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Diffusion in a granular fluid. II. Simulation
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The linear-response description for impurity diffusion in a granular fluid undergoing homogeneous cooling
is developed in the preceding paper. The formally exact Einstein and Green-Kubo expressions for the self-
diffusion coefficient are evaluated there from an approximation to the velocity autocorrelation function. These
results are compared here to those from molecular-dynamics simulations over a wide range of density and
inelasticity, for the particular case of self-diffusion. It is found that the approximate theory is in good agree-
ment with simulation data up to moderate densities and degrees of inelasticity. At higher density, the effects of
inelasticity are stronger, leading to a significant enhancement of the diffusion coefficient over its value for
elastic collisions. Possible explanations associated with an unstable long wavelength shear mode are explored,
including the effects of strong fluctuations and mode coupling.
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I. INTRODUCTION

Attempts to describe granular media in terms of a m
fundamental underlying statistical mechanics have met w
considerable success. As a prototype for this approach, in
preceding paper@1# standard linear-response methods fro
normal fluids have been applied,mutatis mutandis, to the
case of an impurity particle diffusing in an isolated one co
ponent fluid of smooth inelastic hard spheres (d53) or disks
(d52) of diameters. The collisions are characterized by
coefficient of normal restitutiona. The isolated system~or
with periodic boundary conditions!, is not in the typical
Gibbs state as for elastic collisions, but rather in a tim
dependent homogeneous cooling state~HCS!. It has been
shown in @1#, and will be elaborated further here, that th
time-dependent HCS can be exactly transformed to
stationary-state description. In the present paper,
stationary-state description is evaluated by molecu
dynamics~MD! simulation to measure the mean-square d
placement of the impurity, its velocity autocorrelation fun
tion, and the resulting diffusion coefficient defined in term
of a formal Einstein or Green-Kubo relation, respective
For practical purposes, attention is restricted to the cas
self diffusion, where the mechanical properties of the imp
rity are the same as those of the fluid particles.

The velocity autocorrelation function was approximat
in @1# using a cumulant expansion and also by means
kinetic theory methods. In the usual first Sonine polynom
expansion for the latter, this leads to a simple exponen
decay in an appropriate dimensionless time scale defined
low. For the numerical results considered here, one fur
approximation is made in evaluating the decay rate, nam
two-particle velocity correlations are neglected. In this ca
the results are the same as those obtained from the En
kinetic theory. Earlier studies of self diffusion@2# show ex-
1063-651X/2002/65~5!/051304~10!/$20.00 65 0513
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cellent agreement of this theory with MD results at very lo
number densityn, over a wide range of values fora. The
present paper extends that study to higher densities. M
specifically, three-dimensional systems with densities in
interval 0.1<n* [ns3<0.75, for 0.5<a<1, will be consid-
ered.

The HCS is known to be unstable under long wavelen
perturbations or fluctuations@3#. To avoid this problem, the
system size in most cases considered is chosen to be sm
than the critical wavelength. The latter is a function of t
density and inelasticity, decreasing with increasing values
each. Consequently, at the highest densities and smallesa a
small system of 108 particles is required. At moderate d
sities and inelasticities, a system size of 512 particles is u
The agreement of theory and simulation is found to be qu
good for alla at n* <0.25 and for all densities ata>0.9. At
higher densities and smallera, significant discrepancies oc
cur, with the diffusion coefficient obtained from MD bein
almost an order of magnitude greater than the theoret
estimate atn* 50.75 anda50.5. The failure of the Enskog
theory at high densities is well known for the case of elas
collisions, due to cage effects and correlated binary co
sions. However, in that case the diffusion coefficient fro
MD is smaller than the theoretical prediction. Therefore, it
clear that a quite different density mechanism is effective
inelastic collisions.

