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ABSTRACT
The original derivation of power functional theory [M. Schmidt and J. M. Brader, J. Chem. Phys. 138, 214101 (2013)] is reworked in some
detail with a view to clarifying and simplifying the logic and making explicit the various functional dependencies. We note various issues with
the original development and suggest a modification that allows us to avoid them. In the process, we also suggest an alternative interpretation
of our results, which bears surprising similarities to classical density functional theory.
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I. INTRODUCTION

Classical Density Functional Theory (cDFT)1,2 has proven to
be a powerful tool in the study of inhomogeneous classical systems.
In his seminal review article that helped to define the field, Evans
also discussed a dynamic extension that has come to be known as
Dynamical Density Functional Theory (DDFT), which is applicable
to particles obeying an over-damped Brownian dynamics. These two
are intimately related since the free energy functionals that play a
central role in cDFT are used in DDFT to describe the deterministic
driving force governing the evolution of the local density.3–5 While
cDFT is based on mathematically exact theorems—and as such rep-
resents a formally equivalent reformulation of some aspects of clas-
sical statistical mechanics—DDFT is heuristic, depending, in all of
its various derivations, on a kind of uncontrolled, local-equilibrium
approximation. It would obviously be desirable if the paradigm of
DFT could be extended to non-equilibrium systems, thus giving a
formally equivalent theory that, like cDFT, admits of simple but
highly useful approximations.

This is precisely the goal of Power Functional Theory (PFT)
as first proposed by Schmidt and Brader6 (hereafter referred to as
SB) for particles subject to an over-damped Brownian dynamics
and subsequently extended by Schmidt and co-workers over the
last several years to quantum,7 Newtonian,8 and active-particle9

systems. The basic idea of the various developments is to intro-
duce a functional, the minimization of which generates the time-
dependent many-particle distribution function for the system. A

version of constrained search (described below) is used to project
this onto a functional that depends only on the local density (as in
cDFT) and the local current, where the latter is the key to accessing
time-dependent quantities. Minimization with respect to these fields
yields the actual time-dependent density and current. A significant
development inspired by this work, but not directly dependent on it,
has been the study of so-called “non-adiabatic” dynamics—basically
the difference between some non-equilibrium dynamics followed
via simulation and the predictions of DDFT.10,11 This has provided
insight into the limits of DDFT (which itself has become increas-
ingly popular; see, e.g., the recent review of te Vrugt, Löwen, and
Wittkowski12) and some heuristic approaches to modeling these dif-
ferences. Recently, PFT has also been used to motivate the models of
phase coexistence in active particles.13–15

In the following, we review the development of PFT using a
notation that is constructed to make particularly evident the func-
tional dependencies that can get lost with a more standard, and
less detailed, notation. The necessary calculations are presented in
a fairly explicit manner to avoid ambiguities as good as possi-
ble. In doing so, certain inconsistencies will be noted that, taken
together, throw doubt on the validity of the framework. A modifi-
cation aimed at overcoming these difficulties is proposed and yields
new insights into the possibility of fulfilling the program proposed
by SB. Section II of this paper sets the stage with a brief review
of Brownian dynamics and also introduces the functional notation.
Section III summarizes the key points of the exact PFT formalism,
including the generating functional for the time-dependent N-body
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distribution function, its projection onto the density–current sub-
space, and some of the structural elements stressed by SB, and in
the processes, various problems in the derivation are highlighted. In
Sec. IV, we present our modification of the original PFT of SB, which
allows us to complete their program with surprising thoroughness.
In the process, we note an alternative interpretation of our results,
which may provide a conceptual reformulation of Brownian dynam-
ics that is closer to the goals of SB than was our original development.
This paper ends with a brief summary of our results.

II. BROWNIAN DYNAMICS
The starting point is a system of N identical, classical particles

of mass m = 1 in D dimensions for which the ith particle has coordi-
nates q(i) and velocities v(i). The particles interact via a conservative
potential U(q(1), . . . , q(N)

), which will be written more briefly as
U(qN

), where qN is the collection of all N coordinates. In the follow-
ing, a slightly compressed notation will be used whereby the position
(and time) arguments are written as subscripts so that the poten-
tial will be written as UqN . The particles also experience a (possibly)
time-dependent external one-body potential ϕtr. Again, what is writ-
ten here as ϕtr would more conventionally be written as ϕ(r, t), and
in the following, the time argument will always precede the position
argument(s) in the subscript notation. Finally, there are a stochastic
force and corresponding friction proportional to the velocity (repre-
senting, e.g., a bath of much smaller particles) so that the equations
of motion are as follows:

d
dt

q̂(i)t = v̂(i)t ,

d
dt

v̂(i)t = −γ̂v(i)t −∇iUq̂ N
t
−

N

∑
i=1
∇iϕt q̂ (i)

t
+ ξ̂(i)t ,

(1)

where a caret (hat) indicates a stochastic variable, γ is the
friction, and ξ̂(i)t are D-dimensional vectors whose components
are Gaussian-distributed white noise with correlations ⟨̂ξ (i)t ξ̂ (j)t′ ⟩

= 2γkBTδijδ(t − t′)𝟙 (where 𝟙 is the unit tensor for the Cartesian
components). Following DDFT, the original PFT was developed for
the over-damped limit in which the time-derivative of the velocity
can be neglected (this can be justified rigorously with certain scal-
ing assumptions; see, e.g., Ref. 16), giving the so-called Brownian
dynamics

d
dt

q̂(i)t = v̂ (i)t = −
1
γ
∇iUq̂ N

t
−

1
γ

N

∑
i=1
∇iϕt q̂ (i)

t
+

1
γ

ξ̂(i)t . (2)

The state of the system is entirely specified by the N ×D phase space
coordinates q̂N

t ≡ q̂(1)t , . . . , q̂(N)t . In the following, it will be useful to
note that the one-body term can be written as

N

∑
i=1
∇iϕt q̂ (i)

t
=

N

∑
i=1
∇i
⎛

⎝

N

∑
j=1

ϕt q̂ (j)
t

⎞

⎠
≡ (

N

∑
i=1
∇i)ϕt q̂ N

t
, (3)

where the last equivalence defines the total external potential, ϕt q̂ N
t

.
The probability to find the system in a given state, rN , at time t is

ΨtrN = ⟨δ(r(1) − q̂(1)t ) . . . δ(r(N) − q̂(N)t )⟩, (4)

where the brackets indicate an average over the noise, ξ̂(i)t , and the
distribution of initial conditions. That ΨtrN is the distribution func-
tion is evident since the expectation value with respect to the noise
of any function f q̂N

t
of the stochastic variables q̂N

t can be calculated
as

⟨ f q̂N
t
⟩ = ∫ f rN ΨtrN drN , (5)

and as usual,17 the Brownian dynamics implies that the distribution
satisfies the Fokker–Planck equation

∂

∂t
ΨtrN =

1
γ

N

∑
i=1
∇i ⋅ (∇i(UrN + ϕtrN ) + kBT∇i)ΨtrN . (6)

Clearly, the distribution at time t is completely determined by the
interaction potential U, the external field ϕt , and an initial condition
that will be denoted by Ψt0r. As is to be expected, the Boltzmann
form ΨtrN ∼ exp(−β(UrN + ϕrN )) is a stationary solution if the field
is stationary.

