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Kinetic theory and hydrodynamics of dense, reacting fluids
far from equilibrium
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The kinetic theory for a fluid of hard spheres which undergo endothermic and/or exothermic
reactions with mass transfer is developed. The exact balance equations for concentration, density,
velocity, and temperature are derived. The Enskog approximation is discussed and used as the basis
for the derivation, via the Chapman—Enskog procedure, of the Navier—Stokes reaction equations
under various assumptions about the speed of the chemical reactions. It is shown that the
phenomenological description consisting of a reaction—diffusion equation with a convective
coupling to the Navier—Stokes equations is of limited applicability. 2@4 American Institute of
Physics. [DOI: 10.1063/1.1648012

I. INTRODUCTION such a study due to the fact that it is only applicable at
asymptotically low densities. In fact, the only simple fluid
An understanding of chemically reactive flows is neces-+that is amenable to analytic investigation at finite densities is
sary in a wide range of disciplines including astrophysics.one composed of hard spheres. The purpose of this paper is
plasma physics, and applied chemistry. Recently, applicatherefore to review the kinetic theory of reacting hard-sphere
tions in aerospace engineering have led to a number of stugystems and to use this as a basis for a hydrodynamic de-
ies aimed at deriving phenomenological equations, th&cription of a reacting fluid far from equilibrium. In particu-
Navier—Stokes equations coupled to reactions, from thear, the kinetic theory will be used to derive the exact balance
Boltzmann equation for increasingly complex systems in-equations describing the local concentration, density, veloc-
cluding internal degrees of freedom and three-bodyity, and temperature fields from which the extension of the
interactions~? However, these investigations do not exhaustNavier—Stokes equations to include reactions is developed
the range of interesting applications. A number of importantyased on the Chapman—Enskog procedure applied to the En-
applications arise in the physiochemistry of cavitatingskog approximation to the kinetic theory. A primary result
bubbles? A side from obvious examples such as the study ofill be to show that the usual phenomenological description
flames and explosions, a recent area of interest is sonocher@onsisting of the Navier—Stokes equations coupled to a
istry in which ultrasound is used to induce conditions of reaction—diffusion—advection equation is only applicable if
extreme temperature and pressure inside bubbles with theie chemical reactions take place on a time scale which is
effect of dramatically increasing the rates of chemicalcomparable to the dissipative time scalk?, where\ is a
reactions’ Closely related is the phenomena of transport coefficient ankla typical wave vector. If the reac-
somnoluminescence—in which a fluid irradiated with ultra-tions are slower, then all hydrodynamic relaxation takes
sound emits light—which is believed to be caused by prespjace before the chemistry gets started and chemistry and
sure waves acting on small bubbles of gas in the fls#e, hydrodynamics are effectively decoupled. Faster reactions,
e.g., Ref. 3. The bubbles are subjected to such rapid comith time scale comparable ttk, wherec is the sound ve-
pression that shock waves may develop and the concentratgstity, leads to additional couplings of the reactions to the
energy drives many chemical reactions particularly when theyqrodynamic fields. Even faster reactions lead to the chem-
shocks reach the center of the bubbles giving rise to highstry taking place so fast that hydrodynamics is irrelevant.
temperatures and densities. In fact, it has been sugdested The hard-sphere interaction model has proven remark-
that some(endothermig reactions may play an important gp|y yseful as models of single- and multiple-component
role in limiting the temperatures reached in the center of th%imple fluids since, in many respects, the phenomenology of
bubble. It is therefore of interest_ for these applications, agpe hard-sphere systems and atoms interacting via more re-
well as some of the others mentioned above, to understangisiic pair potentials is qualitatively identical. For example,

the phenomenological equations governing a reacting gas Uurg-sphere systems exhibit the full range of transport coef-
der extreme_condmons and far f_rom equilibrium. The BO'FZ‘ficients found in all simple fluidsand possess a freezing
mann equation cannot be considered an adequate basis pLnsition® and the structure of hard-sphere fluids in equilib-

rium is not much different from that of any other fltiddn
dElectronic mail: jlutsko@ulb.ac.be the theoretical side, the equation of state of hard-sphere flu-
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ids is easily modeledKinetic theory is simplified by the fact “usual” description. However, under less restrictive as-
that only binary collisions are important and it is possible tosumptions, the reactions are shown to depend in a much
formulate an extension of the Boltzmann equation—the somore complicated way on the hydrodynamic fields. The pa-
called revised Enskog thedf/(RET)—which not only de- per concludes with a discussion of the physical meaning of
scribes the transport properties of multiple-component hardthe different assumptions.
sphere fluids at finite densities, but which also describes
transport in the solid stafé.More recently, inelastic hard
spheres have been used as a model for driven granular flui
with similar success. The hard-sphere interaction is therefore
an ideal model for understanding the extreme conditions oc-  Consider a system dfl hard spheres of various species
curring in sonochemical experiments. confined to a volume& with positions{d;}!\, and momenta
The kinetic theory of chemically reacting hard spheres{5,}"\_; . The combination of the position and the momentum
has in fact been discussed in the literattffé>The principal  of a given atom, i.e., its phase, will be denoted below by the
aim of these studies was to investigate contributions to théetter x. Each atom will also be described by a set of discrete
reaction rates coming from dense fluid effe@sg., ring ki- labelsl; for theith atom, which fix its “chemical” properties
netic theory leading to mode-coupling modetst equilib-  (mass, hard-sphere diameter, and reaction parametéhen
rium. In these studies, the atoms carry labels indicating theitwo atoms collide, both the mechanical variables and the
speciegsometimes called their colpand all intrinsic prop-  species labels of the atoms change. The dynamical variables
erties like the atomic radius and mass is specific to the speare altered according to some deterministic collision rule so
cies. When the atoms collide, there is a probability that ahat for collisions between thigh andjth atoms,
reaction takes place in which the species labels and, hence, oy
atomic properties change. The probability typically depends Xi_’xi,:b|:|_] Xi
on the rest-frame energy of the colliding atoms: if the rest ,', (1)
frame energy is greater than some specified activation en- Xj—>X’=E):i||iX,-,
ergy, the reaction can take place with a probability that is, in i
general, a function of the relative energy. Energy may b‘?/vhere the collision o
gained or lostexothermic or endothermic reactignbut the ) ) b )
sizes of the atoms are generally invariant since, were they t§0Ving the reaction |i+|,jﬂli +1j (e, the ith atom
also vary, a collision could result in one of the atoms over-C1anges from speciésto |, etc) and, clearly, one expects
lapping a third atom(Technically, there is no reason that thatB:iI'_i =6:i|'_i. Because the species change instantaneously
atoms could not get smaller and most results would apply 9,4 rl'zljndorﬁlly upon collision, the species labels must be
such a mode).Besides being restricted to a chemistry con-yjie\ed as discrete random variables. Attention here will be
sisting of color labelgand so excluding, e.g., the exchange rggtricted to the model in which the probability of making a

of mass upon collision a common assumption in earlier haricylar transition is given by some function of the relative
work is that the chemical reactions are slow compared to o HE
other transport processes. Since the rate of chemical reaBh@ses of the two colliding atomqilj (xij) where the no-

tions is generally determined by the ratio of the temperaturéation indicates that this probability depends on the relative
to the activation energies and the difference in the concernvelocity v;;=v;—v; and positiongj; [e.g., through the com-
trations, this implies that the results are only applicable neabination @j; -ciij)z].
equilibrium or for low tempergtu_res. One of the primary A Collision rules
goals of the present work is to indicate how the phenomeno-
logical descriptior{Navier—Stokes equations coupled to aset ~ The coupling between chemistry and hydrodynamics can
of advective—reaction—diffusion equatiomsust be modified be captured simply by considering atoms that carry a label
to account for large deviations from equilibrium. (e.g., coloj that can change during collisions. Allowing for
The organization of this paper is as follows: Section Il the nonconservation of energy gives a relatively broad model
develops the formal statistical description of the system. Théhat includes endothermic and exothermic reactions. How-
discussion of possible collision rules is followed by the de-ever, in the interest of generality, the problem of modeling
velopment of the Liouville equation and the exact balanc€€actions that not only violate energy conservation, but that
laws describing the evolution of the local mass, energy, mo@lso allow for the exchange, or even loss, of mass will be
mentum, and partial densities. The Enskog approximation i§onsidered. o _
also introduced. Section Il discusses the Chapman—Enskog 1he modeling of the collision rules in the case that mass
solution of the Enskog equation and, particularly, the differ-is either exchanged or lost upon collision is somewhat prob-
ence between the assumptions of fast and slow chemical ré&matic. To understand why, consider the usual arguments
actions. It is shown that, if the chemical reactions are suffiléading to specular collision rules in the case that mass is
ciently slow, the fluid may be described by the Navier_ipvariant. Defining the total and relative momenta, respec-
Stokes equations for the total mass, energy, and momentuHyely; as
densities and a reaction—diffusion—convection equation for P=p,+p
the concentrations with the only coupling between the two o

being the convective term occurring in the lattee., the P=p1— P2,

STATISTICAL MECHANICS
REACTING HARD SPHERES

~I . L
peratdo' ’ describes a collision in-
I

2

I
e
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the conservation of total momentum means that MlgéV'XQ’+M|irév'><ﬁlz=|\/|| VXG4 5% Gy (9)
B=P, . .
3 or, using the conservation of total momentum,
(4
5’ =p+y,12, SRR - U s
P=PT 7, M, VX (Q = Q)+ (g8’ — i 1,0) X G12=0.  (10)

1117 . . - . - .
where 32 (X1,%z) =~ 7| |1 (X2,X,) is to be determined. |n general, this equation cannot be satisfied since it implies
Second, the energy balance equation can be written as T P,