It is reasonable to expect that the underlying instability
responsible in part for the above discrepancies. Although
instability is, in principle, avoided by the use of small sy
tems, the latter is prone to large fluctuations. These are
quantitatively significant ata51 but grow rapidly with de-
creasinga, as can be seen in the noise level for the kine
temperature. This will be illustrated later on in Fig. 1.
related issue is the role of the instability in affecting t
usual mode coupling corrections to the Enskog theory. S
©2002 The American Physical Society04-1
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mode coupling terms arise from correlations of spontane
fluctuations in the long wavelength hydrodynamic mod
which are significantly modified by the potential instabilit
Enhanced fluctuations will be addressed in the qualita
analysis of the data below.

The plan of the paper is as follows. In Sec. II, the relev
results in the preceding paper are shortly summarized, a
scale transformation, useful for practical purposes, is in
duced. The equations of motion of the phase-space varia
lead in a direct way to a steady-state simulation method
the HCS. Starting from an arbitrary initial condition, the sy
tem rapidly approaches a steady state, whose propertie
simply related to those of the HCS. It is important to stre
that this relationship is not approximate, but anexactconse-
quence of a change of variables. In particular, the metho
measure the mean-square displacement of a tagged pa
as well as its velocity autocorrelation function is discussed
detail. Moreover, both quantities are shown to lead to equ
lent results for the self-diffusion coefficients. Although
practice some discrepancies appear in the numerical re
obtained by the two procedures, their origin is well und
stood.

Comparison of theory and simulation is also started
Sec. II, and completed in Sec. III. As mentioned above,
agreement is fairly good at low densities, but relevant
fects, which are not taken into account by the theory dev
oped in@1#, show up even at moderate density. The pecu
nature of these effects for inelastic collisions is discuss
Numerical evidence is provided indicating that the under
ing hydrodynamic instability associated with the shear mo
plays an essential role in the ‘‘anomalous’’ behavior of t
self-diffusion coefficient. Nevertheless, such changes in
diffusion constant do not compromise the existence of
diffusion process, which is confirmed for such conditions
simulation results for the mean-square displacement. Fin
Sec. IV contains a short summary of the results and a
some indications of the possible extensions of the repo
paper.

II. STEADY-STATE SIMULATION METHOD

To investigate the nature of diffusion in the HCS and
test the theoretical results presented in the preceding p

FIG. 1. Time evolution of the dimensionless steady tempera
T** as a function of scaled dimensionless times* for n* 50.5. The
lower curve is fora51, the middle fora50.7, and the upper for
a50.5.
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@1#, a more fundamental description via MD simulation w
be considered. The HCS distribution function for a fluid
N11 particles ind dimensions has the scaling form

rHCS~G,t !5@ l v~ t !#2d(N11)rHCS* ~$qi j /l ,vi /v~ t !%!. ~1!

Here and in the following the notation is the same as in R
@1#. In particular,v(t) is the thermal velocity defined in th
usual way~with Boltzmann’s constant set equal to one! and
l 51/nsd21 is proportional to the mean free path of the ga
The time dependence of the above distribution is due to
lisional cooling and is determined from

] tv~ t !52
1

2
z~ t !v~ t !, ~2!

where z(t) is the cooling rate. A direct simulation of th
cooling fluid, as described by the Liouville dynamics in th
actual phase variables, is difficult, since the rapid cooling
the fluid leads to numerical inaccuracies very soon. O
method of dealing with this would be to periodically redefi
the time scale of the simulation, so that the typical parti
velocity remains of the order of unity. However, if the re
caling is only used to control the numerical stability of th
simulation, the state being simulated would nevertheless
time dependent. For this reason, some simulation studies
ploy different type of thermostats, such as an externally
posed Brownian force or thermal boundaries, in order to g
erate a steady state. While these methods provide mor
less realistic models of various experimental procedu
they obviously probe a state which is in some way related
but not identical with, the homogeneous cooling state.