In the following, square brackets will be used to indicate
the functional dependence so that to be precise and to indicate
the full dependence of the distribution on the interaction poten-
tial, the initial condition, and the external field, one should write
ΨtrN [U, ϕt ; Ψ0]. Note that the spatial arguments are not indicated
in the square brackets because, in principle, to know ΨtrN at posi-
tions rN requires knowing the various functional inputs (e.g., U, ϕt ,
and Ψ0) at all points in space. That said, in the following, the depen-
dence on the inter-atomic potential U will not be explicitly indicated
since it is ubiquitous, never changes, and plays no role in the discus-
sion below. We also note that SB included non-conservative forces in
their analysis: although the same could be done here, we have cho-
sen to omit them for the sake of clarity as they do not change any
of the arguments to follow and only serve to complicate the expres-
sions. We note for later purposes that, in this notation, SB gave the
Fokker–Planck equation in the form

∂

∂t
ΨtrN = −

1
γ

N

∑
i=1
∇i ⋅ (v(i)rN [ϕt , Ψt]ΨtrN), (7)

with the “velocities” v(i)rN and related “forces” Ftot(i)
rN defined as

γv(i)rN [ϕ, Ψ] = Ftot(i)
rN [ϕ, Ψ] = −∇iUrN −∇iϕrN − kBT∇i ln ΨrN . (8)

The local number density (the probability to find a particle in a
given infinitesimal volume) is evaluated as

ρr[Ψ] =
N

∑
i=1
∫ δ(r − r(i))ΨrN drN , (9)

and when the distribution—and so the density—is time-dependent,
the number current can be defined via the continuity equation as
follows:

∂

∂t
ρr[Ψt] = −∇ ⋅ Jr[ϕt , Ψt], (10)

which, together with the Fokker–Planck equation, gives the explicit
expression

Jr[ϕ, Ψ] =
N

∑
i=1
∫ δ(r − r(i))v(i)rN [ϕ, Ψ]ΨrN drN . (11)
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An important distinction that is highlighted by this notation
is that between the intrinsic time dependence and inherited time
dependence. The inherited time dependence refers to that arising
simply because a functional depends on another time-dependent
functional. For example, defining the trivial functional Ir[ϕ] = ϕr, its
evaluation with a time-dependent input, e.g., Ir[ϕt], has an inherited
time dependence coming solely from its dependence on the time-
dependent field. Here, the functional I only changes in time because
its argument changes in time, and otherwise, the time argument is
a passive label. An example here is the current Jr[Ψ, ϕ] for which
the time dependence is inherited from its arguments and which has
no other source of time dependence. On the other hand, the distri-
bution ΨtrN [ϕ; Ψ0] has an intrinsic time dependence since it is the
solution to the Fokker–Planck equation so that even if the exter-
nal field is constant in time, Ψ will still change in time if the initial
condition is not the equilibrium distribution. On the other hand,
when the external field does change with time, the distribution Ψt
depends on the values of the external field ϕτr at all times τ < t,
and for this reason, one writes ΨtrN [ϕ; Ψ0] (with ϕ rather than ϕt)
because the functional acts on both the spatial coordinate and the
time.

This leads to a final caveat that is important throughout the
analysis done by SB and below: namely, the role of causality. The
Fokker–Planck equation can formally be solved as

ΨtrN [ϕ; Ψ0] = Ψt0rN −
1
γ∫

t

t0

{
N

∑
i=1
∇i ⋅ (v(i)rN [ϕt′ , Ψt′]Ψt′rN)}dt′, (12)

where Ψt0rN represents an initial value that has to be specified. Notice
that in the argument of Ψ on the left hand side, we write ϕ rather
than ϕt because the right hand side depends on the external field at
all times prior to t. SB specified that the integral on the right will
be understood to exclude the end point at time t so that t0 ≤ t′ < t,
which can be interpreted as saying that the value of the field at time
t is fully determined by its values at previous times corresponding,
physically, to the usual understanding of causality. When it is impor-
tant below to note this dependence on a field at prior times, but not
on the present time, we will write, e.g., ΨtrN [ϕ<t ; Ψ0].

III. POWER FUNCTIONAL THEORY
A. Variational formulation

The analysis by SB begins with a quantity modeled on the
Rayleigh dissipation function evaluated at a fixed time, t,

R̂rN [̃vN ; ϕt ,
⋅

ϕt , Ψt] = ∑
i
(

γ
2

ṽ(i)rN − Ftot(i)
rN [ϕt , Ψt]) ⋅ ṽ(i)rN +

⋅

ϕtrN , (13)

where ṽ(i)rN is a collection of N test fields (i.e., variational fields), each
a function of the N-positions rN . This is used to define the functional

R[̃vN ; ϕt ,
⋅

ϕt , Ψt] = ∫ ΨtrN R̂rN [̃vN ; ϕt ,
⋅

ϕt , Ψt]drN , (14)

which has the obvious property that its absolute, or global, minimum
with respect to the test fields ṽN occurs at

γ̃v(i)global−min
rN [ϕt , Ψt] = Ftot(i)

rN [ϕt , Ψt]

= −∇iUrN −∇iϕtrN − kBT∇i ln Ψtr (15)

corresponding to the “physical” fields at this fixed time t, which
occur in the Fokker–Planck equation as written in Eq. (7). SB
then expressed the variational fields in terms of a new quantity, a
variational distribution Ψ̃rN via the definition

γ̃v(i)rN → γ̃v(i)rN [ϕ, Ψ̃] = Ftot(i)
rN [ϕ, Ψ̃] (16)

in terms of which the functional R becomes (see Appendix A)

R[Ψ̃; ϕt ,
⋅

ϕt , Ψt] =
(kBT)2

2γ ∫ ∑
i
(∇i ln

Ψ̃rN

ΨtrN
)

2

ΨtrN drN

+
1
2
∂

∂t
Λ[ϕt , Ψt] +

1
2 ∫

⋅

ϕtrN ΨtrN drN , (17)

where the dot-notation indicates a time-derivative with

Λ[ϕ, Ψ] = ∫ (kBTΨrN ln ΨrN + (UrN + ϕrN )ΨrN )drN . (18)

Minimizing the generating function R with respect to Ψ̃ clearly gives
Ψ̃global−min

= Ψt , the physical distribution. As observed by SB, the
quantity Λ plays a central role in cDFT and is the same functional
used by Mermin18 to establish its fundamental theorems. Here, it
plays no role in the minimization procedure and only serves to estab-
lish the value of the generating function at its minimum. Note that
at this point, one has not gained much yet: the variational veloc-
ity field in Eq. (14) and the variational distribution in Eq. (17) have
been introduced as extra fields, and the functional still depends on
the physical but unknown distribution ΨtrN .