[VX(Q'=Q)]-q12=0, (11

which is not generally true. The conclusion is that any colli-
! . . o sion rule which does not leave invariant the center of mass
whereE, | * (x1,Xp) is the energy lost during the collision. |l necessarily result in a violation of the conservation of
Substitution of Eq(3) gives angular momentum at the microscopic level. It is not pos-
sible to compensate by allowing the positions of the atoms to
shift during the collision since this could lead to overlapping
configurations involving a third atom. In fact, one would
) expect that the inclusion of internal degrees of freedom, in
where the reduced mass jg |, =m m,/(m +m ). IND  yaricular of rotation of the spherical atoms, would allow for
dimensions, this gives one constraint on Méndependent g Galilean-invariant collision law and this will be explored at
components O-E}:Z,L:é so, for example, it fixes the magnitude 2 later date. For present purposes, given that the collision
rule cannot be uniquely fixed by appealing to general prin-
of y 7| 2 if its direction is known: In one dimension, the prob- ciples, the only recourse is to try to construct reasonable

lem |s therefore solved. In higher dimensions, the conservahodels. One possibility is to conserve the angular momen-

tion of angular momentum gives the needed additional contum in the center of masgc.m) rest frame since then

straint. This reads V=0 and angular momentum can indeed be conserved. An-
other is to work in analogy to the case of invariant masses

. Q1+Q2 - Q1+QZ 1. ; ; =
P’ X 5 2p12><Q12 Px—+_ 12 5+ 5Prox i (6) andto requrrethateltherall momentum transfer be alpng

1oy 1315 rour
E(x1, %)+ 5E|1|§(X1,X2)= E(x1.,X3), (4)

(y.1.2>2+2 p+ : =0, (5)

pe Mg 248y SE|1?
m +m, AN !

(sop’'=p+2u, | yl |2Q12) However, since the former is not

Galilean invariant when mass is transferfeihce in a frame
) moving at velocity G the relative momentum i$p00sted
=p+(m,—m,)d], itis not clear how to uniquely apply it.
In fact, if one tries to enforce this constraint in the c.m.
frame, it gives the same result as fixing the angular momen-
ing the centers of the atoms. In this case, &9.gives tum in the c.m. frame. A second possibility is to demand that

or, using the conservation of total momentum,
N g
’Y|1|2X q12= 01
12

thus fixing the direction oﬁ?:i:z as being along the line join-

iy , o all velocity change be along;, (so J’=J+§:1:2q12). For
= —Uqo . . . . 12
Ny, S| T V12 G2 illustrative purposes, both options will be considered.
For the sake of generality, it is also interesting to con-
\/(17 A2 2 (MK ) sider the consequences when mass is not only exchanged,
12t !, Qz2- but is lost. It is clear that the previous considerations con-

o cerning the specification of the collision rule under mass
Taking 6E,12=0 gives the usual result for elastic hard exchange apply to this case as well so that, again, a model
1'2

spheres, whereas setting the loss to be a fixed fraction of tHﬁuslt be '”trOdUCEd hn ordelr to specify the drelat|on betwﬁen
contribution to the rest-frame kinetic energy due to the ve- e lost mass and the total momentum and energy. Without
| , considering specific applications, it is not clear that any

locity along the line joining the atoms, 5E unique conclusions can be drawn, so by way of illustration |

will assume that the mass is carried away in such a way that
the total momentum in the c.m. frame is conserved. This
spheres{r e, granular quid}sand gives a coefficient of resti- means in general that the law of conservation of momentum

tution a:l:z— 1- >\|1|2 becomes
1'2

When mass can be exchanged upon collision, it is useful Br=p

to introduce the total mashl; | ,=m +m;, the center of

=\ 1, 2,u|1|2 (012 G122, is the model used for inelastic hard

2y, (12

massQ= (m G1tm G2)/M, . and the center-of-mass ve-
locity V= P/M, s . Notice that even with the conservation of
total mass, the center of mass is not generally invariant ihere is that the mass is carried awayr‘qu particles with

mass is exchanged and the positions are kept fixed. So the . ;
conservation of angular momentum gives massesn SO that5mI Ei':ﬂlzmio and with rest-frame ve-

where 6m'1'2=m|l+m, —mp—mp. The model adopted
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12 colliding atomg. The energy balance equation therefore
locities v, satlsfylngE '12v°—0 For the case in which the reads
angular momentum |n the rest c.m. frame is held constant, it 1 1 — 1 .,
is natural to also require that these particles carry no net—p = py’+ 6E:1:2+ —5m:1:2V2
angular momentum. 2m mlg vz 2 b

Finally, some model must be specified for the energy lost 1 1

2m I Pit 2m, 5m P2 (13

(or gained, 5E| o which might include contributions due to

kinetic energy that is carried away by the lost mass and en- S
ergy lost(or gained through other mechanisnfexcitation of  where it is understood thaﬁE:l:Z E'1'2(X1,X2) is a
internal degrees of freedom, radiation, exothermic, and e 12
dothermic chemical reactions, etcSuppressing the species
indices for a moment, the energy differential can be writte

as the sum of two contributionSE = 5E,, + 5E,, where the nﬁ:alzdent of any other assumptions concerning the collision
first is the energy carried away with the lost mass, and the
second is due to any other inelastic processes. In the c.m. re[%e

frame, SE,=30_,3mi(v; )—5Em so in the laboratory

—sn 1o 2_ o +1 2 R M. R "N
frame, 5Em—-2i:12m,( ,+V) SE+ 25mV: -Further, I §l= 12(v12+)\:1:2q) (14)
assume, as is commonly done, that the remaining energy loss ITHR 12
(or gain is frame independeniwhich means in particular

that it can only be a function of the relative velocity of the for some scala]t (xl,xz). Substituting into Eq(13) gives

"Galilean-invariant function of the phases This expression
depends on the model for the lost mag$sany), but is inde-

From Eq.(10), conservation of angular momentum in
rest frame then gives

1 N . 2y LY ¥
NY2=—0-8+ \[ (0- 82— (1= wy g Jo°— —5— 8B 42 — —— omL 22 (15
1o 12 Ml u 12 oy

I1l2

and one then finds that

(16)

e 1 (mli—mu mlé_mlz) -

Slila _
y|l|2 12 l l q12 m|1+m|2 m|1‘|'m|2
Demanding that the change in the relative velocity be along the line joining the atoms gives a very similar result

U1p=U12t A iquz’ (17)

with

Il 5 s o
MNY2=—Ugp Qo \/(012'Q12)2_(1_M|1|2/M|1|Q)U§2_

1)

|1|2 et |i|§ nt (18)
K, K,
and
. e My —=my g (M —m

21115 12 . 1110 A 1 2 12 1 2
-1 +2uwin N2 + 19
11y Mlllz )p12 Mlllz |l|2q12 m|1+m|2 /’Llllz m|l+m|2 ( )

Note that these two models coincide in the special case that the reduced mass is invariant, which obtains in one of two
circumstances: the atomic masses are invariant or if the atoms just exchange massem,sethatand vice versa. In both

cases, mass is necessarily conser\éélatlll1 2=0, and all other conclusions are model-independent consequences of Galilean
invariance.
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B. Evolution of phase functions N atoms follows immediately due to the fact that only binary
- MK . . .
. . collisions occur. HereM,' "I (x;;) is a random matrix which,
The dynamics of any hard-sphere model consists of free o EM'i" (%i5) _
streaming interrupted by binary collisions. In nonreacting'™ any reallz/atlcl)n, tak_es on the vaIu_e 1 for some s_mgl_e com-
fluids, the collisions lead to an instantaneous change of theination ofl;, I and is zero otherwise and which is distrib-
velocities of the colliding atoms. The generalization to theuted according to

reacting fluid only requires that the chemical species labels " vy

| |
and, hence, the masses and any other species-specific prop- (M (Xij))react= K|! 1 (X;j)- (24)
erties to be viewed as dynamical variables as well and so as : :
part of an enlarged phase space. (The notation used here indicates stochastic quantities by

Two atoms—say, atomsandj—collide at timer;; when ~ means of calligraphic type and uses carets to denote opera-
their centers are separated by their relative hard-sphere diers and averages over the stochastic process are denoted as
ametera|i|j: (***)react) FOr a nonreacting system, it becomes

N .
|qi(7ij)_qj(7ij)|:qizj(Tij):Uﬁlj- (20) Mliljl(x”) 6,i|i5|j,j.The only other formal difference from

the nonreacting case is that the momentum transfer operator

where—e._g., for additive models —the relatlve“hardl spher%|i'|j' has the effect of altering both the mechanical variables
diameter is simply the sum of the atom raah|i|j=50,j il

+%0lj- The atoms do not have to all have the same @izg, and the species labels. So just as this operator instanta-

an acceptable possibility is that different species have differ['eOUSIy changes the po.si.tion in .phase space of’tthato_m
fgom Xj(t_) before a collision at timeto x;(t,)=x/(t_), it

ent sizes, but chemical reactions always transform atom Iso instant v alters th ios labels frém) t
from a species of a given size to other species of the sarq%so Ins :’:m aneously alters the Species ,a €S i¢m) to
(ty)=I1/(t-), the difference being that/(t_) is a deter-

size). An exceptional possibility in which size could change 'I\"+/° ]
is one in which atoms only get smaller upon collision: this mlnlsnclfunctl.on Ofxi(t—? and x;(t.), Whe“‘f‘as the .evolu—
might be useful to model certain granular materials that frag:“On of l_i (_t*_) is stochastic. For phage fu_nctlons V\./h'Ch have
ment upon collision(e.g., the ice composing the rings of no explicit time dependence, the Liouville equation can be
Saturp and could be handled within the present formalism asformally solved to get

long as the position of the center of mass of each atom is

invariant. From Eq(20), one has that the time of the colli- AT H=exp L HAT), 25

sion is which has the meaning that the system evolves from the
1 initial phasel'.