Soto and Mareschal@4#, noting the fact that there is no
intrinsic time scale in the dissipative hard-sphere mod
have proposed to rescale all particle velocities after ev
collision, thus establishing a steady-state similar to that
scribed in@1#. However, this procedure has the effect of r
placing the binary collision dynamics of the dissipative ha
sphere model by anN-body dynamics, since the result of
collision is to alterall atomic velocities and not just those o
the colliding atoms. It is reasonable to imagine that the
nary dynamics is recovered in the infinite system limit, b
the connection between the HCS and this dynamics is
clear for the case of the small systems considered in mos
the MD simulations. Instead, we follow the procedure us
in Ref. @5#, according to which anexactmapping of the HCS
onto a steady state is exploited as the basis of the simula
method. Following the ideas developed in@1#, all velocities
are scaled relative tov(t) and the dimensionless time i
given by

ds~ t !5v~ t !dt/l . ~3!

This time scale is a measure of the average collision num
The corresponding Liouville equation in these variables s
ports a stationary HCS solution given byrHCS* ($qi j* ,vi* %),
where qi* 5qi /l and vi* 5vi /v(t). Moreover, the average
value of any phase functionA($q,v%) is given by Eq.~40! of
Ref. @1#.

re
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DIFFUSION IN A GRANULAR FLUID. II. SIMULATION PHYSICAL REVIEW E 65 051304
^A;t&5E dG* r* ~G* !A~$l qi* ~s!,v~ t !vi* ~s!%!. ~4!

The dynamics in the phase space is obtained from

]sqi* ~s!5vi* ~s!, ]svi* ~s!5
1

2
z* vi* ~s!1L* vi* ~s!, ~5!

where L* is the dimensionless Liouville operator, andz*
5l z(t)/v(t) is the dimensionless cooling rate. This is t
same as the usual dynamics for hard spheres, except tha
term proportional toz* /2 represents an acceleration betwe
collisions which balances the energy lost during collisio
thus enabling a steady state.

Although it is possible to relate average values of
relevant dynamical functions of the original variables w
the average values of the same functions of the scaled
ables for a general situation, attention will be restricted in
following to the HCS for whichz* is time independent. In
principle, the scaled dynamics defined by Eq.~5! can be
simulated for the properties of interest, without the comp
cations of continuous cooling in real time. In this formul
tion, the simulation is qualitatively similar to that for elast
collisions, in the sense that the system rapidly approach
state for which the time average of the instantaneous sc
temperature is constant, and subsequent determination o
erage properties is simpler and numerically more accurat
technical complication is the need to know the exact value
z* a priori, which in general is not possible, since it is d
termined by the original dynamics. Consequently, it is use
to make a second change of scale,

qi** 5qi* , vi** 5~w* /z* !vi* ,

s* 5~z* /w* !s, A** ~s* !5A~s!, ~6!

where w* is an arbitrary time-independent dimensionle
frequency. Equation~5! then becomes

]s* qi** ~s* !5vi** ~s* !,

]s* vi** ~s* !5
1

2
w* vi** ~s* !1L** vi* ~s* !, ~7!

with L** the sameL* , but with the replacements$qi* ,vi* %
→$qi** ,vi** %. This is the form most convenient for MD
simulation, with any reasonable choice forw* . More explic-
itly, the particle dynamics implied by Eq.~7! and imple-
mented in our event-driven simulations consists of an ac
erating streaming between collisions

]s* qi** 5vi** ,

]s* vi** 5
1

2
w* vi** , ~8!

while the effect of the collision of two particles is to alte
their relative velocity according to
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gi j** →g̃i j** 5gi j** 2~11a!~ q̂i j** •gi j** !q̂i j** , ~9!

where gi j** 5vi** 2vj** , q̂i j** is the unit vector pointing
from atom i to atom j and the center of mass velocity re
mains the same.

The relationship ofz* to w* is determined by the steady
state temperature obtained in the simulation. To see this
that while the instantaneous kinetic energy of the entire s
tem is clearly not constant, a corresponding ‘‘temperatu
defined asT** 5d21^v1** 2 ;s* &** does approach a con
stant, as is shown in Appendix A,

T** ~s* !5
1

2 S w*

z*
D 2H 11F w*

z* A2T** ~0!
21Ge2w* s* /2J 22

→ 1

2 S w*

z*
D 2

. ~10!