B. Power functional
Next, SB split the minimization of R with respect to Ψ̃ into two

steps as

min
Ψ̃

R[Ψ̃; ϕt ,
⋅

ϕt , Ψt] = min
ρ,J
{min

Ψ̃→ρ,J
R[Ψ̃; ϕt ,

⋅

ϕt , Ψt]}, (19)

where the expression in curly brackets means that R is first min-
imized with respect to the subset of possible fields Ψ̃ that satisfy
ρr[Ψ̃] = ρr and Jr[ϕt , Ψ̃] = Jr for any given fields ρr and Jr. The first
(inner) minimization defines a new functional

R[ρ, J; ϕt ,
⋅

ϕt , Ψt] = min
Ψ̃→ρ,J

R[Ψ̃; ϕt ,
⋅

ϕt , Ψt] (20)

and also defines one or more fields, giving the minimum,

Ψ̃min
[ρ, J; ϕt ,

⋅

ϕt , Ψt], so that

R[ρ, J; ϕt ,
⋅

ϕt , Ψt] = R[Ψ̃min
[ρ, J; ϕt ,

⋅

ϕt , Ψt]; ϕt ,
⋅

ϕt , Ψt]. (21)
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In terms of the variational problem, it is important that ρr and Jr
are arbitrary fields and that even though the current correspond-
ing to Ψ̃, Jr[ϕt , Ψ̃], carries an inherited time dependence via the
external potential, this is irrelevant to the choice of Jr. Instead, the
time dependence of the current manifests itself in that the resulting
functional R carries two dependencies on ϕt : the explicit depen-
dence that comes via Λ, and now, an implicit dependence that comes
from minimizing under the constraint Jr[ϕt , Ψ̃] = Jr. For example, a
toy model for R, one that is perfectly consistent and illustrates this
difference, is

R[ρ, J; ϕt ,
⋅

ϕt , Ψt]
?
=∫ {(ρr − ρr[Ψt])

2
+ (Jr − Jr[ϕt , Ψt])

2
}dr

+
1
2
∂

∂t
Λ[ϕt , Ψt] +

1
2 ∫

⋅

ϕtrN ΨtrN drN , (22)

showing the explicit field dependence in Λ and an implicit
field dependence in Jr. This toy model minimizes (in the
second step) to give the correct, physical results ρr = ρr[Ψt]

and Jr = Jr[ϕt , Ψt], and this, in turn (presumably), forces

Ψ̃global−min
[ρ[Ψt], Jr[ϕt , Ψt]; Ψt , ϕt ,

⋅

ϕt] = Ψt[ϕt ,
⋅

ϕt]. This happens

with no additional information as is the expected result of the
two-step—or “constrained search”—minimization procedure
since this must ultimately lead to the same result as the one-step
minimization, namely, the exact solution Ψ̃global−min

= Ψt .
Following SB, the second step in the definition of the power

functional is the introduction of the quantity,

ΨtrN [ρ, J; ϕ, Ψ]

≡ Ψt0rN − ∫

t

t0

{
N

∑
i=1
∇i ⋅ (̃v(i)min

rN [ϕt′]

× Ψ̃min
t′rN [ρt′ , Jt′ ; ϕt′ ,

⋅

ϕt′ , Ψt′])}dt′

= Ψt0rN − ∫

t

t0

{
N

∑
i=1
∇i ⋅ (v(i)rN [Ψ̃

min
[ρt′ , Jt′ ; ϕt′ ,

⋅

ϕt′ , Ψt′], ϕt′]

× Ψ̃min
t′rN [ρ, J; ϕt′ ,

⋅

ϕt′ , Ψt′])}dt′, (23)

which is a many-particle distribution fulfilling the continuity equa-
tion if the velocities of the particles follow from the minimal trial
distribution. The first line is written as in SB [Eq. (18)], whereas the
second is in our extended notation, showing that the minimum for
the velocity fields ṽ(i)min

rN is determined by Ψ̃min
t′rN through Eq. (16).

Notice first that a time dependence has now been assigned to the
constraints ρt′ , Jt′ . This means that they are being specified not at a
single moment but over some range of times t0 ≤ t ≤ T. Second, and
more problematic, notice that because Ψ̃min

t′ is a result of Eq. (20),
it has a dependence on the exact distribution Ψt′ evaluated at the
same time t′, and so, ΨtrN depends on the exact distribution at all ear-
lier times. While this appears to be the implication of SB equations
(11), (14), and (18), it is at odds with subsequent developments in SB
since the point of this step is to eventually eliminate the exact distri-
bution from this problem. What seems to eventually be adopted is
the elimination of the exact solution Ψt from the functional through

replacing Ψt′ by Ψt′ , giving the final form of the power functional as
follows:

R[ρt , Jt ; ϕt ,
⋅

ϕt , Ψt] = min
Ψ̃→ρt ,Jt

R[Ψ̃; ϕt ,
⋅

ϕt , Ψt]

⇒ Ψ̃min
[ρt , Jt ; ϕt ,

⋅

ϕt , Ψt], (24)

ΨtrN [ρ, J; ϕ, Ψ]

= Ψt0rN − ∫

t

t0

{
N

∑
i=1
∇i ⋅ (v(i)rN [Ψ̃

min
[ρt′ , Jt′ ; ϕt′ ,

⋅

ϕt′ , Ψt′], ϕt′]

× Ψ̃min
t′rN [ρ, J; ϕt′ ,

⋅

ϕt′ , Ψt′])}dt′.

The second line presents no difficulties in that the evaluation of Ψt
requires Ψ̃min at times t′ < t, and this, in turn, only requires Ψt′ at
earlier times. At this point, one can simplify the notation since every-
thing at time t is now defined in terms of ρ, J at all earlier times, so
we will write a little more compactly

Rt[ρ, J; ϕt ,
⋅

ϕt] = min
Ψ̃→ρt ,Jt

R[Ψ̃; ϕt ,
⋅

ϕt , Ψt] ⇒ Ψ̃min
t [ρ, J; ϕt ,

⋅

ϕt],

ΨtrN [ρ, J; ϕ] = Ψt0rN − ∫

t

t0

{
N

∑
i=1
∇i

× (v(i)rN [Ψ̃
min
t′ [ρ, J; ϕt′ ,

⋅

ϕt′], ϕt′]

× Ψ̃min
t′rN [ρ, J; ϕt′ ,

⋅

ϕt′])}dt′. (25)

The density implied by this Ψ is now easily evaluated from the last
of these with the result

ρr[Ψt] = ρr[Ψt0] − ∫

t

t0

∇ ⋅ Jt′rdt′, (26)

which follows because, by definition, Ψ̃min
t′ [ρ, J] is precisely the dis-

tribution that implies the current Jt′ while minimizing the gener-
ating function. So, the implied density ρr[Ψt] satisfies a continuity
equation with respect to the current Jtr. One might have expected
that ρr[Ψt] should simply be ρtr, but this is clearly not the case
since, at this point, the temporal evolution of the fields ρtr and Jtr
is completely independent. Indeed, one also sees that in general,
Jr[Ψt ; ϕt] ≠ Jtr, i.e., the one-particle current from the distribution Ψ̄
is not the constraint current. This turns out to be important.

