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Mechanism for the stabilization of protein clusters
above the solubility curvef

James F. Lutsko* and Grégoire Nicolis

Pan, Vekilov and Lubchenko [J. Phys. Chem. B, 2010, 114, 7620] have proposed that dense stable protein
clusters appearing in weak protein solutions above the solubility curve are composed of protein
oligomers. The hypothesis is that a weak solution of oligomer species is unstable with respect to
condensation causing the formation of dense, oligomer-rich droplets which are stabilized against growth
by the monomer—oligomer reaction. Here, we show that such a combination of processes can be under-
stood using a simple capillary model yielding analytic expressions for the cluster properties which can be
used to interpret experimental data. We also construct a microscopic Dynamic Density Functional Theory
model and show that it is consistent with the predictions of the capillary model. The viability of the
mechanism is thus confirmed and it is shown how the radius of the stable clusters is related to physically
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www.rsc.org/softmatter interesting quantities such as the monomer—oligomer rate constants.

1 Introduction

Proteins in solution demonstrate a surprisingly rich variety of
phenomena, many of which have biological implications. These
include liquid-liquid separation (e.g. protein rich droplets forming
in a weak solution), crystallization and gelation." Perhaps most
surprising is the relatively recent discovery of the existence of
protein clusters having a typical, stable size and long lifetime that
have been found to exist under a wide variety of conditions
including those for which no condensed phases are stable.>™ There
is abundant evidence that these clusters play an important role in
protein crystallization®” and it has been suggested that they play a
similar role in the formation of protein aggregates that are actors in
pathologies such as hemoglobin polymers in sickle cell anemia and
fibrils of misfolded proteins that underlie various neurological
disorders.® Thus, understanding their origin and nature is of
importance for both fundamental and practical reasons.

The existence of stable clusters at some place in the phase
diagram is intriguing. A subcritical droplet of a condensed
phase should, by definition, evaporate whereas a supercritical
droplet should grow until all available material is incorporated.
Multiple droplets can compete with one another for the available
material slowing down the growth process during the so-called
ripening stage, until only very large droplets remain. Coalescence of
droplets can also contribute to this outcome. However, the

Center for Nonlinear Phenomena and Complex Systems,

Université Libre de Bruxelles, Code Postal 231, Blvd. du Triomphe,

1050 Brussels, Belgium. E-mail: jlutsko@ulb.ac.be

t Electronic supplementary information (ESI) available. See DOI: 10.1039/
¢c5sm02234g

This journal is © The Royal Society of Chemistry 2016

experimental evidence indicates that for the protein clusters
whatever ripening is occuring is not consistent with the predictions
of the classical theories.” While there are possible mechanisms
for the stabilization of clusters, e.g. a competition between short-
ranged dispersion forces and long-ranged screened-Coulomb
repulsion as seen in colloids'® or micelle formation, these seem
to be ruled out by experiment.® Furthermore, a mechanism
involving impurities — such as Kohler theory — would require
that the dense-protein phase be thermodynamically favored and
this is specifically not the case for the conditions of interest here.

Recently, Vekilov and co-workers proposed that the stable
protein clusters might not be composed of the native protein
but, rather, of some complex formed from them such as an
oligomer or a mis-folded monomer.**** Their idea was that in
the original, weak protein solution the new species is in
equilibrium with the protein monomer but that the phase
diagram of the new species is such that a condensed phase is
favored so that super-critical clusters (e.g. oligomer-rich droplets)
can form. However, since the density of the secondary species
within the clusters would be well above the concentration for
chemical equilibrium with the monomer, there would be a
tendency for the secondary species to convert back to monomers
within the cluster thus impeding its growth. If one adds the
assumption that excluded volume effects prevent a high mono-
mer concentration within the droplet (which could also lead to a
stable chemical equilibrium between the two species) then a
possible mechanism for stabilization is apparent. Although this
idea has motivated further experimental work, little has been
done to formalize it theoretically. The goal of this paper is to do so
at two levels. First, the stabilization problem will be considered
phenomenologically using concepts from Classical Nucleation
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Theory (CNT).'? This will result in simple analytic expressions
for the size of the stable clusters as a function of the properties
of the original solution and of the concentration and pressure
of the secondary species. This analytic relation opens up the
door to the determination of these properties from the experi-
ment. Our second contribution is the formulation of a detailed
Dynamic Density Functional Theory (DDFT) model based on the
same assumptions and is used to confirm the phenomenological
predictions while providing a more fundamental means of
investigating the nature of the clusters.