7i(D)=—— 0 Gijj— -z V@ Gy = v (af - (rﬁj), The most important difference from the nonreacting sys-
ij :

Uij 21) tem appears in the evaluation of statistical averages. In the
presence of reactions there are two statistical processes that
where the sign has been chosen according to give the physinust be considered: the distribution of initial conditions
cal solution. If the right-hand side is imaginary, then no col-and the stochastic process that alters species labels at
lision takes place for the given initial conditions. This aspectthe collisions. For a given distribution of initial conditions

of the dynamics is independent of what actually happen§,(0)(r):pl(fl)2__|N (X1,X5,....Xy) (giving the probability that

after the collision and is the reason that the structure of the,q irst atom begins with speciés and phase;, and so
pseudo-Liouville equation is independent of the collisionon) one has v
rule. The pseudo-Liouville equation describing the time
evolution of an arbitrary phase functionA(I';t) ©)
=A (Xq,l1,... XN, In;t), then follows immediately by anal- <A?t>:j dI* p™ () (A()) react
ogy with the nonreacting fluid and is
d J ~ = f dr P(O)(F)<quz+t)A(F)>react (26)
aAZ EA_I— £+A,
and the notation should be understood as implying a sum
N . d P over the initial species labels
L.=2 w2 Toi]), (22) P
i i<
where the binary collision operators are f dr p () (exp( £ AT )react

AT*(”):_q”'5”5((1”_0“'1)@(_%'6”) => fdxl..-dXprO)l (X1, XN)
l... N gy

" " ERRIN
HF HF
x| 2 M (xipb 1. (23 ,
1 Ll lil; X{(eXP( L1 1))reacA(T), (27)
As discussed in Appendix A, this can be derived directly forwhere A(I') can be taken outside of the average over reac-
a system of two atoms by writing the exact solution to thetions since it depends only on the initial conditions. Now,
two-body problem and differentiating; the generalization tosince each collision involves an independent stochastic pro-
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cess, it follows tha(exp@ﬁ)}react: eXp(<3+)reacI), which wherea is a constant, from which it follows that

is evaluated using Eq24). Thus the time averages become R 1+ a
vij=b"tvfj=uj- _) Ui Qi (36)
<A;t)=|2l dxg- -+ dxup{ o (g, X)X L AT, N
1IN n
28) giving
with the deterministic operator d(b™xi b™1x)| T 37
J &(Xi ,Xj) o a’
L+=§i: Xiﬁ_xi+i§<:j T.(ij) 29 < that
and the(reaction-averagedollision operators are TA))B(X ] .15
T (i])= =i 0ij 80k = o1 )O (= &y Tjy) 1.
+ ij " Yij ij il ij " Yij _ ;b—l_l @(_Jij_qij)é(qij_o_lilj)ﬁij
(MK NN
X Cix: )b i —11. A
% Kooy )Py = 1 (30 8 BOX 5 1p), (39)

This shows that, from the point of view of evaluating the which 1S the usual resu’rf’.. i i

statistical averages, it suffices to work with the deterministic /A important generalization of this result concerns the
dynamics defined bf , , which no longer treats the species Cas€ that the inverse transf.ormathnad)lxi is not unique. This
labels as discrete stochastic variables. Instead, the phaS8n happen even in the single-species, inelastic case if the
functions are at all times averaged over the reactions and sgpefficient of restitution depends on the velocities. For ex-
do not explicitly represent dynamical quantities as might be2MPle, if @=a(v;;-§;), then the inverse collision rule is
realized in a computer simulation. In fact, they correspond tgl€termined by solving

the average result of an ensemble of simulations, all begin- Ji'j Q= — (- Gy - (39)

ning with identical initial conditions, but differing in the re-
alization of the reaction proces\sl:ill_i CHE
)

C. Evolution of the distribution function

The adjoint_? of the Liouville operatof_ . is defined as

f dr B(P)L+A(r)=f dI[LAB(I)JA(D), (32)
from which one findgsee Appendix B
. . d AN
Lh=—2 %0+ 2 Th(i)), (32
i X i<
with the adjoint collision operator
?’i<ij>=—LEb (% ,xj><‘[;Lj>1KL:L;(xn>—1}
X®(_l7ij'Qij)5(Qij_0'|i|j)l7ij'Qij1 (33
with
g 2B i (Bl x|
1'2( . ) —
Jap2(Xi 1) 0% %) | (34

Here the operatori(}))~* is the inverse ofb\/ both in

which may or may not have a unique solution. In the latter
case, T4 must be written in terms of a sum over the various
branches and must include step functions which restrict the
domain of integration in Eq(31) to the appropriate domain
for each branch. In practical calculations, it is usually most
convenient to recast integrals ovef, (ij) into integrals in-
volving 'T'+(ij) S0 as to avoid this complication.

Given the adjoint operatdiﬁ , EQ. (28) can be written
as

<A;t>=f dr[exp(LAt) p@(T)]A(T)

EJ' dlp(T5HAD), (40)
where the second equality defines the time-dependent distri-
bution function. Its time dependence is given by the pseudo-
Liouville equation

J 0 —
<E+Z X‘a_><i+i2<j T_(ij)|p=0, (41)
where in the standard notation
T_(ij)=—TA)). 42

terms of the change of the mechanical variables as well asthe Born—Bogoliubov—Green—Kirkwood—YvéBBGKY)
thfl_ species labels so tfj'cll_f_ for an aArlt?jtrary functionhjerarchy follows immediately from the Liouville equation.
(bJ )7 B 1%, 1) =B ((bj) "' x,a; (b))t %;,b).  Defining the reduced distribution functions as
To illustrate the structure of this operator, consider the caség

of inelastic hard spheres used to model granular fluids. Sp Jl""m(xl Xm)

cializing to a single species, one has NI
b ~(N-m)I

vjj=bui;=0i; — (1+a)vj;- Gy,

>

m+1 "IN

X1 dxnp(D), (43

(35
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integrating the pseudo-Liouville equation ovef, 1 Xy, J R .
and summing over the corresponding species labels gives the —Z M+ V- (Un)+V-j;= s", (48
mth equation of the hierarchy:

with the source

PR a _
—+2, Ui ==+ T_(ij) ] fr. (XX
((91 i;l it 1si;]<m (J)) ] SEUEREIY jXmdxz((hz'1712)5(Q12_<T|1|2)
abl,
m
:_2 |2 fdxm+l?,(im+l)f|l...| 1(X1"'Xm+l). X(_q12.612)f|1|2(xlvx2;t)
i=11ne me

(44) X (= @1)Klalkl)z(xﬁ)('s"lI+ 81— 6, — dir,) (49

The first equation of the hierarchy is the starting point for theand the number currefi= ﬂ<+ ﬂv with
Enskog kinetic theory as described below.

fr(r,t)=f do,f (F,5,,1)V, (50)

I1l. EXACT BALANCE EQUATIONS and
Now consider the phenomenology of the reacting fluid

which is expressed in terms of the macroscopic hydrody- ﬂ’(r*,t)=—% > fdxldxzcjlz(qlzﬁlz) o(di2—o1,,)

namic fields. The results presented here are derived using ablylp

only the general form of the collision rule, E), and the X O (=810 1011 (X, Xo 1)
microscopic energy balance equatitiB), so that the only 12
assumptions made with respect to the collision model are XK?ffz(Xlz)(5a|—5b|—5nl+ Sii,)

those concerning the energy transported by any lost mass.
The local fields of interest are the number fractions 1

xf dx 8(F—x0g;—(1—X%)q>). (52

0

n(r,t)y= S(F—q;) o) ;t :jd*fr*,*;t 45 )

(r <2 (=) i > orfi(Tont) (49 The source term represents the gain or loss of atoms of type

| due to chemical reactions. The kinetic part of the number

and the mass, momentum, and energy densities, defined, re- . S .
spectively, as current is familiar from the study of multiple-component,

nonreacting systemis where it takes the form flK
p(F0=S mn(F.b), =3,D;Vn;+L,VT+0(V?) and, e.g., gives rise to Fick's
[ law when substituted into Eq48). Here it is seen that this
diffusive current is enhanced by a second contribution, Eq.
p(F,0)U(F,1)= < 2 m, U;6(F— qi);t> (51), that arises solely from the reactiofi®., it vanishes if
[ ' Kf‘lﬁ’zz 6a|15b|2). This is due to the transport of typeatoms
due to the reaction process. The conservation of total number

=§|4 m [ duyosfi(F,oq;1), density immediately follows by summing over the species
label
D I L R, ;
2 N(NOKeT(MY=} 20 5 M Vior=du)it StV +V- 3 ji=o, (52)
|

=> Emlj do V21, (F,545t),  (46) vyhere the sum over the specie_s of the .co_llisional cc')ntr.ibu-
r 2 tions to the number current vanishes. Similarly, multiplying
by m; and then summing gives the balance equation for the

where the excess velocity ¥;(t) =uv,(t) —u(g;,t) and the local mass density,

total number density is
J - - o
~ = — (d .Q=sr
n(r,t):Z ni(F,t). (47) PtV (Up)+V-Q=87, (53)

. . . . where the m flux i
It is also convenient to introduce the number fractions, or ere the mass flux Is

concentrationsx,(r,t)=n,(r,t)/n(F,t). The balance equa- - . R

tions for these quantities follow directly from their defini- Q(rt)=— EabE” f dx,d%01/12- U12)

tions and the first equation of the BBGKY hierarchy. The v2

details of the derivation are given in Appendix C and only X 31— 07,1,)O (= qrz U1 11, (X1, X251)

the results summarized here. ab
. XKPT,(X12) (M= mp—my +m )
A. Number, mass, and concentration

Integrating over the positions and velocities gives the > fldxé(F—xdl—(l—x)qz) (54)
balance equation for the local partial number density, 0 '
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which vanishes if no mass is transported during collisionsThe source terms arise due to momentum being carried away

and the mass source term is

s$Pr0=1 3 | dxde(ur 51 Aoy

abI12
X O (=012 U121, (X1, X231)

X 8(F= K} (%10 omf]

l1l5°

(59

which is only nonzero if the collisions do not conserve mass.