Thus,z* 5w* /A2T** (`) which relates quantities measure
during the steady-state simulation to those calculated in@1#.
In summary, simulation of Eqs.~7! is expected to yield a
steady state after a short transient period. Subsequently
semble averages of properties can be determined as time
erages by making the usual assumption of ergodicity. Th
properties are directly related to those of the HCS by
simple scale transformation as described above.

This steady-state simulation method removes any lim
tion on the time for which trajectories may be followed, b
there are other limitations due to a long wavelength hyd
dynamic instability@3# for systems with dimension large
than a critical size Lc52pl A2h* /z* where h*
5h(t)/nmn(t)l is the shear viscosity. These instabilitie
occur when the decay rate of a shear mode fluctuation is
than the cooling rate of the thermal velocity so that their s
grows relative to the temperature. In the scaled dynamics,
instabilities show up as ordinary unstable modes that g
exponentially withs* , and are therefore easily identified i
the simulations@5#. Since these growing modes represen
spontaneous breaking of the~assumed! spatial homogeneity
of the system, the impurity particle no longer undergo
simple diffusion and, therefore, its motion is beyond t
scope of this paper. The critical sizeLc is a function of the
density and coefficient of restitution, being smaller for hi
density and small restitution coefficient. In all the cases
ported here, the system size is smaller than that required
the instability to show up. For a system of 108 atoms a
n* <0.5, this provides no limitation on the accessible den
ties and coefficients of restitution, otherwise only sufficien
low ~high! values of the density~coefficient of restitution!
can be studied. A different limitation on the simulation is t
‘‘inelastic collapse’’@6#, which occurs for small values ofa
thereby setting a lower limit on the values accessible
simulation. For the system sizes considered in this paper
above-mentioned limits have been characterized in more
tail elsewhere@5#.

The three-dimensional simulations reported in the follo
ing begin in all cases with an equilibrated fluid subject
elastic collisions~i.e., a51,w* 50) with T** 51/2. The co-
4-3
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JAMES LUTSKO, J. JAVIER BREY, AND JAMES W. DUFTY PHYSICAL REVIEW E65 051304
efficient of restitution is then set to the desired value and
scaling parameterw* is set tow* 5zE* (a)A2T** (0) using
the Enskog estimate for the cooling ratezE* (a) as given by
Eq. ~74! in Ref. @1#. This choice ensures that the temperatu
remains of order 1 for all values ofa, for optimal numerical
stability, as well as provides a continuous path to the eq
librium system for whicha51 andw* 50. The simulation
is then continued for 107 collisions to allow the system to
reach the steady state atT** 5w* 2/2z* 2 where z* is the
true cooling rate generated by the simulation. Since the l
est system considered consists of 500 atoms, this co
sponds to at least 23104 collisions per atom, and is mor
than sufficient to reach the steady state. A final simulation
107 additional collisions is then performed, during which a
statistical averages of interest are accumulated. Figur
shows the behavior of the instantaneous kinetic energy~or
temperature! during several typical simulations. In all case
the instantaneous temperature fluctuates around a statio
average value, with the size of the fluctuations increasing
the coefficient of restitution decreases. The fact that the
erage value itself varies witha is due to~a! the inadequacy
of our knowledge ofz* for small values ofa and~b! to the
presence of long-lived shear fluctuations, or vortices, wh
decay on a time scale of thousands of collisions near
instability. As will be discussed below, the latter give rise
large fluctuations in all components of the kinetic contrib
tion to the pressure tensor as well as raising the appa
temperature.

The system is expected to show a typical diffusive beh
ior under the scaled dynamics after a short transient ti
i.e., fors* @1. Then the diffusion coefficient can be obtain
either from the mean-squared displacement~MSD! using the
Einstein relation, Eq.~70! of Ref. @1#, or from the Green-
Kubo relation, Eq.~69! of Ref. @1#. The former is evaluated
for d53, from

D** ~s* !5
w*

z*
D* ~s!

5
1

6~N11!