2 Phenomenology

For the sake of concreteness, we will assume that the secondary
population is composed of dimers. All of the subsequent develop-
ment can be trivially adapted to other possibilities. We then begin by
postulating a simple mass-balance reaction model for the conversion
of monomers into dimers and vice versa. Denoting the monomer
number density 7; and the dimer density n, this takes the form

% e 2k11112 + 2kony
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n

dil‘z = k1n12 — kgnz

where the factors of two ensure that the total number of protein
molecules, n = n; + 2n, within any small volume element, is
conserved in the absence of spatial inhomogeneities. The
square of the monomer density occurs because two monomers
must meet to form a dimer. This gives a relation between the
equilibrium densities of ’nCY? = f,n$D. The rate equations
can be solved exactly and it is found that the non-conserved
difference n,; — 2n, relaxes exponentially at long times with
time constant \/k>2 + 8nkk».

Now, let us consider a pure solution of dimers and we
assume that conditions are such that the fluid nucleates a
dense phase. In the capillary approximation used in CNT, it is
assumed that the density inside a cluster having radius R is
constant, n,(r < R) = n%® and equal to the density of the
homogeneous, condensed phase, while the density outside
the cluster n,(r > R) = n{™) is also constant. In this case, the
rate of growth of a sufficiently large supercritical cluster is,
under the diffusion-limited conditions expected to dominate
for macromolecules in solution, given by ref. 13

ue DngwﬁP("(ZO)) - ﬁP(nf”)
(=)

where D is the tracer diffusion constant for a dimer molecule in
solution, P(n,) is the pressure for the dimers at density n, and
p = 1/kgT with T being the temperature and kg Boltzmann’s
constant. This gives the classical result R ~ ¢"/2,

Now, let us consider the effect of adding monomers to the
picture. Outside the cluster, the monomers and dimers will
reach equilibrium so we have that lc171(1°o)2 = kzn(zm). We assume
that the monomers and dimers have no interaction aside from

dR
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excluded volume effects. In this case adding monomers to the
cluster increases its free energy so that one expects the monomers
to be expelled by diffusion leading to the hypothesis that the
monomer concentration inside the cluster is very low, n” ~ 0.
Clearly, the realization of this condition will depend on diffusion
being sufficiently fast compared to the rate of production of the
monomers. In terms of the dimer concentration within the cluster,
the net effect (conversion of dimers into monomers and expulsion of
the monomers) is a simple extinction reaction that lowers the total

4
number of dimers, N, = ?nan3, according to dN,/dt = —k,N,. Since

the free energy of the cluster will be minimized by maintaining a
dimer density near that of the thermodynamically stable condensed
phase, this leads to a reduction in the size of the cluster given by
dR/dt = —k,R/3.

The combined effect of the reaction and of diffusion gives an
evolution equation for the radius of the form

dR

E:aR71 _sz/3 (3)

In this simple relation, the term driving growth scales more
weakly than the term opposing growth which is the opposite of
what occurs in classical nucleation theory. As a consequence,
the dynamics are reversed: small clusters tend to grow while
large clusters tend to shrink until the cluster reaches a stable,
stationary size as is reflected in the exact solution to eqn (3),

2k
R(1) = R2+ (R(0) — RY)e 3", R, = ,/Z—Z’. (4)

These expressions link accessible experimental quantities such as
the cluster size and the rate of relaxation of the system to the
parameters governing the model. In particular, they in principle give
experimental access to the rate constants since one expects the
exterior dimer concentration, %), to be in equilibrium with the
monomer concentration outside the droplet (kln(lm)2 = k2n(2°0)) so that
the measurement of the respective concentrations, together with
knowledge of k,, allows the determination of k; and thus complete

characterization of the reaction between the two species.

3 Microscopic model

To test these ideas, we now describe a microscopic model that
incorporates the growth of a super-critical droplet and the
excluded volume interaction of the monomer and dimer species.
Our approach is based on Dynamic Density Functional Theory
(DDFT) which is commonly used to describe the dynamics of
over-damped systems (such as colloids and macromolecules in
solution) under conditions such that thermal fluctuations may
be ignored."*'® In DDFT, the fundamental quantity is the time-
dependent local density (or equivalently, concentration) n(r;t).
The diffusion-limited growth of a super-critical droplet in a pure
solution of dimers (ie. with no monomers present) is
governed by

OF [I’lz]

= D2V . nz(r; [)VW (5)

di’lz(l’; l)
dt
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where D, is the tracer diffusion constant for the dimers. The free
energy functional will be taken to have the squared-gradient
form*®*”

Flny] = J{fz(ﬂz(l’; 1) + %gz(Vnz(r; t))z}dr (6)

where f,(n,) is the Helmholtz free energy per unit volume for a
homogeneous fluid at density n, and g, is a constant that can be
calculated from the interaction potential.'® In the following, the
dimers will be described generically using a Lennard-Jones
interaction potential in which case good parameterizations are
available in the literature.'® In the limit of low densities, the
gradient term is negligible and the Helmholtz free energy goes to
the ideal gas form fy(1,) — f09(n,) = n,Inn,4> — n, so that the
left hand side of the DDFT equation reduces to D,V>n,, Le. it
becomes the diffusion equation. Thus, one may think of DDFT
as a generalization of the diffusion equation that accounts for
particle interactions.