Finally, using the definition of the concentrations;
=n,/n, the reaction equation is found to be
J

—x+0-Vx,+n1t
R |

>

ﬁ-j|—x|€~§|: i|=n"tg",

(56)

by the lost mass and the new term is given by

=% > fdxldxz(fhz'ljlz)

PP
X 8(012—01,1,)O (=12 712 (Vo )
1115 5> =
X1, (X0, X2 DK 2(Xg0) 6My 7 2(F = Gy).

(62

By using the balance equation for the total mass density the
equation of motion for the velocity field is found to be

where the term on the right is now identified as the reaction

rate.

B. Momentum and velocity fields

G+0-Vi+p {V.-P+0Q-Vi)=p L3P, (63)

SIS

C. Energy density and temperature

The balance equation for the local momentum, written in

terms of the local velocity, is

J N R - N -
ﬁpﬁ-}—v-(pl]ﬁ)-kv-(P+QG)=S(p)+GS”), (57)
IS’V

with the pressure tensér=PX+ P+ B, where the kinetic

contribution is

B0 =3 m [ dif(r,:,0V:Vs (58
and the collisional contribution is
PY(Ft=—1% > fdxldx2q12(Q12'612)
PR
X 8(A1=071,1,)O (=812 U1 fr 1, (X1, %25 1)
1 ~i L L .
XK|1|2(X12)7|1|2f dX5(r_XQ1_(1_X)Q2)y
12 12 )0
(59

where§:1:2 is the change of momentum in the rest frame,
12

2+(m|1—m|1+m|é—m,é)\712. (60)

The balance equation for the total energy density is

1

Jd - N > o > R
EE+V~(GE)+ -q+V~(G-P)+V~(—u2Q)

N

= 1
=£+0-SP+ Zu”SP, (64)

where the new source term, arising if energy is not conserved
by the collisions, is

1
&ry=5 > fdxldxz(fhz'1712)5(Q12—(T|1|2)

e’
PIPHA

’
|

1
4l

SE|12+ 5 SmL2(V—1)?

NN~

XO (=012 01

X F 1 (Xa Xa DK 2(Xa0) (F— ), (65)

ll2

which is recognized as the generalization of the source term
studied in the context of granular fluids. The heat flux is
written as a sum of several contributions

Finally, the contribution from the instantaneous exchange of

mass is

PM=—3% > JdxldxquZ(Q12'612)6(Q12_Ulllz)

e’
PIPHK

N - 171 v
XO(— 012 U12)f|1|2(X1X2)K|1|§(X12)(V12_ u)

1
X(my—my —mp—m,) Jo dx 6(F—xd; — (1=x)q).

(61)

(66)

where the kinetic part has the usual form
a“(ru=20 im f do 1y (7,51, HV; V3,

as does the first part of the collisional contribution,
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termined by the BBGKY hierarchy. For example, the equa-

Q(rH=-3 > f dx10Xx012( 812 U12) tion for the one-body distribution is explicitly

PIHA

X 8(A1=071,1,) O (=812 U1 f1 1, (X1, %25 1)

a—i—* i f it
ERRENrTA 1,(X151)

= quZdUZ{
abI2

X(BA?) KA (Xa0) = 620

112 Zil . .
><K12(X12)(V U(du))- 7,2 a(BM2x, Bltox,)

A(X1,X2) |

‘—1

1
x f dx 87— Xt~ (1— X)), (67
0

which is a measure of energy displacement during the colli- O(—0v12 G2

sion (i.e., one atom experiences a net gain of energy, the
other a net loss, and this represents an instantaneous move-
ment of energy from the location of the second atom to the
location of the first Qualitatively new contributions arise However, since the latter cannot be solved exactly, except in

X 6(A12— 01,1,)U12 Qiofy) ), (G1,01,02,02;1). (72

from the instantaneous transfer of mass,

1 LLTALL M

=3, 2

m|rm|2

(M +my)(my,+my,)

XJ dx X012 812 U12) (d12— 07 1,)
XO (=012 U1 F 1, (X1, %25t Kii(XlZ)

1
Xpgpse | AXOE-x0-(1-0)80), (69

and from the loss of energy,

my;—my
A =-3 E

|1|2| 1}

X 6(A12—071,1,)O(— Q12 U12)

/ ml +m fdxldxz‘hz(%z U12)

X f11 (X %o t)K'llZ(xlz)éE:

1
Xf dx 8(F—xG;— (1—x%)4,). (69
0

Alternatively, noting the relation between the total energyy, . f,iq°

and the kinetic temperature,

E= 2 nkgT+ 2 pu? 70
=5 nkeT+ 5 pu, (70
the evolution of the kinetic temperature is found to be given/ d . 4d
by
d - T. - 2 L -
v > K 3 q

(&t V) v §|‘, it +anB[P Vi+V-q]

——2 71

D. Enskog approximation

the special case of equilibrium, it is necessary to introduce an
approximation. The most common approximation is to as-
sume that the velocities of two colliding atoms are uncorre-
lated prior to the collisiorithey are of course correlated after
the collision since the collision itself generates correlations
That this approximation is sufficient to decouple the BBGKY
hierarchy is seen from the right-hand side of EZR) since

the step function®(—uv4,- G1,) is nonzero only for atoms
approaching one another and théunction restricts the do-
main to the instant of contact. Thus the assumption that at-
oms are uncorrelated just prior to a collision, Boltzmann’s
“assumption of molecular chaos,” is precisely the statement
that

O (012 G12) (12— 0 1,)F11,(G1,01,02,02)
=0(~v12G12) 8(A12—07,1,)
Xg(d,az2;0)f (X0 (xz51), (73)

which, when substituted into E@72) gives the Enskog ap-
proximation to the one-body distribution function. The factor
of g(G4,G,;t), the spatial pair distribution function, allows
for spatial correlations which always exist. In the revised
Enskog theory, it is approximated by the equilibrium func-
tional of the density evaluated for the local density field of
The same approximation can be above to give the
corresponding Enskog approximation to the balance equa-
tions. A final consequence follows from the second equation
of the BBGKY hierarchy, which has the form

J
+l}2 (?q +T (12) f| o (X11X2 t)

7t TV g,
——nfds[T (13)+T_(23)]f) 1, (X1, X2 Xsit). (74)

Since atoms cannot interpenetrate, the two-body distribution
must have the form f|1|2(x1,x2;t)=®(q12— 0,1,2)
XYy (xl,xz't) for some functiony, | (xl,xz't) which is
contmuous atl;p= o | Then one expects that the singular

The expressions for the balance equations are exact. Astarms in Eq(74), arlsmg from the gradient acting on the step
consequence, they depend on both the exact one-body afighction and from the definition of _(12), must cancel,
two-body distribution functions which are, in principle, de- gives the constraint
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U12 0120(01o— op.1.) 1.1 (X1, X5 1) function can be written in terms of the corresponding deriva-
ve e tives of the fields and the functional derivative of the distri-
= _?7(]_2)]"1'2()(1,)(2;0 (75 bution with respect to the fields. In other words, one has

and some rearrangement, together with the approximation dfa(d1,01,t)
Eq.(74) gives = [03/x(G2.0,0(G 06D, TG D] (77)

31— oy,1,) fi 1, (X1, X251) so all of the dependence @iy andt occur through the hy-
drodynamic fields so that the time derivative can be ex-

=5(q— 01,020 F (X)) (Xa:t
(12— 071,1,)9(q1,02; ) F (X1 F1(X231) oressed as

~ (012012 T (129(dy1,G2:0) Fy (X150, (xz5),
(76)

which expresses the two-body distribution function at con- oa of, dT of,
tact in terms of a completely uncorrelated piece, the first + rl E+ 9t It
term on the right, and a correction that takes into account
velocity correlations generated by the collision, the second’hen the kinetic equation determines the functional depen-
term on the right. This can be used to evaluate two-bodylence of the distribution on the fields and their derivatives,
correlations at the Enskog level of approximattént® while the fields are in turn fixed self-consistently by the bal-
ance equationén the Enskog approximation

A further approximation which is made in practical cal-

IV. CHAPMAN—-ENSKOG SOLUTION culations is to assume that spatial gradients are small so that

In the previous section, the exact balance equations Wertehe equations can be solved perturbatively via a gradient ex-

developed and the Enskog approximation introduced. Nex{)ansmn. To order th%terms, one introduces a u.n|for.m|ty pa-
this framework is used to derive the explicit equations gov-ametere and replacey with eV and order terms ir. Since
erning the evolution of the hydrodynamic fields by means o€ Space and time derivatives are related by the balance
the Chapman—Enskog approximation. As noted in the Intro€duations, one als% mtrodluces an expansion of the time de-
duction, previous studies of the kinetic theory for reacting'vative dlt=0y= 9"+ ed(V+ -+ as well as of the distribu-
systems have often made the assumption that the chemici@n itself:

reactiops are slow relat.ive to the hydrodynamic time sca!esfa(ql,l;l,t): fg[51|xi n,a,T]+ ef}i[ﬁﬂxi NG T]+ -,

The primary goal here is draw out, and make more precise, (79

the meaning of this condition by outlining the Chapman-—

Enskog procedure under different assumptions about thwhere the notation indicates that the distribution is a func-
speed of the chemical reactions. tional of the hydrodynamic fields. These expansions are sub-