]

]s*
(
i 50

N

uqi** ~s* !2qi** ~0!u2

~11!

by a least-squares fit of the simulation data to a straight l
We find little difference in the final value obtained using
single fit of the entire data set and the average of multiple
performed on subsets of the data. The reported results
based on the former method. Figure 2 shows some typ
simulation data exhibiting the expected linearity of t
mean-square displacement as a function ofs* . The Green-
Kubo relation for identical particles expresses the diffus
coefficient in terms of the velocity autocorrelation functio
~VACF! as

D** ~s* !5
1

3E0

s*
ds* 8^v** ~s* 8!•v** &** . ~12!

The VACF is evaluated from
05130
e

e

i-

g-
e-

f

1

,
ary
as
v-

h
e

-
nt

-
e,

e.

ts
re
al

n

^va** ~s* !vb** ~0!&5
1

~N11!~ j max11!

3(
i 50

N

(
j 50

j max

v ia** ~s* 1 j D** !

3v ib** ~ j D** !, ~13!

wherea,b5x,y,z, D** is the sampling period, andj max is
a function of the amount of data available and the time
which the steady state is established. Notice that the stat
arity of the scaled dynamics is explicitly used to evaluate
VACF for a given time separations* , by averaging over
many different samplings during the simulation. In the sim
lations,D** is taken to be 1/4 of the Boltzmann mean fr
time atT** 51/2, i.e.,D** 5A2/16Ap. As discussed above
T** 51/2 is not the exact value of the converged tempe
ture, but in formulatingD** only a reasonable order of mag
nitude is required. To evaluate the right side of Eq.~13!, we
follow the procedure of Futrelle and McGinty@7# ~see also
the discussion in Ref.@9#!, according to which the compo
nents of the velocity for each atom sampled at intervals
D** are stored. When the number of values stored reach
thresholdND , the convolution theorem is used to evalua
Eq. ~13! by means of the fast Fourier transform, and so
obtain an estimate of the velocity autocorrelation functio
This procedure is then repeated until the end of the sim
tion and the various estimates, typically between tens
hundreds of samples, are averaged to obtain the final
mate of the correlation function. Figure 3 shows some ty
cal correlation functions obtained in this way, usingND

51024. Here and below, we concentrate on the funct
Cvv* , as defined in the preceding paper which is just the tr
of Eq. ~13! divided by its initial value. To get the diffusion
constant, the integral of the velocity correlation function
computed using Simpson’s rule and the variance of the p
of estimates is used as the basis for the calculation of
standard error.

FIG. 2. Average mean-square dimensionless displacem
~MSD! as a function of the dimensionless time in the steady-s
dynamics forn* 50.5. The lower curve is fora51, the middle for
a50.7, and the upper fora50.5.
4-4
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DIFFUSION IN A GRANULAR FLUID. II. SIMULATION PHYSICAL REVIEW E 65 051304
Both methods, the Einstein relation and Green-Kubo re
tion, should yield the same values of the coefficient of s
diffusion. Figures 2 and 3 show that the mean-square
placement becomes linear ins* and the velocity autocorre
lation function decays to zero fors* >10. For largers* both
forms for the diffusion coefficient approach a constant, a
all further discussion is restricted to thisdiffusion constant.
The consistency between the Green-Kubo and Einstein r
tions is confirmed in Fig. 4, where the estimates obtained
both procedures are compared for a system of 108 atoms
several values of the density and of the coefficient of re
tution. While in qualitative agreement, the difference in v
ues obtained by the two methods is in some cases as gre
10%. It is expected that the results based on the velo
autocorrelation function are more accurate, because
evaluation at each fixed times* , is based on an average ov
all times included in the simulation. In contrast, the mea
square displacement is obtained from a single evaluation
each s* . This qualitative difference in accuracy has be

FIG. 3. Normalized velocity autocorrelation functionCvv* (s* )
as a function of the dimensionless scaled times* in the steady-state
dynamics forn* 50.5. The values of the coefficient of restitutio
area51 ~lower curve!, a50.7 ~middle curve!, anda50.5 ~upper
curve!.