To generalize to two species, the free energy functional is
replaced by one depending on the local densities of both
species, F[ny,n,], and a second DDFT equation is included for
ni. In the present case, we must also include the chemical
reactions thus giving

dni(r;r) g OF i, m] 2 .
T—DIV '}’ll(l'7 I)VW 2](1}’[1(1‘7 l) +2k2}’12(l‘, l)
dmp(r;r) \OF [y, my)] N2 .

T =D,V nz(l‘, I)V 81’12(1‘; t) + kim (l‘, Z) kznz(l‘, l)

)

In principle, for a non-ideal system we should replace the
concentrations occurring in the chemical reaction terms by the
corresponding activities. Here, we keep the simple form given
above for the sake of comparison to the phenomenological model
and defer further discussion of this point to the Conclusions.

Finally, the form of the free energy functional must be
specified. Since the monomers are supposed to be above their
critical point, we simply treat them as hard spheres with hard-
sphere diameter d so as to account for excluded volume effects.
The final form we employ is

Fim.ne] = [{fton (6050 + 5o (9 ) b
+ [{antec0) + Jex(Omes o) far
- Hfifsex)(nl(r; 0) + m(r;0);d) = £ (1 (v; 1); d)
) (ma (s 1); d)}dr

®)

The third line accounts for the mutual excluded volume
interaction of the two species: we treat both as hard spheres of
diameter d and replace their individual hard-sphere contribu-
tions to the excess free energy by one dependent on the sum of
the local densities. (Note that the excess part of the free energy
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is just £ = f— £(9; we only replace the excess part because the
ideal contributions are already accounted for.) If either density
is zero, this interaction term vanishes. Of course, a dimer with
twice the mass of a monomer and the same density would have
a diameter about 25% larger but for simplicity we ignore this
relatively small difference. Similarly, we take g; = g, = gi; and
D, = D, since we expect the differences in these coefficients to
be of no physical importance. A final simplification is that we
do not include a cross term involving the gradients. This model
is a generalization of the model used by Huberman to discuss
the appearance of striations in a reacting system.”® Huber-
man’s model was constructed in the approximation of a single
active reactant with an autocatalytic chemical reaction out of
equilibrium. Here, the presence of two species participating in
an equilibrium reaction is fully accounted for. This necessarily
requires adding an additional contribution to the free energy
and, most importantly, the third line in eqn (8) which accounts
for the most basic excluded-volume interaction of the two
species. Note that in this setting the conservation condition
ny + 2n, = const. no longer holds locally.

The Lennard-Jones potential introduces a length scale, o,
and an energy scale ¢. In the following, temperature will be
reported in the scaled units T* = kgT/e and all lengths will be
scaled by . We also take the hard-sphere diameter d = g: typical
prescriptions such as Barker-Henderson®' change this by a few
percent but for present purposes this difference is unimportant.
A time scale, 7, is introduced such that D,t/c” = 1. After scaling,
the available parameters are the monomer background density,
the dimer supersaturation, the scaled temperature and the
scaled reaction coefficient k,*. The dimer reaction constant is
determined via the equilibrium condition kl*ngm)*2 = kz*ng’o)*.
We report the results here for 7* = 0.8 and supersaturation
5o = o where n° is the vapor density coexisting at this
temperature. Under these conditions the density in the vapor is
ngm)* = 0.012 and in the condensed phase n,* = 0.85. The back
ground monomer density is taken to be 5 times that of the dimer
phase. In reality, this ratio is thought to be much greater® but the
computational cost of the calculation increases with this ratio so
our choice represents a compromise. The only remaining para-
meter is k;* which is discussed below.

Our calculations were performed assuming spherical sym-
metry with boundary conditions appropriate for an open sys-
tem (see ESIt for technical details). We began by locating the
critical cluster for the pure dimer system. With the chosen
parameters, this has radius R.* = 5.2. We then make this
supercritical by increasing its radius, an amount AR, and then
adding in the monomers. Further details are given in the ESI}
of the numerical algorithms used to integrate the DDFT equa-
tions. Also discussed there are the question of the definition of
the radius to be used for comparing the capillary model to the
DDFT and the agreement between the two theories for the case
of the growth of a super-critical droplet in a single-component
system.