C. Problems interpreting the power functional
In SB, one of the main results is that the power functional has a

Legendre structure with, e.g., the density ρt and
⋅

ϕt playing the role of
conjugate variables, thus mirroring the relation between the density
and the external field in equilibrium DFT. In order to verify this, we
now turn to an examination of the power functional with the aim of
making the dependencies on the field at time t explicit. Starting from
the SB functional [Eq. (14)], performing the first minimization with
the replacement ΨtrN → ΨtrN (as described) and following the steps
detailed in Appendix A give
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Rt[ρ, J; ϕt ,
⋅

ϕt] =
(kBT)2γ

2 ∫ ΨtrN [ρ, J; ϕ]

×

⎛
⎜
⎜
⎝

∑
i

⎛
⎜
⎜
⎝

∇i ln
ΨtrN [ρ, J; ϕ]

Ψ̃min
trN [ρ, J; ϕt ,

⋅

ϕt]

⎞
⎟
⎟
⎠

2
⎞
⎟
⎟
⎠

drN

−
1

2γ ∫
ΨtrN [ρ, J; ϕ]∑

i
(Ftot(i)

rN [0, Ψt])
2
drN

−
1

2γ ∫
ρr[Ψt](∇ϕtr)

2dr

+ ∫ Jr[0, Ψt] ⋅ (∇ϕr)dr + ∫
⋅

ϕtrρr[Ψt] dr. (27)

Here, all explicit dependence on the external potential at time t has
been exposed. SB argued that this can be written as [see SB equation
(25)]

R(SB)
t [ρ, J; ϕ,

⋅

ϕ] =W(SB)
t [ρ, J; ϕ,

⋅

ϕ] − ∫ Jr ⋅ (∇ϕtr)dr + ∫
⋅

ϕtrρtr dr,

(28)
where W(SB)

t does not depend on the external field at time t but only
at earlier times. This form is crucial later on in SB for identifying
a truly intrinsic functional of the dissipated power, similar to the
intrinsic free energy functional in equilibrium DFT. Our form (27)
reveals three difficulties with that interpretation. The first is that in
Eq. (27), one cannot guarantee that Ψ̃min

trN does not depend on the
external field at time t. Indeed, the global minimum of R certainly
does [see Eq. (15)], so it is entirely possible that the constrained min-
imum Ψ̃min

trN does as well. The second is that in Eq. (27), one sees an
explicit, quadratic dependence on the field at time t, which is ignored
in SB. This seems to be because of the SB switch between the repre-
sentation of the variational field as Ψ̃ and the original formulation in
terms of ṽN , and in terms of the latter, there is no quadratic term.
However, formulating everything in terms of the velocities is not
possible at this point as the definition of ΨtrN [see Eqs. (24) and
(25)] involves both v(i)rN [Ψ̃min

t′ . . .], which could indeed be replaced
by ṽ(i)min

rN , and also explicitly Ψ̃min
t′ , which cannot. The third prob-

lem is that the term involving the gradient of the field in the last line
of Eq. (27) is written in terms of Jr[0, Ψt] and ρr[Ψt] rather than
Jr[Ψ̃

min
t ; ϕt] = Jtr and ρr[Ψ̃min

t ] = ρtr, as tacitly assumed in SB. This
means, e.g., that SB equation (26),

δ

δ
⋅

ϕtr

R(SB)
t [ρ, J; ϕ,

⋅

ϕ] = ρtr, (29)

in which R(SB)
t is meant to act as a generator for the density, does

not hold here. Finally, we observe that several of these problems can
be traced to the fact that Ψ̃min

t and Ψt are not the same quantities—a
fact that we will exploit below to try to repair these problems.

D. Using the power functional
Before exploring the modifications of PFT, it is worthwhile to

recall the final purpose. SB eventually introduced an ansatz for the
power functional, which is [SB equation (30)]

R(SB)
t [ρ, J; ϕ,

⋅

ϕ] = Pt[ρ, J] + ∫ Jtr ⋅ ∇
δF[ρt]

δρtr
dr

− ∫ Jtr ⋅ (∇ϕtr)dr + ∫
⋅

ϕtrρtr dr, (30)

where Pt[ρ, J] =W(SB)
t [ρ, J] − ∫ Jtr ⋅ ∇

δF[ρt]

δρtr
dr is the intrinsic func-

tional of dissipated power. This is then used to complete the mini-
mization procedure defined in Eq. (19), giving the equations

δ
δJtr

R(SB)
t [ρ, J; ϕ,

⋅

ϕ] = 0,

δ
δρtr

R(SB)
t [ρ, J; ϕ,

⋅

ϕ] = 0;
(31)

however, such an interpretation is untenable as it leads to unphys-
ical results (see Appendix B). In fact, SB say at this point that a
Lagrange multiplier should be introduced prior to minimization so
as to enforce the continuity equation relating the density and cur-
rent. This statement is problematic for three reasons. First, as illus-
trated above when discussing the toy model [Eq. (22)], the continuity
equation is already implicit in the formalism since it reproduces the
exact distribution from which the continuity equation for the den-
sity is automatically valid. Second, this ad-hoc modification would
not be the minimization that was defined in Eq. (19) and that has
been used throughout the analysis. Third, if ρtr and Jtr are related by
the continuity equation, then they could never have been treated as
independent constraints—since the density is then fully determined
by the temporal history of the current—and the original split of the
minimization should have taken the form

min
Ψ̃

R[Ψ̃; ϕt ,
⋅

ϕt , Ψt] = min
J
{min

Ψ̃→J
R[Ψ̃; ϕt ,

⋅

ϕt , Ψt]}, (32)

with no density constraint at all and so leaving only the variational
equation with respect to the current. In such a case, with no varia-
tion with respect to the density, the relationship with classical DFT
(as the equilibrium limit) becomes less clear: it is relegated to the
statement—based on the ansatz above—that the current is zero, and
so, the density is stationary in time if the equilibrium condition

∇
δF[ρt]

δρtr
= ∇μ = 0 (33)

for some constant μ holds.

IV. A VARIATION ON PFT
The above discussion suggests that several of the problems

identified can be addressed with a few modifications of the the-
ory, in particular the use of the variational velocities rather than
the variational distribution, imposing a constraint on the current
but not on the density. Since the distribution is required in the
definition of the current, some replacement for the variational dis-
tribution Ψ̃ must be found. Recalling as one source of problems that
Jr[Ψt ; ϕt] ≠ (Jtr = Jr[Ψ̃

min
t ; ϕt]), we begin with a redefinition of Ψt ,

satisfying the following equation:

∂

∂t
ΨtrN [̃vN ; ϕ] = −∑

i
∇i ⋅ ṽ(i)trN ΨtrN [̃vN ; ϕ], Ψt0rN = Ψt0rN (34)
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for any set of variational velocities ṽ(i)trN specified for all relevant
times. This describes the time evolution of the many-body distribu-
tion due to an arbitrary velocity field, the variational field ṽN , with
the initial condition Ψt0rN that is the same initial condition as for the
exact distribution. This is of course equivalent to the integral form

ΨtrN [̃vN ; ϕ] = Ψt0rN − ∫

t

t0

{
N

∑
i=1
∇i ⋅ (̃v(i)t′rN Ψt′rN [̃vN ; ϕ])}dt′. (35)

We keep the original definition of R [Eq. (14)] evaluated using Ψ in
place of the exact distribution, giving

R[̃vN ; ϕt ,
⋅

ϕt , Ψt] = ∫
trN

ΨtrN∑
i
(

γ
2

ṽ(i)rN − Ftot(i)
rN [ϕt , Ψt])

× ṽ(i)rN drN
+ ∫ ΨtrN

⋅

ϕtrN drN (36)

so that minimization will now give

ṽ(i)global−min
rN [ϕt , Ψt] =

1
γ

Ftot(i)
rN [ϕt , Ψt]

= −∇iUrN −∇iϕtrN − kBT∇i ln ΨtrN . (37)

When this is substituted into the evolution equation [Eq. (34)], it
becomes the Fokker–Planck equation, and so, with the exact initial
condition, one recovers the exact distribution for the system, thus
demonstrating that this is an exact reformulation of the problem.