FIG. 4. Diffusion constant as a function ofa for n* 50.1
~circles! and n* 50.5 ~diamonds!, as determined from the mean
squared displacement~open symbols! and the velocity autocorrela
tion function ~full symbols!. The values are normalized with thos
obtained fora51.
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confirmed by running multiple simulations for a few sy
tems, and observing variations in the coefficient of self d
fusion as large as 10% when determined from the MS
whereas that determined from the VACF showed variatio
of less than 1%.

III. COMPARISON BETWEEN MD AND THEORY

Figure 5 shows the ratio of the observed diffusion co
stants to the value predicted by the Enskog-level theory,
function ofa for densitiesn* 50.1, 0.25, 0.5, and 0.75. Fo
the lowest density, theory, and simulation are in excell
agreement even at strong dissipation, as expected from
lier comparisons of simulation results and predictions of
Boltzmann-Enskog equation@2#. As the density increases
deviations from the Enskog prediction are expected, si
they are known to occur even at equilibrium (a51). In this
respect, our results fora51 are quite consistent with previ
ous studies of elastic hard spheres@8#. It is seen in the figure
that deviations increase with decreasinga. For example, at
n* 50.25 the deviations are less than 10% fora>0.9, but
increase rapidly to the order of 25% fora50.5. This behav-
ior can also be observed in the normalized VACF its
which, in the Enskog approximation~here and below we
refer to the first Sonine approximation to the Enskog theo!,
is given by exp(2v1** s* ), with @1#

v1** 5
2~11a!2

3
x~pT** !1/2, ~14!

wherex is the pair-correlation function for two particles a
contact for which we use the Carnahan-Starling estim
Combined with Eq. ~12! this corresponds toDE** (a)
5A2T** v1** 21 . In Fig. 6, the logarithm of the normalize
velocity autocorrelation function,Cvv** (s* ), is plotted as a
function of v1** s* , for the case ofelasticcollisions,a51,
and the several densities we have been considering. Here
below the choice has been made, somewhat arbitrarily
consistently, of truncating the VACF at lnCvv** (s* ).24 in

FIG. 5. Ratio of the diffusion constant determined by MD to t
predicted value based on the Enskog theory, as a function ofa, for
n* 50.1 ~full circles!, n* 50.25 ~full triangles!, n* 50.5 ~open
circles!, andn* 50.75 ~open triangles!. The lines are a guide to the
eye.
4-5
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JAMES LUTSKO, J. JAVIER BREY, AND JAMES W. DUFTY PHYSICAL REVIEW E65 051304
order to eliminate the tails which are dominated by noi
The data confirm findings of earlier studies@8# that the En-
skog theory gives a good description at low densities,
increasingly underestimates the diffusion constant, due to
neglect of correlated collisions and cage effects, at hig
densities with a maximum deviation aroundn* 50.5. Above
this density, the neglected processes begin to cancel on
other and nearn* 50.75, the diffusion constant crosses t
Enskog prediction, and for higher densities is overestima
by Enskog theory. Since the Enskog theory is exact at s
times@1#, these effects appear as deviations from the sim
exponential form of the VACF at longer times.

Now considera,1. A similar plot, Fig. 7, for an inelastic
system witha50.7, again shows good agreement with t
Enskog prediction at the lowest density, but it exhibits mu
larger deviations than in the elastic case at higher densi
except at short times where the Enskog theory is exact
already pointed out. Interestingly, the data clearly indicat
crossover to a slower constant decay rate at longer times

FIG. 6. Negative logarithm of the normalized VACFCvv* as a
function of time for a system in equilibrium (a51). Symbols are as
in Fig. 5. The lines are a guide to the eye, except the full line, wh
indicates the Enskog result.

FIG. 7. Negative logarithm of the normalized VACFCvv* as a
function of dimensionless time for the steady-state dynamics w
a50.7. Symbols are as in Fig. 5. The lines are the results of fit
the memory function model with an exponential kernel as discus
in the main text. The lowest-density results are indistinguisha
from the Enskog prediction on this scale.
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course, this behavior increases the time integral of the ve
ity autocorrelation function, and it is responsible for the e
hancement of the diffusion coefficient seen in Fig. 5, in co
trast to the opposite behavior for high densities ata51.