The evolution of the cluster radius for three different values
of the reaction constant is shown in Fig. 1. In each case, two
initial displacements are used: an “under” displacement of one
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Fig. 1 Behavior of the cluster radius as a function of time (both in
dimensionless units) for three different values of the reaction parameter,
ky* = 8.75 x 10~ (upper curve), 7.5 x 10~ (middle curve) and 10~ (lower
curve). In each case, two initial configurations are used: one with a small
initial displacement of the critical cluster, and one with a large initial
displacement. In all three cases, both initial conditions lead to the same
final cluster radius thus demonstrating the stability of the final cluster.

unit (broken lines) and an “over” displacement of 9 units (full
lines). The fact that the under- and over-displaced clusters
evolve into the same final cluster is strong empirical evidence
for the stability of the final cluster. The structure of the stable
cluster is shown in Fig. 2 where it can be seen that most of the
monomer species is expelled from the cluster except in the
interfacial region.

The scaling relationship between the stable radius and the
reaction constant k,* predicted by the capillary model, eqn (4),
is tested against the numerical DFT results in Fig. 3. For lower
values of the dimensionless reaction coordinate, there are
significant deviations as is to be expected since the capillary
model is only accurate for large clusters. As the reaction rate
decreases, and the size of the stable cluster increases, conver-
gence to the prediction is evident.
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Fig. 2 Structure of the stable cluster for ks* = 7.5 x 107°. The density
(concentration) of the monomer species (solid red line) and the dimer
species (solid black line) is shown as a function of distance from the center
of the cluster. The initial condition is also shown using dashed-lines.
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Fig. 3 Predicted stable radius from the capillary model, egn (4), com-
pared to the results of numerical integration of the DFT model (symbols) as

a function of 1/«/k2*A With these variables, the prediction is simply a
straight line.

4 Conclusions

We have shown that super-critical clusters, which would otherwise
be unstable with respect to growth, can be stabilized by means
of the combined effect of diffusion and a chemical reaction.
Diffusion - driven by thermodynamics - leads to the purification
of the cluster so as to lower its free energy. The purified cluster is
then in turn subjected to degradation due to the conversion of the
dimer species to monomers. This dynamic process can be success-
fully described by a simple capillary model as well as more
systematically investigated by means of a microscopic Dynamic
Density Functional Theory model. The two approaches were shown
to be in agreement. While these results were necessarily achieved
for specific choices of molecular interactions and, particularly, for a
specific chemical reaction, it is clear that the arguments may be

trivially adapted to other choices. We also note that we used

relatively simple squared-gradient free energy functionals and that,
while more complex functionals that more fully incorporate the

molecular potentials are available,'® we do not believe that their use
would change the results in any qualitative manner.

The microscopic DDFT model presented here is a natural
generalization of the standard reaction-diffusion model used to
describe chemical reactions in spatially extended systems. The
crucial element in our formulation of this generalization is the
free energy functional and particularly the interaction term
given in the third line of eqn (8). The free energy contribution
can be viewed as giving rise to a density-dependent diffusion
constant which, for the condensed phase, is negative thus
driving growth of a cluster rather than its diffusive evaporation
as in ordinary diffusion. The interaction term in the free energy
is critical in that it leads to a monomer diffusion constant that
increases with increasing density of dimers thus causing expulsion
of the monomers from the dimer cluster. This leads to a locally
frozen nonequilibrium steady state in which a current of dimers
flows into the cluster where they are converted into monomers and
expelled in the form of a corresponding outward current. In

this state growth of the droplet and the conversion of species
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are mutually quenched. Since such a nonequilibrium state cannot
persist indefinitely without a driving force (due e.g, to mode-
coupling effects not considered in the over-damped limit used
here ref. 13), the clusters are not expected to be stable indefinitely.
Furthermore, shape fluctuations are also likely to prove destabiliz-
ing since any deviation from a spherical shape will lower the
thermodynamic driving force for growth and potentially lead to
irreversible shrinking of the cluster to a size below the critical
radius. Finally, as mentioned earlier, in the results presented here
the system is actually treated as an open system spatially infinite,
continually replenished by monomers and coupled implicitly to an
infinite solvent'® that acts as a reservoir. This further postpones the
establishment of a global equilibrium throughout.