Before beginning, note that the phrase uhydrodynamicstituted into both the Enskog equation and the balance equa-
fields” usually refers to those local fields which are con-tions and an order-by-order solution is sought. Writing the
served in the long-wavelength limitvhich is to say that Enskog equation as
their sum over the entire system is consejvé&wr a nonre- P P
acting fluid of hard spheres, this means the local partial num- o +0,- 0_*) faxit)=> Jabed fe fals (80)
ber densities and the momentum and energy densities. For a 1 bed
reacting fluid, the partial number densities are not conservegg that
and for models of endothermic and exothermic reactions,
even the energy is not be conserved. Following the practicdab,cd fc.:fdl
developed in the study of granular fluidehich are nonre-
active, but do not conserve eneygy seems natural to ex- :f dd,dv,
pand the definition of “hydrodynamic” fields to include
those fields which would be conserved in the limit of van-
ishing reaction probabllmes. A partial justification for th|§ is X(bcg)—lKgdb(Xlz)_ 53054@(_512, A1)
that all of these fields are necessary to develop a meaningful
description of the nonreacting fluid, so one expects that the - -~ - R
must zflso be included in anygdescription of thepreacting ﬂuidy X 8012~ Ted) U1z uf el A1, 01D a2, 0230), - (B
(i.e., a minimal-coupling argument based on continuity of theit is also necessary to expand the nonlocality of the collision
description with respect to the control parameters operator which comes from the terd{(q,— o¢q) = 6(q12)

The Chapman—Enskog procedure attempts to construct@ eo.q0’' (g1 +- -+, where the derivatives of th&function,
so-called normal solution of the Enskog equation, which is tawvhich will give rise to spatial gradients of the distribution,
say a solution which is a local functional of tiexac) hy-  are scaled with an appropriate factoreofin order to control
drodynamic fields and for which all of the space and timethe speed of the chemistry relative to the hydrodynamics, the
dependence occurs implicitly through those fi€ldgis im-  nondiagonal part of the reaction probabilities is separated out
plies that the space and time derivatives of the distributioras

ax; df,  an of,

Ot (Gadot > +
Ea(ql’vl,)_i 7t ox T ot an

(78)

a(bSPx, ,bSEx,)

(?(Xl 1X2)
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ch_, 82O+ 6a(|< — 82¢004) (82)  a complication that occurs for fast reacting systémg., «
. =0) compared to nonreacting multiple-component system s:
giving namely, that the sources in the balance equations at order
Jabed fo,fal= 5aC5de<'nva”anb[fa,fb] require knowledge of thath-order distribution. For nonre-
acting elastic systems, threh-order balance equations gen-
+ e sl e fal, (83 erally require only the if—1), order distribution so that

rJihere is no coupling between the two. Nonreacting inelastic
systems—i.e., granular fluids—share this complication as
can be seen from the appearance of the source 4&f°in
Eqgs.(87).

For >0, only the temperature can have a zeroth-order
time dependence and so can contribute to the left side of Eq.
:J dd,dd { Bab)‘l—l} (86). If this temperature source is zero, then the left-hand

22 I(X1,X2) side of Eq.(86) is zero and thefgo) will simply be propor-
X O (=0 1y Grp) (im0 as) tional to a Maxwellian. The solution of Eq&86) and(87) for
V1212 00127 Tap the casex>0 and the nonreactive source in the temperature
X019 012F a(G1,01:0) Fp(Gp,02;1), (84) equation being nonzero corresponds to the so-called homo-
eneous cooling state in granular fluids and has been dis-
ussed in detail in the literature for single-compoA&and
mult|ple component systen?s.

where the nonreactive, or invariant, part is the usual collisio
operator for nonreactivébut possible energy nonconserving
multiple-component fluids,

I . o)
-1
d(b3px1,b3px,)

and, as indicated, the reactive part of the collision operatog
will be arbitrarily treated as being of orderin the gradient
expansion. Thus the full expansion of the collision operator
will take the form

Jab,cd fe . fal= Sacdba(J mva”anbo[fa*fb] B. First order
+eJJharnamIrg ]+ ) At first order, one has
+e* (IR fo, fq]

OFN + (9t 45, V)0
+ €Y F gl 4. 8 )

A. Zeroth order :% (S A T R N R P 1

The zeroth-order equation for the distribution is then o .
_’_Jg‘nbvananol[fg'fg])_’_ 5&0%(1 (Jgﬁiﬁweo[fg,fé]

0£(0) _ (elastioOf £0 0 (reactiveOr £0 0
1:a _2 ‘Jab [fa1fb]+5a02 ‘Jabcd [fc’fd]v :
> bea ™ + IGERAOOLEE 151+ G218

(86)
which must be supplemented by the corresponding equations + 5&12 J<reactlveo[f 9] (88)
for the fields expanded to zeroth order:
(90 =5 —1(n)(reactive0 ]
4= a0l S ’ and for the fields
#®n=0,
(??ﬁ:O, (87) atlxl+ﬁ_v’xlz5aonflsl(n)(reactive)l+ 5aln71$(n)(reactive)0,

O _ &(invarianh0 reactive0
HT=¢ 0 Bqof! . atn+V-(in)=0,
These balance equations, together with the assumption of
normality, Eq.(78), serve to define the meaning of the term
%) in Eq. (86). Note that the fluxes do not enter, being of d;d+d-Vi+p Vp©=5,4p" 1§PIO),
first order in the gradients, and that the sources are separated
into a nonreactive and reactive part using E&R). For the 2 R
concentration, mass, and velocity fields, there are in gener@ T+d-VT+ D—[p(O G+ V- (aw@)]
no nonreactive contributions to the sources, whereas for the
temperature there is the possibility of such a contribution, in = glinvariantl , 5 ~s(reacivel y 5  x(reactive0 (89
which case one recovers the inelastic hard-sphere system

used to model gran(té;ar fluids. Furthermore, use has begfjere we have used the fact that at zeroth order there are no
made of the fact thaft,” must be a function of, — U, which  yg|ocity-independent vectors and only the unit tensor avail-

implies thatS(p)(reac“Ve)O—O (since there are no other zeroth- able so that we must haw&®=p©@1, WO=w(1 and all
order vectors so that no source can appear in the velocityvector fluxes must vanish.
equation at this order. These zeroth-order equations illustrate In general, the first-order distribution must take the form
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fl(l)(r,g;t):nxl ¢|(\7) hard sphere_s or the.lr genera!lzauon for inelastic hard
spheres. If this expansion is continued, thib-order balance
[ hy(V)+ A (V)V-Vn+BV-VT] equation for the concentrations would be
-4 =\ 1.. . ~1le 2(a— = PK(a—
% +C|: (VV—BJ.VV + ' (90) (Q(Q)XI_‘—n lVJI( 1)_XIV'§|: JIK( Y
D|ﬁ~V+E 5|kv'§xk znfls(n)(reactiveo_ (93)
k

) T Clearly, the reaction equation remains unknown in this case
where | have written the zeroth-order distribution in the formgijnce one would need to consistently include the higher-order
0 ..

ff ):_nxl ¢(V). Here the coefficientsd,, B;,... arescalar  hydrodynamic contributions that would come from the num-
functions of the velocity(and in general depend also on per current, which, in turn, would bring in couplings to
space and time through a dependence on the local hydrodyigher-order gradients of the hydrodynamic fields. Without
namic variables as does the zeroth-order distribution, a'knowledge of these higher-order ternfend they are not
though for the sake of conciseness this dependence has begibwn for even the one-component flithe reaction equa-
suppressed The functionh(V) represents the first-order cor- tion can only be consistently studied in the absence of hy-

rection to¢(V) due to the energy-dependent chemical reacyrodynamic gradients when the reactive terms are treated as
tions: for example, if the only allowed interaction wefe  of ordera> 2.

+A—A+B and this only took place if the c.m. kinetic en-

ergy were greater than some threshdilg, then starting

with a system of alA-type atoms, one would expect to build 2. Slow reactions: a=2
up a preponderance of faBt atoms and a corresponding
deficit of fastA atoms. It vanishes in the case that-2 and
energy is conserved by the nonreactive dynamics. The co
sequences of different orderings of the reaction terms will b
considered separately.

In this case, the first-order solution is again the same as
in the nonreacting case. However, the sources will have
'Yecond-order contributions so that the Navier—Stokes equa-
Sions take the form

0 x+0-Fxgtnt
— X tu-vVX+n
ot | |

1. Ultraslow reactions: a>2 1

F xS Jﬂ

In this case, there are no reactive terms in the first-order  _ _—1«(n)(reactive0
. e - =n"!s , (94)
equations. The solution is therefore the same as for the equi-
librium (or HCS multiple-component system. The second- ¢ - - -«
order balance equations will also have no reactive termsﬁn*'V‘U”JrV'zl: =0,
Summing up to second order, the Navier—Stokes order bal-
ance equations are then d - s o o o = )
“ —0+0-Vi+p X(V-P—0V.Q)=p spreactved

ot
J R - - -
ﬁxﬁG-Vxﬁrn1V-j|—x|V-2jf<}=0, (92) ;

ot PR - o 1.
X|P:Vi+V q+v-(a-vv)+§Q Vu?
d e e e o -
ﬁu+u Vi+p 1(V~P—UV Q)=0, :g(invariant)_|_ g(reactiveo_ (95)
I ” 2 For the simplest case that the reactions conserve energy and
—T+U-VT——V-E It s momentum, the reactions are governed by exactly the
at n I Dnkg

convective—reaction—diffusion equation that one might ex-
- o - R o 1. . o pect. The reaction rates are calculated using the local equi-
X|P:VU+V-q+V-(d-W)+ EQ'Vuz = glinvariant, librium distribution as in elementary treatmeftExcept for
the usual modification of the transport properties arising
(92) from the use of the Enskog equation, as opposed to the Bolt-
where the fluxes are the sum of zeroth- and first-order conzmann equation, there are no new dense-fluid effects.
tributions, P=P(®+ P, and the sourcé consists ofnon-
reactive contributions summed through second order. This .
means that for the granular cagé™@M: 0. the Navier— 5 Moderate reactions:  a=1
Stokes order balance equations require knowledge of the For moderately fast reactions, the situation becomes
second-ordefor Burnett order distribution function. There more interesting. Considering here only the case that mass
is, at this order, no coupling between the hydrodynamicand energy are conserved by all collisions, the first-order
equations and the reaction equations. Inserted into(®k, balance equations—the generalization of the Euler
the result would be the Navier—Stokes equations for elastiequations—are found to be
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%-l-l]'ﬁ XI:n—J-S(”)(feaCtiVQO, %+l]~ﬁ)X|=n_13(n)(reaCtiveo+S(n)ﬁ~l],