To characterize the deviation of the VACF from th
simple exponential form, we start with an exact express
for the VACF based on the Zwanzig-Mori formalism~see
Appendix B!,

]s* Cvv** ~s* !1v1** Cvv** ~s* !

1E
0

s*
ds8M ~s* 2s8!Cvv** ~s8!50, ~15!

whereM (s* ) is known as the memory function. IfM (s* ) is
neglected, the exponential decay of the above Enskog
proximation is recovered, so the memory function incorp
rates all of the effects neglected in that approximation
simple ansatz for this function as an exponential is qual
tively successful in modeling the VACF of fluids with elast
collisions ~see @8# and references therein!, and can be ex-
pected to work also for inelastic systems, when formulated
the dimensionless times* . If we substitute M (s* )
5M (0)exp(2ls* ) into Eq. ~15!, and solve for the VACF
with the boundary conditionCvv** (0)51, the resulting model
is

C** ~s* !5
g221

g22g1
exp~2g1v1** s* !

1
g121

g12g2
exp~2g2v1** s* !, ~16!

where the constantsg1 andg2 can be related toM (0) and
l. Figure 7 includes the result of fitting these two paramet
to the data, being evident that the above model is able
capture the crossover from the Enskog behavior at s
times to the slower relaxation for longer times.

While the memory function model provides a framewo
for describing the results of the simulations, it does not
plain them, since any effect not captured in the Ensk
theory will give rise to a nonzero contribution to the memo
function. In a previous study@5#, similar deviations from the
Enskog theory were found for the pressure of the system,
evidence was provided there suggesting that the large
crepancies between theory and simulation for dense, diss
tive states may be due to the underlying hydrodynamic
stability. Additional support for this possibility comes from
Fig. 8 which shows the diffusion constants obtained from
simulation data for systems composed by 500 particles c
pared to those for systems composed by only 108 partic
For a density ofn* 50.25, there is a significant further in
crease of the diffusion constant in the large system relativ
the small system asa decreases, with the diffusion consta
of the 500 atom system growing to almost twice that of t
108 atom system ata50.5. At n* 50.5, the enhancement i
even larger, but we know@5# that the system is in the un
stable regime, at least fora<0.7 and possibly for smalle
values, so that most of the enhancement is undoubtedly
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to the spontaneous formation of shear flow in the syst
This suggests that in the smaller systems, although they
stable, there are present large fluctuations characteristi
the instability, such as spontaneous vortices that form
breakup. In this case, the impurity would find itself in
fluctuating local flow field which could enhance the veloc
correlations.

To test whether a local flow field plays a relevant role
the self-diffusion process, two different methods were u
to calculate the autocorrelation of the impurity velocityrela-
tive to the instantaneous local flow field. In the first method,
the instantaneous local flow field was calculated by divid
the simulation cell into 33527 cubic subcells. Then eac
atom’s velocity relative to the instantaneous average velo
of the fluid in the subcell containing it, was used when c
culating both the temperature and the VACF. For the 1
particle system, this procedure leads to a lowering of
measured value of the equilibrium diffusion constant

FIG. 8. Diffusion constants forn* 50.25 ~circles! and n*
50.50 ~squares! as a function ofa, for 108 atoms~full symbols!
and 500 atoms~open symbols!. The values are normalized to th
a-dependent Enskog prediction. The lines are a guide to the e

FIG. 9. Diffusion constants forn* 50.25 as a function ofa for
108 atoms, calculated from the Green-Kubo relation~error bars and
connecting line!, by removing the longest Fourier modes~dia-
monds!, and by using the cell method of computing the local v
locity field ~circles!. All data are normalized to the values dete
mined for a51. The heavy line is the prediction from Ensko
theory.
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about 10%, which we believe to be a finite-size effect due
the removal of a significant fraction of the degrees of fre
dom of the system. Forn* 50.5 it also reduces the steady
state temperature from nearly twice the initial temperat
~see Fig. 1! to about 1.5T** (0) thus demonstrating the siz
of the contribution of these fluctuations to the temperatu
When the same procedure is applied to a system of 500
oms, the shift in the equilibrium diffusion constant is neg
gible. The results obtained by this method are presente
Figs. 9–11. In the graphs, thea-dependant diffusion constan
has been scaled by its measured equilibrium value. The c
clusion emerging from the figures is that thea dependence
of the diffusion constant is substantially closer to the Ensk
form. However, this method may be criticized on the groun
that the statistics of the local velocity field are poor, since
calculations only involve a few atoms in each cell. We, the
fore, also consider a second method which is specific
designed to eliminate only the part of the local flow due
the longest wavelength fluctuations in the system. A lo
flow field u is defined by summing over the smallest Four
components compatible with the size and shape of the si
lation cell,