The power functional is now defined using only a constraint on
the current as

Rt[J; ϕ,
⋅

ϕ] = min
J[̃vN ;Ψt]=Jt

R[̃vN ; ϕt ,
⋅

ϕt , Ψmin
t ]

= R[̃vN min
t [J; ϕ]; ϕt ,

⋅

ϕt , Ψmin
t [J<t ; ϕ,

⋅

ϕ]], (38)

so here, the current is evaluated from the usual definition [Eq. (11)]
using ṽN and Ψt as inputs, and its value is constrained to be the
specified Jt value. At fixed time t, the minimization is only a min-
imization with respect to ṽN at time t since Ψmin

t only depends on
ṽN min

t′ at earlier times t′ < t. In addition, we have written Ψmin
t [J<t]

(equivalent to Ψmin
t [̃vN min

<t ]) because Ψt depends on ṽN
t′rN for ear-

lier times, and so, we replace these with (independently determined)
ṽN min

t′rN [J], leaving only an over-all dependence on the current tempo-
ral history. Analyzing this as before, one finds the power functional

Rt[Jt ; ϕt ,
⋅

ϕt] = ∫ Ψmin
trN [J<t ; ϕ,

⋅

ϕ](∑
i
(

γ
2

ṽ(i)min
trN [J, ϕ,

⋅

ϕ]

− Ftot(i)
rN [0, Ψmin

t ]) ⋅ ṽ
(i)min
trN [J, ϕ,

⋅

ϕ])drN

− ∫ Jtr ⋅ (∇ϕtr)dr + ∫
⋅

ϕtrρr[Ψmin
t ] dr, (39)

which has the form of SB equation (25) consisting of the sum of
a term independent of the field and linear dependencies on the
field written in terms of the current J and the corresponding den-
sity. Thus, some of the structural problems discussed above have
been resolved, although once again one cannot say at this point that
ṽ(i)min

trN is independent of the field at time t.

One could continue by introducing an ansatz for the power
functional as in SB, but here we are able to do much more because it
turns out that—unlike in SB—the power functional can be evaluated
exactly. Let us return to the basic definition in Eq. (38), and note that
the constrained minimization can be formulated using a Lagrange
parameter (really a vector field λr) by first defining the Lagrangian

L[̃vN ; ϕt ,
⋅

ϕt , Ψt] = R[̃vN ; ϕt ,
⋅

ϕt , Ψt]

− ∫ λr ⋅ (Jtr − Jr[̃v
N ; ϕt , Ψt])dr (40)

and then minimizing by solving

0 =
δ

δṽ(i)r
L[̃vN ; ϕt ,

⋅

ϕt , Ψmin
t ],

0 =
δ

δλr
L[̃vN ; ϕt ,

⋅

ϕt , Ψmin
t ],

(41)

which gives, since R is quadratic in the velocities,

0 = ΨtrN [̃vN
t , ϕ](γ̃v(i)trN − Ftot(i)

rN [ϕt , Ψmin
t ])

+ ∫ (
δ

δṽ(i)r
Jr[̃v

N ; ϕt , Ψmin
t ]) ⋅ λrdr,

(42)
0 = Jtr − Jr[̃v

N ; ϕt , Ψmin
t ].

Now, it is straightforward to evaluate

∫ (
δ

δṽ(i)r
Jr[̃v

N ; ϕt , Ψmin
t ]) ⋅ λrdr = ∫ λrδ(r − ri)Ψmin

trN dr

= λri Ψ
min
trN (43)

so that the system of equations becomes

0 = Ψmin
trN [̃vN

t , ϕ](γ̃v(i)trN − Ftot(i)
rN [ϕt , Ψmin

t ]) + λri Ψ
min
trN [ṽ

N
t , ϕ],

0 = Jtr − Jr[̃v
N ; ϕt , Ψmin

t ].
(44)

The first line gives

ṽ(i)min
trN [J, ϕ,

⋅

ϕ] =
1
γ

Ftot(i)
rN [ϕt , Ψmin

t ] −
1
γ

λri , (45)

while the second then evaluates

Jtr = Jr[̃v
N min; ϕt , Ψmin

t ] = Jr[ϕt , Ψmin
t ] −

1
γ

λrρr[Ψmin
t ] (46)

so that the solution to the minimization problem is

λmin
r = γ

Jr[ϕt , Ψmin
t ] − Jtr

ρr[Ψmin
t ]

,

ṽ(i)min
trN [J, ϕ,

⋅

ϕ] =
1
γ

Ftot(i)
rN [ϕt , Ψmin

t ] −
Jri
[ϕt , Ψmin

t ] − Jtri

ρri[Ψmin
t ]

.

(47)

Using this to evaluate the power functional gives
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Rt[Jt ; ϕt ,
⋅

ϕt] = −
1

2γ ∫
Ψmin

trN ∑
i
(Ftot(i)

rN [ϕt , Ψmin
t ])

2
drN

+
γ
2 ∫

(Jtr − Jr[ϕt , Ψmin
t ])

2

ρr[Ψmin
t ]

dr

+ ∫

⋅

ϕtrρr[Ψmin
t ] dr. (48)

The dependence on the external field ϕt appearing in
Ftot(i)

rN [ϕt , Ψmin
t ] and Jr[ϕt , Ψmin

t ] can be explicitly taken out,
and the functional is rewritten as

Rt[Jt ; ϕt ,
⋅

ϕt] = −
1

2γ ∫
Ψmin

trN ∑
i
(Ftot(i)

rN [0, Ψmin
t ])

2
drN

+
γ
2 ∫

(Jtr − Jr[0, Ψmin
t ])

2

ρr[Ψmin
t ]

dr

− ∫ Jtr ⋅ (∇ϕtr)dr + ∫
⋅

ϕtrρr[Ψmin
t ] dr, (49)

thus explicitly showing the structure discussed in SB whereby the
external field contributions at time t appear linearly. Finally, we note
that the density automatically satisfies the continuity equation since

∂

∂t
ρr[Ψmin

t ] = ∫
∂

∂t
Ψmin

trN ∑
i

δ(r − ri)drN

= −∫ ∑
i

δ(r − ri)∇i ⋅ (̃v(i)min
trN Ψmin

trN )drN

= −∇ ⋅ ∫ ∑
i

δ(r − ri)̃v(i)min
trN Ψmin

trN drN

= −∇ ⋅ Jtr (50)

by definition of ṽ(i)min
trN . This shows that we can replace ρr[Ψmin

t ]

by ρtr[J] since the current (and an initial condition) completely
determines the density. We can interpret this construction as fol-

lows: Rt[Jt ; ϕt ,
⋅

ϕt] is a functional for the power in a system, which

is described by a certain time-dependent current Jt . The asso-
ciated many-body distribution Ψmin

t [J<t] is consistent with this
current (i.e., they are related by the usual definition), and the
corresponding local density fulfills the continuity with Jt as the
material-transporting current. Upon minimization with respect to
Jt , under the usual constraint of causality, the minimal currents Jmin

t
and Ψmin

t [J<t] become the exact physical solutions corresponding to
the applied field ϕt .