J I s @ 3 :_

Em—V-Gn:O, E+u-V n+nVv.-u=0,
; (99
J— 7. valyi -1y =

%4—0@ G+ p 1¥pO 0, il V]i+p~ "Vp=0,
é] .4 = = -

9 . 2 _ E+U-V T+ Dk [pV-G+V-(wi)]

—+0G-V|T+ pV-i=0, (96) B

at anB — g(invarianoo + g(reactiveo + g(invariant)l + g(reactivéll

so that the reactions, with reaction rates calculated from theo that even the Euler equations show the dense-fluid correc-
local-equilibrium distribution function, enter into the Euler tion to the reaction rates. The second-order, or Navier—
equations. The Navier—Stokes equations will involve the reStokes, equations require evaluation of the source terms to
action rates calculated up to first order in the distribution. Insecond order, which in turn requires knowledge of the distri-
general, the only nonzero coupling in the reaction source wilbution function to second ordéalso called Burnett ordgr
take the formg(M(reactve)l- My . i whereS™ is a scalar One then expects that even for mass and energy conserving
function of the concentrations, density, and temperature. Thimteractions, the reaction equation will contain couplings to
Navier—Stokes equations will therefore take the form gradients of all of the hydrodynamic fields. However, since
the complete Burnett-order Chapman—Enskog solution of the
V.7 _x 6'2 K Enskog equati.on is not. even knoyvn for the.case o_f a single-
h=x , h component fluid, there is no practical value in continuing the
analysis for this case.

0 16V |xn
T u- X;+n

_ nfls(n)(reactive)o_’_ n—lsl(n)(reactive)l+ Sl(n)ﬁ .4,
V. CONCLUSION

—n+V-in+V.> jk=0, In this paper, the kinetic theory of reactive hard-core
! systems has been extended to include the possibility of mass
(97 transfer and/or loss and energy gain and loss. When mass is
lj_i_pflﬁ_ B=0, not conserved, the collision rule becomes dependent on the
model used to describe the lost mass. Nevertheless, quite
general expressions for the dynamics of phase functions and
2 e the distribution function of the system can be given and used
(P:V4+V-§)=0. : .
Dnkg to derive equally general expressions for the exact balance
laws for mass, momentum, energy, and concentration. For
The source term for the reactions has three contributionsxample, when mass is conserved but a fixed fraction of the
the zeroth-order reaction ratgalculated using the local- rest-frame kinetic energy is lost during collisions, the usual
equilibrium distribution functiopy the first-order correction inelastic hard-sphere kinetic theory, used as a model of
(due to deviations of the distribution from local equilibriym ~ granular fluids® is recovered. The kinetic theory was used,
and a new, dense-fluid effect which couples the reactions twithin the Enskog approximation, to discuss the various phe-
the divergence of the velocity field with some field- nomenological laws, extensions of the Navier—Stokes equa-
dependent coefficiensl(”). This coupling is a dense-fluid tions, that arise from different orderings of the reaction terms
effect which does not exist in the Boltzmann approximationwithin the Chapman—Enskog procedure. It was noted that the
and, not surprisingly, its origin is closely related to that of theintuitive model of the Navier—Stokes equations coupled to a
bulk viscosity, which is also zero in the Boltzmann theory, reaction—diffusion equation through a convective term only
but not the Enskog theoryThe calculation of these terms arises when the “speed” of the chemical reactions is compa-
will be discussed in detail in a future publication, but the factrable to some hydrodynamic time scale and, even in this
that these are the only possible couplings is due to the faatase, an additional coupling to the divergence of the velocity
that no other Galilean-invariant scalars, linear in the gradifield can occur in dense fluids.
ents of the fields, can be construcped. How fast do we expect the chemistry to be relative to the
hydrodynamics? In the model considered here, chemical re-
actions cannot be faster than the collision time. In fact, a
typical reaction rate would be something like
p(ox)e 8Ty, wherep is the probability of a reaction
In the case of fast reactions, @opriori assumption is occurring if the colliding atoms have energy greater than the
made about the speed of the reactions compared to the hyeaction energy barriek, 6x is the difference between the
drodynamic time scales. The balance equations to firstoncentration of the species and its equilibrium concentra-
order—i.e., the Euler equations—are tion, andw is the collision frequency. On the other hand,

Ao Te o -
—+G-V)T—HV-2 i+
|

4. Fast reactions: a=0

Downloaded 31 Mar 2004 to 164.15.128.4. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



6338 J. Chem. Phys., Vol. 120, No. 14, 8 April 2004 James F. Lutsko

the Chapman—Enskog procedure is based on a gradient eX{I';t) =0, whereas if they do collide{(I";t)=1. Then the
pansion: the small parametewill generally be a measure of time evolution of the phase functioAy(t)=A(t),t) is
the ratio of the typical microscopic length scale, the meargiven by

free pathlg, to a typical length scale for hydrodynamic

gradientsL. (In Fourier space, where gradiefscorrespond ~ Ar(t)=[1—X(I;) JA(To(1),t) + X(I;HAT (1),1), (Al
to wave vectorsk, this becomese~Klyg,.) So setting
pe- E/kBTVcoIN (klmfp)avcol~ (I mfp/L)aVcoI gives

| E ity To(t)=(Gy+01t,01,01,62+05t,05,1,). (Note that at-
np(ox)— ——= O . .
kgT tention is restricted to the case that velocities are constant
T N0 (99 during free streaming: generalization to include one-body
n( mfp )

. ) L ) forces is straightforwar@l. The phase point’(t) is the po-
For systems in which hydrodynamics is applicable, one hagjion the system would reach in phase space if a collision
lmp/L<1 'so that a ranges from a minimum of o 0 1red at some time(I') [01t]. Explicit expressions can
In p(X)/In(lmip/L) =0, for kg T>E, to very large values for also be given for its components such Gi{t) =6+ 0,7
low temperatures. Far from chemical equilibriudx~1, the +5!(t—1), etc. Direct differentiation then gives
lower limit could be arbitrarily close to zero depending on ~ * ’
the reaction probability so that “moderate” and “fast” reac- dAL(t)  JA aq(t)

tions are possible at high temperatures. Indeed, if all of these T H+[1—X(F;t)] b a_(t)A(FO(t)’t)
parameters are fixed, then fast reactions will always occur in q

the hydodrynamic regime limlt,¢,/L— 0. The conclusion is aq(t)

that, unless the concentrations are close to their equilibrium XY —— MA(F'(I),I)

values, the reaction probabilities are very small or the tem-

perature is extremely low, the concept of slow chemical re- dX(T';t) ,

actions may be of limited applicability and so the correct + dt [AT" (1), D)—AT(1), D] (A2)

phenomenological description, from the standpoint of kinetic
theory, may be more complex than the reaction—diffusion-Now, from the definitions above
advection model.

In summary, if chemical reactions are slow compared to aq(t) d aq(t)
the rate of dissipation in the fluid, then hydrodynamics and 1 ~X(I)]—— WA(FO(t)vt)+X(F;t)T
chemistry are not meaningfully coupled. If the reaction rate
is comparable to the rate of dissipation in the fluid—ik? s
for some transport coefficientand wave vectok—then the “aq(t)
usual reaction—diffusion—advection equation results. For
faster reactions, additional couplings occur and the chemistry =[1-X(T:1)] 2 . :9 ATo(1),1)
and hydrodynamics become more interdependent. The de- i T aGi(t) ’
tailed solution of the Enskog and the resulting phenomeno-

AT (1),1)

logical equations for particular reaction models will be the +X(T';t) E 5i'H. :9 A (1),1)
subject of a future publication where the importance for i=12 aqi(t)
sonochemistry of additional terms, such as those occurring in J
Eq. (97), will be investigated. = > Gi(t) === A[(1),1), (A3)
i=12 aqi(t)
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APPENDIX A: THE HARD-CORE LIOUVILLE

OPERATOR Now, sinceX(I";t) has the form of a step functidit is zero

if t<7(I') and one otherwigewe must have
The goal in this Appendix is to provide motivation for

the statement in the text that the form of the pseudo- dX(I';t)
Liouville operator is independent of the collision rule. To dt
start with, restrict attention to a system of two atoms. Let

X(I';t) be the characteristic function for collisions after at and this also gives the correct res(@ero if «(I") is imagi-
time t beginning with the phasE at time 0 so that if the two nary (indicating that no collision ever occurs starting from
atoms do not collide between during the interl@k], then  the given state Then, using

=68(t—7(I")), (A5)
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wherel (1) is just the phase of the system propagated a time
t into the future in the absence of interactions and is explic-
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o(t—r(I)AT (1),1)~ AT o(1),1))]
=6(t—7(I),[AT" (=(I"), (1))
= Al o(r(1), 7(I))]

= 8(t— ()| S M2b2— 1| Ax(r(I))
|i|é 1'2 '1'2

= a(t— (T S M2b2—1|Ax(D) (A6)
|:/L|é 1'2 '1'2

gives
dA(t) [ a )
T— E_l—i:El,zvi(t)'mdl_&(t_T(r))
x| 3 MnbE-1) [An©). (A7)

Il

In order to express the right-hand side entirely in terms of

I'(t) rather than the initial conditioh', the temporals func-
tion is rewritten using
o(t—7(T))

Jd
ﬁ%z(t)

: (A8)

5((112(t)_¢f|1,|2)zzi

t=7(T)

where;(T) are the roots of)?, (Ti)—0'|21|2=0. They corre-
spond to the time at which the two atoms are first in

Kinetic theory and hydrodynamics of dense, reacting fluids 6339

T (12)B((1).1)
= 8(012t) = 01,1,)0 (= G t) - T12(1)[Gao1) - U1 )]

x| 3 Mpbei-1 (A13)

1yt
Il|2

)B(F(t),t).