We conclude with several observations concerning this
mechanism. First, there is no constraint on the free energy of
the stable droplet since the only requirement is that it should be
larger than the critical cluster. It could therefore have a free
energy nearly as high as that of the critical cluster (leading to a
relatively low number of such droplets in equilibrium) or it could
have an arbitrarily low free energy (leading to a large population).

Second, we have assumed that when the reaction removes
dimers the density of the cluster remains constant so that the
net effect is that the cluster shrinks in size. This only makes
physical sense if the reaction is in some sense slow compared to
the process of removing monomers from the cluster (i.e. diffu-
sion). When this is not the case, monomers would quickly build
up within the cluster and poison it leading to its collapse. In
this context, it is also worth noting that this differs slightly from
the original proposal in ref. 8, 9 and 11. There, it is stated that
there will be an influx of monomers which are then preferen-
tially converted into dimers thus leading to a depleted mono-
mer density. However, we believe that this neglects to take into
account that the effect of the excluded volume will produce a
diffusive tendency to reduce the densities to their background
values. For the dimers, this is counter-acted by the thermo-
dynamic tendency of the cluster to grow but for the monomers,
lacking this element, the effect can only be to lower their
density as confirmed by the DDFT calculations (see also ESIT).

Third, we note the generality of the mechanism leading to a
stable cluster with a characteristic size: a force driving growth
that scales more slowly than a force opposing growth. Regard-
less of the mechanisms giving rise to the forces, these are the
required elements. Clusters in other systems could be stabi-
lized by some other combination of growth-promoting and
-opposing forces provided the relative scaling satisfies this rule.

Fourth, one can contrast this mechanism to that of the
stabilizing vesicles. The latter consist of a volume with amphiphilic
molecules arranged on their surface so that their hydrophobic parts
are inside the volume, shielded from water, while their hydrophilic
parts are on the outside of the surface, exposed to the water. Within
the vesicle could be void, more of the amphiphilic molecules or
some other substance. If the interior has a higher free energy than
the solution, the vesicle can be stabilized in the same manner
as proposed above: the surface dominates the free energy of
small vesicles leading to growth while the volume dominates
large vesicles leading to dissolution. However, in the case of

This journal is © The Royal Society of Chemistry 2016
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vesicles there is another factor: such a system can increase its
surface to volume ratio, and hence decrease its free energy, by
becoming non-spherical (by becoming flat, in the extreme
limit). In our case, the free energy is minimized by a spherical
shape so that the mechanism favors the formation of spherical
clusters.

Fifth, there is no scope within this model for ripening: i.e.
the growth of larger clusters at the expense of smaller ones.
Something like ripening has in fact been reported by Li et al.’
albeit with the unusual feature that the ripening stops while
there is still a finite population of clusters. If the present model
were correct, this “ripening” would have to be reinterpreted:
perhaps as a slowly relaxing transient. As stated above, the
reaction must be slow compared to diffusion, as is reflected in
the small dimensionless reaction constants used in our work,
and this could simply result in very slow dynamics for the entire
system. Alternatively, it is possible that the dimer to monomer
reaction is suppressed within the cluster (due to the high free
energy barrier involved in removing a dimer from the con-
densed phase) and that the reaction is most productive only in
the boundary of the cluster (where the dimer is in an energe-
tically unfavorable state). In this case, the reaction term in
eqn (3) would be a constant rather than scaling as R (in fact, R
would be replaced by the characteristic width of the boundary
region) and this would lead to algebraic rather than exponential
relaxation of the cluster to its stable size. To capture this, the
model could be modified by replacing the concentrations in the
rate equations with more general expressions involving the
chemical affinities. Such an algebraic dynamics combined with
small reaction constants could well give transients that decay
very slowly and could therefore be interpreted as a transient
ripening.

This is related to our sixth and final point. We mentioned
above that for consistency, we should replace the concentra-
tions appearing in the chemical reaction kinetics by the corres-
ponding activities, nr,t) — n'® exp(Bu(r,t) — Pu;) where the

local chemical potential is p,(r, ) = and where g; is the

SF
dn;(r, )
chemical potential for species i in the homogeneous system in
which n,(r,t) = n{*). This has not been used in the present work
in order to explore the consistency of the simple capillary
model with the microscopic model in the case that the relation-
ship between the two is most straightforward. We conjecture
that the effect of the use of the activities will be a suppression of
the dimer to monomer reaction within the cluster and an
enhancement of the importance of the reaction in the inter-
facial region, therefore possibly leading to the scenario alluded
to above of an algebraic rather than exponential relaxation.
Preliminary calculations using the activities support this and
this issue will be discussed fully in a future publication.
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