A. Pessimistic interpretation of these results
Following SB, the power functional is to be minimized with

respect to the current so as to get the minimizing current. Here, this
is trivial and results in

Jmin
tr = Jr[ϕt , Ψmin

t [J<t]], (51)

and from Eq. (47), one then has for the variational velocities

ṽ(i)min
trN [Jmin

tr , ϕ,
⋅

ϕ] =
1
γ

Ftot(i)
rN [ϕt , Ψmin

t ]. (52)

As demonstrated at the start of this section [see Eq. (34)], this simply
implies that Ψmin

t satisfies the original Fokker–Planck equation and,
so, is the exact distribution. One arrives at the same conclusion by
recognizing that the solution to Eq. (51) for the current at time t
depends on the current at all earlier times, and for finding a self-
consistent solution (J<t = Jmin

<t ), one has to solve Eq. (51) at all earlier
times successively. This amounts to nothing but the solution of the
original Fokker–Planck equation.

Without the freedom to introduce an ansatz by hand, the for-
malism just reduces to the original exact result. There seems, there-
fore, to be no advantage to this development since, while one could
introduce one of the usual approximations (e.g., local equilibrium)
at any point, there seems no particular rationale to do so as opposed
to, e.g., simply inserting such an ansatz directly into the continu-
ity equation for the density (as is done in heuristic derivations of
DDFT12).

B. An optimistic interpretation
A somewhat different interpretation of the formalism is possi-

ble upon consideration of the evolution equation for Ψmin
t , evaluated

with the velocities constrained by the current [Eq. (47)],

∂

∂t
Ψmin

trN [J<t , ϕ] = −∑
i
∇i ⋅

1
γ

Ftot(i)
rN [ϕt , Ψmin

t ]Ψ
min
trN [J<t , ϕ]

+ ∑
i
∇i ⋅ (

Jri
[Ψmin

t , ϕt] − Jtri

ρtri[J]
Ψmin

trN [J<t , ϕ]),

(53)

Ψmin
t0rN = Ψt0rN ,

and it is straightforward to show that the explicit contribution of the
external field from Ftot

rN cancels on the right hand side, leaving

∂

∂t
Ψmin

trN [J<t , ϕ] = −∑
i
∇i ⋅

1
γ

Ftot(i)
rN [0, Ψmin

t ]Ψ
min
trN [J<t , ϕ]

+∑
i
∇i ⋅ (

Jri
[0, Ψmin

t ] − Jtri

ρtri[J]
Ψmin

trN [J<t , ϕ]),

(54)
Ψmin

t0rN = Ψt0rN ,

which implies that Ψmin
trN [J<t , ϕ] ≡ Ψmin

trN [J<t] is, in fact, independent
of the external field entirely. Thus, it is, according the usual termi-
nology of DFT, a universal functional (given an initial condition),
satisfying the equation

∂

∂t
Ψmin

trN [J] = −∑
i
∇i ⋅

1
γ

Ftot(i)
rN [0, Ψmin

t ]ΨtrN [J]

+ ∑
i
∇i ⋅ (

Jri
[0, Ψmin

t ] − Jtri

ρtri[J]
ΨtrN [J]),

(55)
Ψt0rN = Ψt0rN .

As already noted, the minimization with respect to the current for
all times gives
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Jmin
tr = Jr[ϕ, Ψmin

t ], (56)

which [using the definitions in Eqs. (8) and (11)] can be written as

Jmin
tri = −

kBT
γ
∇ρri[J] −

1
γ

ρr[J](∇ϕtr) +Ktr[J]∣
J=Jmin

, (57)

where the last term is

Ktr[J] = −
1
γ ∫ ∑i

δ(r − ri)((∇iU(rN
))Ψmin

trN [J]) drN . (58)

Although not indicated, everything also depends on the initial con-
dition for the distribution, Ψt0rN . Thus, we can summarize the evo-
lution of the physical density with the following exact equations:

∂

∂t
ρtr[Jmin

] = −∇ ⋅ Jmin
tr ,

Jmin
tri = −

kBT
γ
∇ρtri[J

min
] −

1
γ

ρtr[Jmin
](∇ϕtr) +Ktr[Jmin

].
(59)

For an ideal gas, Ktr = 0 by definition and this is exact—not as a
consequence of an ansatz but directly demonstrated from the micro-
scopic formalism. In equilibrium, the distribution is constant, so
Ψmin

trN [J] = Ψt0rN , and so

Kequil
tr [J] = −

1
γ ∫ ∑i

δ(r − ri)((∇iU(rN
))Ψequil

t0rN ) drN

= −
1
γ
∇

δF(ex)
[ρ]

δρtr
, (60)

where F(ex)
[ρ] is the excess Helmholtz free energy functional of clas-

sical DFT. This is again an exact result (essentially a consequence of
the Yvon-Born-Green (YBG) hierarchy—see, e.g., Ref. 4). Thus, a
natural local-equilibrium assumption would be to continue to use
this form for non-equilibrium systems, resulting in

Jmin
tri = −

kBT
γ
∇ρtri[J

min
] −

1
γ

ρtr[Jmin
](∇ϕtr)

−
1
γ
∇(

δF(ex)
[ρ]

δρtr
)

ρtr[Jmin]

, (61)

which, when inserted into the continuity equation, gives a closed
dynamics for the density usually referred to as Dynamic Density
Functional Theory (DDFT).

The investigation of deviations between the true dynamics and
the dynamics predicted by DDFT (adiabatic dynamics in the sense
of a dynamics of quasi-static changes) has been pursued by Schmidt
and co-workers over the past years (see, e.g., Refs. 19 and 20).
Even without knowing the explicit form of the equilibrium free
energy functional, the adiabatic dynamics can be determined by
simulation19 and thus also the nonadiabatic differences to the true

dynamics. In terms of the ansatz in Eq. (30), these differences are
contained in the excess part Pex

t of the functional Pt[J], which is
defined as follows:

Pt[J] = P(id)t [J] + P(ex)
t [J] with Pid

t [J] =
γ
2 ∫

J2
tr

ρtr
dr. (62)

The relation to the functional Ktr defined above is given by

Ktr[J] =
δPex

t [J]
δJ

+
1
γ
∇(

δF(ex)
[ρ]

δρtr
)

ρtr[J]
. (63)

Note that we have restricted the functional dependence of the Pt
functional to the current only, in line with our modified formulation
of PFT.