For more than two atoms, one simply extends the sums in
Eqg. (A12) since, in a finite system, only binary collisions can
occur.

Starting with an initial conditiorA(t) =A(T"), iteration
of Eqg. (A1l) immediately gives

d Arn(t) =LA(D), (A14)
dt t=0
with L=L(0), which implies that
Ar(t)=expLt)A(T) (A15)
and
d . . .
giAr=LexpLAT)=LAn(), (A16)

as claimed in the text.

contact—i.e., the physical collision time which is denoted ad*PPENDIX B: THE ADJOINT LIOUVILLE OPERATOR

7(I")—and the time at which they are last in contact if they
are allowed to pass through one anotfvehich is not physi-
cal). One picks out the correct root by noting that at the
physical collision timeg,(7)-v15(7) <0, while the sign is
reversed at the unphysical collision time so that

0(Q12(t) = 0,1,)O (= Grat) - UoAt))

B S(t—7(I))
R
E(hz(t) o
_ot=r(I) St—n(I))
817 v )] (G vAD)] (A9)
or
o(t—7(I')= 8(d1t) = 01,1,)O (= Gut) - U1A1))
X[015(1) - U1p(1)], (A10)
giving finally
dA(t) [0 .
T E—'—L(t) Ar(t), (A11)
with
3 i J .
L(t)=1;§2 i(t)- 0 +1<i2<,<2 T,.(121), (A12)

where, for arbitrary phase functid®(T",t),
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To derive the adjoint operator, begin with its definition

f dr B(F)L+A(r)=f dI'[LAB(I)]A(T) (B1)
or, more explicitly,
Il%’mfdxldxz---B(F)L+A(F)

=|§2 dx,dx,[ L3 B(T)JA(T). (B2)
Now,

L.=LP+ > T.(j) (B3)

i<j

and it is obvious that, neglecting surface terms,
f dr B(F)L$’>A(r)=f dI[—LPB(I")]A(T), (B4)

SO
LOA= O (B5)

Next, consider one of the collision operators and restrict
attention to a system of two atoms. Then,

license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2 dx d%B(X1, 1%, 1) [ T (12)A(Xg,11%2,15)] =— > deldx2B<x1.a;x2,b>

I, I, Gab
XO(—U12012) (1o~ Tap) V12

== fdxldsz(X1,|1,X2, 2)O(—v12-012) | |
Q12Kab (Xq,8;X5, b)A(b ! le,ll,balbzxz I,). (B7)

I |2 ab
X 0012~ 012U 12 Q12[Kflt|’2(xl-|1?xzi|z)

rab .Rab .
><A(b|l|2x1,a,b|1|2x2,b)— Sa1; 0o, A(X1,113%2,12)]- Assuming that the collision operator is invertible, then intro-

(B6)  ducing new integration variableg= b l|2x and the corre-

Consider the first term. Relabeling the species in the surﬁpondIng Jacobian

gives
- fdxldXZB(XLIlaXZy 2)O(= U1 012 1'2 a((b 2) Yy, (b 2) 1Y2)‘
1 |2 ab (yl y2) 07()/1 yz) | (B8)
X5(Q12_U|1|2)l712'Q12K?ﬁ2(xly|1ixz,|2)
X A(B} x1,2;6f5 x2,b) gives
- IE:abjdxldsz(Xl1|1;X2:|2)®(_1712'6112)5((112_0'|1|2)1712'(A412K|alkf2(x1,|1;XzJz)p\(lafllkfle, || 0)

= > fdyldyza“(yl,y2>8(<b1'2> ly;,a;(b2) "1y, :0)@ (— (BX?) 15 15 610 8(G1o— oap) [ (BL12) 15 15]

I.12.ab

- G1KIE2((B112) "1y ,a;(BIH2) "ty D)A(Yy,l13Ya,l0)

=- de1dY2A(Y1 l1;Y2, 2)[3 2y, YZ)(bllz) 'O(— 012 012) 8(A12— 07 1) 012

| I2a

Q12K (Y1:|1,y2a D1B(Xg,11;%2,12), (B9)

where the operatorofalbz)‘l has the effect of changing the species froml, to a, b. One can then write
T2(12)B(xg,115%2, 1)

== 2 1957000 X2) (D7) K000 11X 12) = 110 (= 01 812) 801z 01,1, 01z BazB(Xa, 113X ). (10

In some cases of interest, the collision dynamics may not bAPPENDIX C: DERIVATION OF THE BALANCE

invertible. For example, suppose that collisions with totalEQUATIONS

rest frame energy less than some threshéldare elastic

while those with energy greater than this are inelastic. Thena In this section, the general form of the local balance

pair of atoms with rest frame energy after collision of equations is derive and then specialized to the partial density,
1110 }2<E might have resulted from eithég) a collision ~Momentum and energy fields.

between two atoms with rest-frame energy below the thresht General form of the balance equations

old or (b) a collision between two atoms that had energy

above the threshold, but that lost part of this due to the in-
elastic process. In this case, it is necessary in the definition of
the adjoint operator to include an additional sum over the
various branches of the inverse collision dynamics. Eyen ¥, (F)= 2 " (G,)8(F— )5|| (C1)
when it occurs, such a complication may not be of practical

importance since it is often the case that expressions involv-

ing the adjoint operatof’; can be rewritten in terms of the

original operatorT , . and its average

Consider any one-body phase function of the form
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V(7,0 =(W(7M);t)

N
=52 [ ot onvm@ar-aa,

=0 [ 45,76, D). (€2

The balance equation for this follows from the first BBGKY

equation
d 9 - _
G0 g 1w =3 [ deT- 21000
(C3
and is
d = = - - = - -
m\lﬁ(r,t)ﬁ—V-f duv.fi(F,uq,0)01¢(vy)
=2 | dxadu ¢, (5)8(r —Gy)
1'2
X J dXaT_(12)f)) (X1Xp). (C4)

Introducing the specific velocity/;(f,t)=v,—0 (f.t), the
second term on the left becomes

j 515,751, 0)5140(52)

—UEOW0 + [ A58 OV O (),

(CH

while it proves more convenient to rewrite the right-hand

side in terms of thd .. collision operator
2 f dx 81,4, (02) 8(r = Gy) f AT (12)fy,(x1Xo)
1'2

=2 | dxadxefy, (xp) T (128,94, (52) (r = da),
1'2
(co)

so that the balance equation becomes
d - -
a\P|(F,t)+V~U(r*,t)\lf,(r*,t)JrV

| onatra 0V

=2 | dxadxofy,(xx) 8(r =) T+ (128,44, (6,

1l2
(C7)

with
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T (126,41, (v1)
= =012 U120(0127071,1,) O (=12 U10)
1515 1515 .
x| 2 KL 2xab 2= 1) 8y ¢, ()
I1|2
=~ 012 U120(012~ 07,,) O (= Q12 U12)
11 115 -
X 2 [K L2 (X)L 2= 81,118,160, (61). (CB)

ot
Il|2

In general, the right-hand side can be separated into a sum of

a flux and a source term. Let

1715 1115 >
Biyiyap1 (X0, X2) =[K L 2(Xa2) by} 2= 611611 160 1, (00)
(C9

and define its even and odd components as

F|1|2,|1|é;|(X1,X2)
1
= 2By, 101 0 (X0:X2) =By, 1171 (X2, %) ]
= 1K2(x b2 5 16 1]
2 115 1 115 |1|1 |2|2

X[, 1, (V1) = i, (U2)],

5|1|2,|i|é;|(X1,X2)

= %[B|1,|2,|1|£;|(X11X2)+B|1|2,|i|é;|(X2,X1)]
_1rpe il 5
- 2[K|1|§(X12)b|1|§ 5I1I15I2Ié]

X[, i, (V1) + i (U2)], (C10

so that

a%(ﬁ,tHﬁ-U(F,t)%(F,t)
RO ETARERANES

=- 2 dxgdxofy ) (X1X2) 8(F = G1) 12 U126

l1o1715
X (12~ 01,1,) O (= 8ro U [Fr 1, 110 01(Xe %)

TS, (XX2) | (C1y

12

Then relabel the dummy variables to give
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> fXmdX2fIlI2(X1X2)5(F_ql)q12'6125(Q12_0'I1|2)

1y
P

XO(=8u2 v Fip, 10 0(X1,X2)

1 .-
) > JXmdXquz-0125(q12—0|1|2)

e’
PIRHK

XO (=012 012 Fy

nro.
PRI

X[6(F=q1) = 8(F=dy)],

(X1, %2) f11,(X1%2)

(C12

James F. Lutsko

S, 1(X1,%2)

1115
= %[Kd,;(xlz)(b‘nﬁ iy) = 811181, (0n, + i) -

where use has been made of the asymmetry oL Frianga(Xe,x2)
Fiui,115:(X1,%z) and of the symmetry of the distribution 1112

under an interchange of atoms. Finally, write
o(F=qy) = &(F—dp)

1 d
- [ e ar-xa- -0

- 1 N N N
:_V'ﬁlzfo dx 8(F=xG1— (1—x)G2), (C13
so that the balance equation becomes
d - I
G RO+ VU)W (R +V-Fi(rH)=S(r),
(C19

with the flux written asF(F,t)=FF(F,t)+F/(f,t), where
the kinetic contribution is

P = [ difi(r5,. 0V (o) (15
and the collisional contribution is
FV(F,t)=— E dxydXxG1( G2 U12)
P
X 8(A12—071,1,)O(— Q12 U12)
XTy 1, (XaX) P, 01 (Xg . X2)
1
><J' dx 8(F—x0;—(1—X%)q>) (Cle
0

and the source is

S(FH=— 2
I1lol115

XO(— 812012 fi11, (X X2) Sy 1, 10 51(X,X2)

