbols�.
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As discussed in Ref. 3 the modified-core DCF was in-
spired by the work of Tang and co-workers22,33–35 on the
first-order mean-field approximation �FMSA�. In that ap-
proach, the Ornstein–Zernicke equation is solved in a pertur-
bative manner with the usual mean-field closure conditions.
This gives an analytic result for the DCF of the bulk fluid
which is similar to that used here, although the core correc-
tion is not linear in the spatial variable. It has the advantage
that no input equation of state is needed, at least for
Lennard–Jones interactions. However, the mean-field liquid
state theory is known to be inaccurate in some
circumstances8 and the fact that good results for the equation
of state are obtained for Lennard–Jones by a first-order so-
lution seems somewhat fortuitous. Furthermore, it still re-
mains to use the resulting bulk DCF to construct a DFT for
inhomogeneous fluids. Different theories seem to be re-
quired, e.g., for confined fluids22 and for the liquid-vapor
interface.35 It is possible that the FMSA core correction
could be used to construct a MC-VDW theory similar to that
studied here, although the more complex analytic form of the
core correction to the DCF will make this task more difficult.
Nevertheless, this would seem a promising approach.

The MC-VDW follows the philosophy described in the
first paper in this series,3 namely, that the bulk equation of
state of fluids is well-understood using, e.g., thermodynamic
perturbation theory and that the real goal of DFT should be
the construction of functionals for inhomogeneous systems.
It would, of course, be more satisfying if, as in the case of
the FMSA cited above, the equation of state could be derived
from the theory. It is not impossible that this could be done
using the present approach. Rather than using the equation of
state to determine the functions defining the core correction
�Eqs. �11�–�13��, these might be determined by imposing
thermodynamic consistency between the resulting the free
energy functional and, say, the internal energy calculated
using the pair-distribution function given by the theory. This
is the subject of ongoing work.

A technical aspect of the MC-VDW model is that it is
based on the simplest form of FMT as originally proposed by
Rosenfeld.4 This choice was made to avoid unnecessary
complications in describing the model. However, in future
work such as in the application to the solid phase, it might
prove necessary to use the more recent formulations of
FMT,14,36,37 for the same reasons as occur in the case
of hard-spheres.36

In summary, the present approach has the virtue of sat-
isfying the relevant exact relations, of being conceptually
and practically simple and of giving quite reasonable results
for a variety of model problems. In particular, a single func-
tional has been shown to be sufficient to describe both
confined fluids and the liquid-vapor interface.
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APPENDIX: DERIVATION OF MODEL EQUATIONS

Using the second of Eqs. �11� and �13�, one has that

j2�	� = − 1
2 �a0 + a1� − 3�6	�j3�	� ,

�A1�

j1�	� =
1

�̄V
�Fcore

x + 3	�a0 + a1� + 72	2j3�	� .

The third line of Eq. �11� becomes

− a0 = j1��	� + 2�6	�j2��	� + 3�6	�2j3��	�

=
d

d	
� 1

�̄V
�Fcore

x � − 3	�a0� + a1�� + 3�a0 + a1�

− 72	j3�	� − 36	2 d

d	
j3�	� , �A2�

or, with some rearrangement,

d

d	
�36	2j3�	� −

1

�̄
�fcore

x � = 4a0 + 3a1 − 3	�a0� + a1�� ,

�A3�

where fcore
x = �1 /V��Fcore

x is the contribution of the core
correction to the excess free energy density.

For the chosen form of the tail-contribution to the DCF
�which is independent of density�, the explicit expressions
for a0 and a1 are

�d3

3
�4a0 + 3a1� =

�2fHS
x ��̄�
��̄2 −

�2fx��̄�
��̄2 + 4��

d

�

�w�r�r2dr ,

�A4�
a0 + a1 = − �w�d� ,

where fx��̄�=1 /V�Fx is the excess free energy density of the
bulk fluid. Using these, the rhs can be written as

4a0 + 3a1 − 3	�a0� + a1��

=
3

�d3

�2�fHS
x − fx�
��̄2 +

12

d3�
d

�

�w�r�r2dr

− 3	
d

d	
�− �w�d� − cHS�d−; �̄;d�� . �A5�

Recognizing the contribution of the long-ranged tail to the
bulk free energy density,

f tail
x �

1

2
�̄2� w�r���r − d�dr , �A6�

this can be written as

4a0 + 3a1 − 3	�a0� + a1��

=
3

�d3

�2�fHS
x + f tail

x − fx�
��̄2 + 3	

d

d	
cHS�d−; �̄;d� , �A7�

or, since fcore
x = fx− fHS

x − f tail
x ,
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d

d	
�36	2j3�	��

=
d

d	
�1

�̄
�fcore

x � −
3

�d3

�2�fcore
x

��̄2 + 3	
d

d	
cHS�d−; �̄;d�

=
d

d	
	1

�̄
�fcore

x −
1

2

��fcore
x

��̄

 + 3	

d

d	
cHS�d−; �̄;d� . �A8�

Finally, integrating gives

36	2j3�	�

=
1

�̄
�fcore

x −
1

2

��fcore
x

��̄
− 	1

�̄
�fcore

x −
1

2

��fcore
x

��̄



�̄=0

+ 3�
0

	

	
d

d	
cHS�d−; �̄;d�d	 , �A9�

where it is assumed that j3�	=0�=0 so as to avoid
singulaties.
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