V. CONCLUSIONS
We have attempted to clarify the construction of power func-

tional theory for Brownian dynamics. The theory begins with a sim-
ple variational principle that reproduces the exact statistical descrip-
tion of the system based on a generating function ultimately related
to the Rayleigh dissipation function. The minimization is broken
into two steps—first, minimization under the constraints of constant
density and current, followed by minimization over those fields. The
first minimization results in a functional of the current and den-
sity fields called the power functional. This is meant to be analo-
gous to the Helmholtz functional of cDFT and to play a similar role
as a starting point for physically motivated approximations to the
dynamics of the full N-body system. Our analysis has identified sev-
eral problematic points. There is some ambiguity in the development
of SB as to whether the power functional is actually the functional of
both density and current fields or only of the current. A dependence
on both seems to lead to unphysical results so that it should proba-
bly be considered as the result of a constrained minimization at fixed
current. Independent of this, the resulting expressions do not have
the structure described by SB, which, in turn, has been used in prac-
tical applications of the theory later on, and thus, the status of those
is uncertain and the relation to the underlying power functional is
unclear.

Having identified the source of the problems in the original
development, we have proposed modifications that appear to avoid
them. The result is, in some ways, very similar to that discussed by
SB but with one critical difference: in our development, it is possible
to carry through the first constrained minimization exactly, result-
ing in the exact power functional. This turns out to be a rather trivial
quadratic function that simply forces the current to take on its exact
expression. The theory therefore seems to provide no real advantage
over, for example, simply introducing approximations directly into
the continuity equation.

More optimistically, we noted that our development does
result in an interesting reformulation of the dynamics whereby a
“universal” functional of the current is defined (i.e., one that is inde-
pendent of the external field) and can be used to formulate the
dynamics governing the local density. Dropping the unnecessary
notation, the resulting theory has the form
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∂

∂t
ρtr = −∇ ⋅ Jtr,

Jtr = −
kBT

γ
∇ρtr −

1
γ

ρtr(∇ϕtr) +Ktr[J],
(64)

with the non-ideal—or excess—contribution to the current given by

Ktr[J] = −
1
γ ∫ ∑i

δ(r − ri)ΨtrN [J]∇iU(rN
) drN (65)

and finally the “universal” distribution determined by (Ψ(ini)
rN is the

distribution specifying initial conditions)

∂

∂t
ΨtrN [J] = −∑

i
∇i ⋅

1
γ

Ftot(i)
rN [0, Ψ]ΨtrN [J]

+ ∑
i
∇i ⋅ (

Jri
[0, Ψ] − Jtri

ρtri

ΨtrN [J])

with

Ψt0rN = Ψ(ini)
rN . (66)

This is similar to the structure of classical DFT in which one has
a universal functional of the density, the so-called Helmholtz func-
tional F[ρ], and from this, one constructs simple one-body equa-
tions for the local density given an external field. Here, Ktr[J]
plays the role of the Helmholtz functional, and it shares another
characteristic as well: its determination depends on solving an N-
body problem that is as complicated as simply solving the original
Fokker–Planck equation (or in the case of cDFT calculating the
original partition function) that defined the starting point. Whether
there is any advantage to such a reformulation of the original
problem remains to be seen.
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APPENDIX A: DERIVATION OF THE FORM
OF THE GENERATING FUNCTIONAL

SB begin by defining [their Eq. (10)]

R̂trN [̃vN
] = ∑

i
(

γ
2

ṽ(i)trN − Ftot(i)
trN ) ⋅ ṽ(i)trN +

⋅

ϕtrN , (A1)

with [SB equation (5)]

Ftot(i)
trN [ϕt , Ψ] = −∇iUrN −∇iϕtrN − kBT∇i ln Ψtr (A2)

and [SB equation (17)]

γ̃v(i)trN ≡ γv(i)trN [ϕt , Ψ̃] = Ftot(i)
trN [ϕt , Ψ̃] (A3)

in terms of which the Fokker–Planck equation becomes

∂

∂t
ΨtrN = −

1
γ

N

∑
i=1
∇i ⋅ (ΨtrFtot(i)

trN [ϕt , Ψ]).

The functional R̂trN can be written as

R̂trN [̃vN
] =

γ
2∑i
(ṽ(i)trN −

1
γ

Ftot(i)
trN )

2

−
1

2γ∑i
(Ftot(i)

trN )
2
+
⋅

ϕtrN

=
(kBT)2γ

2 ∑
i
(∇i ln

Ψ̃r

Ψr
)

2

−
1

2γ∑i
(Ftot(i)

trN )
2
+
⋅

ϕtrN . (A4)

The SB generating functional is [SB equation (11)]

R[Ψ̃; Ψt] = ∫ ΨtrN R̂trN drN

=
(kBT)2γ

2 ∫ ∑
i
(∇i ln

Ψ̃r

Ψr
)

2

ΨtrN drN

−
1

2γ ∫
ΨtrN∑

i
(Ftot(i)

rN [Ψt , ϕt])
2
drN

+ ∫ ΨtrN

⋅

ϕtrN drN . (A5)

The second term is

−
1

2γ ∫
Ψt∑

i
(Ftot(i)

rN [Ψt , ϕt])
2
drN

=
1

2γ ∫ ∑i
(∇i(UrN + ϕtrN + kBT ln ΨtrN ))

× ΨtrN Ftot(i)
rN [Ψt , ϕt]drN

= −
1

2γ ∫
(UrN + ϕtrN + kBT ln ΨtrN )

× ∑
i
∇iΨtrN Ftot(i)

rN [Ψt , ϕt]drN , (A6)

where the second line follows from the divergence theorem and sur-
face terms are ignored. Substituting for the divergence using the
Fokker–Planck equation yields

−
1

2γ ∫
Ψt∑

i
(Ftot(i)

trN )
2
drN

= −
1

2γ ∫
(UrN + ϕtrN + kBT ln ΨtrN )(−γ

∂

∂t
ΨtrN)drN

=
1
2
∂

∂t ∫
(UrN + ϕtrN + kBT ln ΨtrN )ΨtrN drN

−
1
2 ∫

(
∂

∂t
ϕtrN)ΨtrN drN

=
1
2
∂

∂t
Λ[ϕt , Ψt] −

1
2 ∫

(
∂

∂t
ϕtrN)ΨtrN drN . (A7)

Putting everything together gives the form used in the main text,

R[Ψ̃; Ψt] =
(kBT)2γ

2 ∫ ∑
i
(∇i ln

Ψ̃trN

ΨtrN
)

2

ΨtrN drN

+
1
2
∂

∂t
Λ[ϕt , Ψt] +

1
2 ∫

ΨtrN

⋅

ϕtrN drN . (A8)
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In order to arrive at Eq. (27) of the main text, we need to
evaluate

Rt[ρ, J; ϕt ,
⋅

ϕt] = R[Ψ̃min
[ρ, J]; ϕt ,

⋅

ϕt , Ψt[ρ, J]]

or, using Eq. (A5) and dropping all unnecessary functional argu-
ments for the sake of clarity,

Rt[ρ, J; ϕt ,
⋅

ϕt] =
(kBT)2γ

2 ∫ ∑
i
(∇i ln

Ψ̃min
tr

Ψtr
)

2

ΨtrN drN

−
1

2γ ∫
ΨtrN∑

i
(Ftot(i)

rN [Ψt , ϕt])
2
drN

+ ∫ ΨtrN

⋅

ϕtrN drN . (A9)