(C17

dxd%x( 012 U12) 8(A12— 09 1,)

X 8(F—(y).
2. Local number density
Setting ¢ (v1) =1, one has that

Fro, i (Xxo)

1115
= %[K&,;(Xlz)wui_ Sy) = 611 01,15(8i, = b )1,

(C18
From the normalization condition
1= KP (C19
b 1'2
one has that
(4
=32 K5 2(X12) (8= iy = b + 8,
I
> Sy, (X1, %2)
(M
1715
=32 K 202 (8= 8uy+ i, = dn), (C20
1115
so that the balance equation becomes
d oo
—n+V-(in)+V-j;=8", (C21)

dt

with the source

s=-1 3

abfyl,

XO (=012 U12)f1 1, (X1X2) S(F— 1) K|all|)2(X12)

f dX;d%x( 812 U12) (12— 07 1,)

X (8a1t 81— 6, ~ dil,) (C22
and the number current=j <+ with
J'T=J dg 1 f)(F,5,0)V, (C23

and
=-3%2 deldxquz(%z U12) 8(d1z— 0y 1,)
ablyl,
X O (=812 U12) f11,(XaX)KES (X1

X (6a1= Op1 = 011+ 611,)

1
Xfo dx 8(F—x0;—(1—x)4>). (C249

The balance equations for total number and mass density

follow immediately. Summing ovelr gives

d . > L > = 2K
&n(r,t)th«u(r,t)n(r,t)+V'2 ir=0, (C2H
[

since the sum of the collisional contributions to the number

current vanishes. Similarly, multiplying by, and then sum-
ming gives the balance equation for local mass density:
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d R ..
ap(r*,t)+v-G(r*,t)p(r*,t)JrV.Q:S<P> (C26)

Here the anomalous mass flux is

P>
ablyl,

XO(— 81251211, (XK (X12)

X(ma_

Q= f dxdX012(812 U12) 8(A12— 07,1,

m,—m +m,,)

1
Xfodxé(F—qu—(l—X)dz) (C27

and the mass source term is

(p):
SI ablz

X O (=1 01211, (XX2) S(F = GKED (xg0) M
(C28

fdxldxz((hz U12) 8(d12— 01 1,)

which is only nonzero if the collisions do not conserve mass.

3. Momentum density

Taking ,(v,)=mu,=p; in Eq. (C14) and summing
overl gives
d - . ~
5pl]+V-(pl])l]) +V-(P+Qu)=SP, (C29

with P=PX+PVY+PM, where the kinetic contribution is
ﬁK:ZI m | do,f(F,0,,0)V,V;. (C30

To explicitly write the remaining flux and source terms, we
need

(b)}2B1=B1) = 3 (32— om Vo), (c31)
giving
1! 1nr - - EAPA
§}2=— 36m2(Vyp— ) — 3 6m/} 20,
i S1115
i ©

At this point, it is useful to separaté:l:2 into two parts: its

.>II

value in the local rest frame of the colliding atom@,lz, and
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PV=—13 > f dx;dXz012(812 U12) 8(A12— 07,1,
PN
N - ~|! I

XO(=012 Ulz)flllz(xlx2)K : 2(X12) 7|
1

xf dx 8(F—x0;—(1—x)G>) (C33
0

and the contribution from the instantaneous exchange of
mass is

PM=—3 > jdxldxz(hz(%z V12 8(d1— 07 1,)

PIHK

XO(— Qa2 U12)f|1|2(X1X2)K|1|2(X12)(V12 u)

1
X (my —my —my—m;) fo dx 8(F—x0;—(1-X)q>)

(C39

and the source can be written as

&P =Gsn+ &P,

sP=3 > jdxldxz(éhz'1712)5(Q12_0'|1|2)
I1o1115
X O (= brp 12 (V=) 1, (XaX0) Ky 2(%12)

X 5m! 1 éa(r— dy). (C35

By using the balance equation for the total mass density,

the part coming from the Galilean transformation to the labo-

ratory frame,

il
N

NI

Y, +(my—my —my—m; Vi,

so that we have that the collisional part of the flux is
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d - d - - L
GiPU+ V- (Upt)=p g0+ pd Vi—av-Q+ads'”,
(C36)
we can write
J - TN -
at*+a-va+p—1(v-P+Q-Vﬁ)=p—1s<9> (C37)
4. Energy
Taking ¢(31) = 3mv? in Eq. (C14) and summing over
gives
d
th+V (GE)+V-F=SE (C38
where the kinetic part of the flux is
ﬁK=2| Ty | do i (F,o.,t)Viv2 (C39
=§|: %mIJ iy fy(7,51,0)Va(Vq+0)?
=G<+ua-PK, (C40

with the kinetic contribution to the heat flux being defined as
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while the second is

<K 1 VY,
q _Z 2m| dvlfl(rivlit)vlvl' (C41) (b|:’l|é ml_mz 1 1 )
Iy Pt 51
The source term comes from the even part of the colli- > m,+m, \2m, 2m,
sion kernel, B ”\i_mlé muvz)
gir_Lpiogy[ Loz L m,+m, | % 2
iy 2 7hlp 2m,l L 2m|2 2
my—m; m-—m,\/ 1 1
o D S P S ST SR S + m+m. m +m 2m, S Pt 2m, 5P
2 2mlip1 2m|ép2 2m|1Iol 2m,2p2 1o T
m/—mr
1 1! 1 1! 5 __ |1|2 sz)
=— 5[5E|1,2+ 5 oMV m;+m; Ot 5“\
N T T 1 m: 4 1
- __ 124 — 1'20\/—7)2 12 2 9| 2
2[5E|| 25m|1|2(V a) m+m; Wpl m P2 m.+m (P1—P2)
1 2 1 2 1 2
1 0o 1 o
— 5 OMAV—0)- U 7 om 2P, (C42 (Ca7)
1'2 1'2 SO
so that smi'2
—_ Y=Y R P hhla Y
SE=¢+d.SP+ tu?s), (C43 e 12 e mym,, P2
with the (rest-frame source term my —my, 1
- < il2 + 2y/2
m|i+m|§ 5E|l 26m Vlz)

P2 dx;dXa(812- V12) 8(Q12— 07 1,)

'1'2'1'2 m —mp\ g my—m\ 1
| — 24| 22— m—pg, (C49
|2

X®(_Q12'1712)[5E + 5m12(V a)?] my; +my m_|1 my+myy
Xflllz(xlxz)K:i:z(xlz) S(F—dy). (C44  which gives, after some algebra,
The flux comes from the odd part of the collision kernel Sl s 1 my My = my,my;
e - 1 1 Il 712 ’yllIZ m|1+m| m|i+m|é
|:'1'2: _(b|l|2_ _p2_ p2
|1|2 2 I4! 2m|1 1 2m|2 2 mlr—mlr 7
1 2 1l
><'U”'1'2Uz+m,—{-m, o
1 |i|é 1 1 2 2 Il | 12
- E(b|1|2_ ) m|l+m|2(p1_p2 1
———(—mp+my—m_+m V2, (C49
2 1 2 2 1
m-m, 1 , 1
“m+m, | 2m P+ 2m,, P2 |- (€49 This can also be written as
The first term gives A (V) )7| N mymy, =—mim,
) Py~ Va2 1 (m|é+m|i)(m|2+m|1)
M
b 1 1 - —
( Iql )m|1+m|2(pl p2) 5 mli_m|é |/|é
X v+ ——— SE
_ 1 R l*lilé_ E mlilé\-; 2 Fialp m|£+ m|é l1l2
m|i+m|’ pl 2 ’ylll 2 Il|2 1
s Lo Lo g 2 1 5 (=m+my—m, + m; ) (Vip—0)?
P2 211l 27l m,l+m,2(p1 p2) R
vy H(my=my —my +my)[(Vi— 1) U]
i 5m|i|§
—V.y12 WV 1
Y1, my;+m; 12 +§(m|i—m,l—m|é+m|2)u2, (C50
+ ! ! 2_p? (C46)
_ — - =l
mp+mp o m+mg (P1=P2), -2 (C51)
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so that

FV=gY+q4m+§%+ad- (PV+PM)+ $u?Q,

where the different pieces of the heat flux vector are the

usual collisional contribution

=1 3

!
PPN

dxd%Xxq12( 812 U12) 8(A12— 04 1,)
PO 1115 - .
XO(— 012 U12)f|1|2(X1X2)K|1|§(X12)(V12_ u)

_1! 1
-;'l'ZJ dx 8(F—xGy— (1—X)G), (C53

Il Jo
a part arising from the instantaneous transfer of mass,

qm_ 1 m|ém|l_m|im|2

|1|2|:’L|é (m|é+m|i)(m|2+m|l)

Xf dXdXx012( 812 U12) 8(d12— 07,1,
P 1715
X®(_q12'Ulz)flllz(xlx2)K|1|§(X12)/-LI1I202

1
xfodxa(r—qu—<1—x>dz), (54

and a part arising from the loss of energy,

1 my, —m,

__ - 2
q 2

mli""mlé_f dX;d%012(G 12 U12)

e’
PIPHK

X 8(012—01,1,)O(— iz 512)f|1|2(X1X2)K:1:§(X12)

(1
x(sE:ﬂ;f dx 87— xGy— (1—X) o). (C55
0

(C52
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1

d R R R . R
—E+V~(GE)+V~q+V~(G-P)+V~(—u2Q)

ot

N

= 1
=¢£+0G-SP+ EUZS(”). (C56)

Alternatively, noting the relation between the total energy
and the kinetic temperature,

D 1
EzinkBT+ Epuz, (C57

gives an equation for the evolution of the kinetic tempera-
ture:
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