Now, given the linear dependence of Ftot(i)
rN on the field,

Ftot(i)
rN [ϕ, Ψ] = Ftot(i)

rN [0, Ψ] − ∇iϕrN , (A10)

one has that

−
1

2γ ∫
ΨrN∑

i
(Ftot(i)

rN [ϕ, Ψ])
2
drN

= −
1

2γ ∫
ΨrN∑

i
(Ftot(i)

rN [0, Ψ])
2
drN

+
1
γ ∫

ΨrN∑
i
(Ftot(i)

rN [0, Ψ] ⋅ ∇iϕri)drN

−
1

2γ ∫
ΨtrN∑

i
(∇iϕri)

2drN . (A11)

The second term is

1
γ ∫

ΨrN∑
i
(Ftot(i)

rN [0, Ψ] ⋅ ∇iϕri)drN

= ∫ ΨrN∑
i
(

1
γ

Ftot(i)
rN [0, Ψ] ⋅ {∫ (∇ϕr)δ(r − ri)dr})drN

= ∫ (∇ϕr) ⋅ {∫ δ(r − ri)ΨrN∑
i
(

1
γ

Ftot(i)
rN [0, Ψ])drN

}dr

= ∫ (∇ϕr) ⋅ J[0, Ψ]dr. (A12)

Thus,

Rt[ρ, J; ϕt ,
⋅

ϕt] =
(kBT)2γ

2 ∫ ∑
i
(∇i ln

Ψ̃min
tr

Ψtr
)

2

ΨtrN drN

−
1

2γ ∫
ΨtrN∑

i
(Ftot(i)

rN [0, Ψt])
2
drN

+ ∫ (∇ϕtr) ⋅ Jr[0, Ψt]dr

−
1

2γ ∫
(∇ϕtr)

2ρr[Ψt]drN

+ ∫ ρr[Ψt]
⋅

ϕtrN drN , (A13)

which is Eq. (27) in the main text.

APPENDIX B: MINIMIZING WITH INDEPENDENT
DENSITY AND CURRENT

To be of use, models must be developed for the functionals to
be minimized. SB proposed to write the functional W(SB)

t as

W(SB)
t [ρ, J; ϕt , Ψt] = P(ex)

[ρ, J; ϕt , Ψt]

+ ∫ (
J2

r′

2γρr′
+ Jr′ ⋅ ∇

δF[ρ]
δρr′

)dr′, (B1)

where P(ex) is the excess “dissipated power functional,” the quadratic
term in J is the “ideal dissipated power functional,” and the third
term is the “adiabatic” (i.e., local equilibrium) contribution that
involves the DFT free energy functional F[ρt] [see Eqs. (30) and
(62)]. The Euler–Lagrange equations then become

δ
δρr

P(ex)
[ρ, J; ϕt , Ψt] −

J2
r

2γρ2
r
− ∫ (∇

′
⋅ Jr′)

δ2F[ρ]
δρrδρr′

dr′ = 0,

δ
δJr

P(ex)
[ρ, J; ϕt , Ψt] +

Jr

γρr
+∇

δF[ρ]
δρr

+∇ϕtr = 0.
(B2)

Separating the equilibrium free energy functional into
its ideal and excess parts [F = F(id)

+ F(ex), with F(id)
[ρ]

= kBT ∫ drρ(r)(ln(ρ(r)λ3
) − 1), where λ is the thermal de

Broglie length] and rearranging give

ρ2
r

δ
δρr

P(ex)
[ρ, J; ϕt , Ψt] −

1
2γ

J2
r − ρr(∇ ⋅ Jr)

− ρ2
r ∫ (∇

′
⋅ Jr′)

δ2F(ex)
[ρ]

δρrδρr′
dr′ = 0,

ρr
δ

δJr
P(ex)
[ρ, J; ϕt , Ψt] +

Jr

γ
+∇ρr

+ ρr∇
δF(ex)

[ρ]
δρr

+ ρr∇ϕtr = 0.

(B3)

This completes as much of the general framework as laid out by
SB and needed here, and now, we turn to applications to specific
systems.

1. Equilibrium
In equilibrium, there is no time dependence and the current

vanishes. We assume that the contribution from P(ex) also vanishes
so that the only non-trivial equation is the second (coming from the
variation of the current), which can be written as

ρr∇
δ

δρr
(F[ρ] + ∫ ρr′ϕr′dr′) = 0 (B4)

and which has the usual equilibrium DFT solution

F[ρ] + ∫ ρr′ϕr′dr′ = const. (B5)

In this sense, the proposed ansatz for W reproduces equilibrium
cDFT.
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2. Adiabatic approximation
By the definition of SB, “adiabatic” means that one ignores the

excess dissipated power functional [P(ex)
= 0], giving

0 =
1

2γ
J2

r + ρr(∇ ⋅ Jr) + ρ2
r ∫ (∇

′
⋅ Jr′

δ2F(ex)
[ρ]

δρrδρr′
)dr′,

1
γ

Jr = −∇ρr − ρr∇
δF(ex)

[ρ]
δρr

− ρr∇ϕtr.

(B6)

The second equation gives the current in terms of the density and
external field, and if this is inserted into the continuity equation, the
resulting equation of motion can be written as

∂

∂t
ρr = +∇ ⋅ ρr∇

δ
δρr
(F[ρ] + ∫ ρr′ϕtr′dr′), (B7)

which looks like the standard DDFT equation of motion. However,
as emphasized above, there is no reason to suppose that the density
and current satisfy the continuity equation, and indeed, as the nota-
tion makes clear, ρr is a time-independent test field so that this equa-
tion makes little sense. Rather, the density should be determined
from the first of Eq. (B6), which is purely local in time. Denoting
the solution of the Euler–Lagrange equation as

ρ∗r [ϕt], J∗r [ϕt] (B8)

since the only time dependence in Eq. (B6) occurs via the potential
and substituting into the continuity equation give

∫
δρ∗r [ϕt]

δϕtr′

∂ϕtr′

∂t
dr′ = −∇ ⋅ J∗r [ϕt], (B9)

which can only be satisfied for particular fields. In particular, it is
clear that in the case of an external field that does not depend on
time, one could start with a density that is not the equilibrium den-
sity so that presumably ρ∗r will relax to its equilibrium value. In such
a case, the left-hand side vanishes, but J∗r will be nonzero, and indeed
nontrivial, so that the right hand side does not vanish, thus showing
that such a solution cannot be consistent with the continuity equa-
tion. To understand this result better, we turn to the final special
case, the ideal gas.

3. Ideal gas in the adiabatic approximation
For the ideal gas, the excess part of the free energy functional

vanishes, leaving

1
2γ

J2
r + ρr(∇ ⋅ Jr) = 0,

1
γ

Jr = −∇ρr − ρr∇βϕtr (β = 1/(kBT)).
(B10)

The equation for the current is, in fact, the exact result that can be
derived directly from the Fokker–Planck equation. It can be used to
eliminate the current from the first equation, giving

ρr(∇
2ρr) −

1
2
(∇ρr)

2
+ ρ2

r(∇
2βϕtr −

1
2
(∇βϕtr)

2
) = 0, (B11)

which is satisfied by the adiabatic solution

ρ∗r [ϕt] = Ae−βϕtr (B12)

for some constant A. However, this gives vanishing current and
when substituted into the continuity equation gives

∂

∂t
ϕtr = 0, (B13)

indicating that the minimizers ρ∗r and J∗r are only consistent with
the continuity equation in the particular case of a time-independent
field.
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