ua~r !5 (
uku>2p/L

ua~k!eik"r, ~17!

.

-

FIG. 10. The same as Fig. 9 forn* 50.50.

FIG. 11. The same as Fig. 9 forn* 50.75.
4-7
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JAMES LUTSKO, J. JAVIER BREY, AND JAMES W. DUFTY PHYSICAL REVIEW E65 051304
where L3 is the volume of the cubic simulation cell. Th
Fourier components are determined from the instantane
velocities of the bulk fluid via

ua~k!5
2

N11 (
i

v iae2 ik"r i. ~18!

This method is expected to give better statistics than the
method discussed above. We then use this flow field to de
the relative velocity used in the calculation of the tempe
ture and the VACF. Figures 9–11 also show the result
diffusion constant when this method of subtracting the
stantaneous fluctuations is used. From the figures follo
that both methods are mutually consistent over the ra
0.5,a,1, and that the agreement between the simula
results and the theoretical prediction from Enskog theory
significantly improved. The effects of subtracting the loc
flow field are much larger for the inelastic case due to
mechanism responsible for shear instability.

IV. DISCUSSION

In this paper, we have continued the discussion of dif
sion in a model granular system begun in Ref.@1#. The main
motivation has been to show that transformation to
steady-state dynamics allows us to carry over many stan
methods of nonequilibrium statistical mechanics with re
tively minor modifications. Here, the exact corresponde
between the usual formulation of the dissipative hard-sph
model of granular fluids and the steady-state dynamics
exploited to formulate a particularly convenient simulati
method which eliminates the need for additional compli
tions such as exothermic boundary conditions. We have d
onstrated that in the steady-state variables, the homogen
cooling state exhibits standard diffusive behavior such as
linear increase of the mean-squared displacement with t
and the correspondence between the Einstein and Gr
Kubo methods of determining the diffusion constant. In a
dition, the simplest approximation of Enskog kinetic theo
provides excellent agreement at low densities for the wh
range of inelasticity 0.5<a<1. However, although the for
malism and concepts of the statistical mechanics of diffus
have been shown to give an adequate description of diffu
in the HCS, large quantitative deviations from the Ensk
kinetic theory predictions have been observed even at r
tively moderate densities. At the level of the VACF, it w
shown that the deviations are principally due to a crosso
from the Enskog time dependence, which is exact for sh
times, to another, slower decay which nevertheless also
pears to be exponential in form. The analytic form of t
VACF was shown to be well approximated by modeling t
memory function of the diffusive process by a simple exp
nential as has been used in early studies of memory effec
equilibrium fluids@8#.

Physically, we have shown by means of constrained sim
lations that the deviations from the Enskog model are prim
rily due to the effect of the longest wavelength veloc
modes in the system. For sufficiently large systems, the s
mode is linearly unstable~in the steady-state picture! in the
05130
us

ll
ne
-
g
-
s
e
n
is
l
e

-

e
rd
-
e
re
as

-
-

ous
e
e,

en-
-

le

n
n

g
a-

er
rt
p-

-
in

u-
-

ar

classic sense that the time constant associated with its d
goes to zero as the critical value ofa is approached from
above. A linear stability analysis in the steady-state variab
@5# shows that the shear fluctuations of wave-vectork decay
exponentially with a time constant ofh* k* 22 1

2 z* ,where
h* is the shear viscosity and the stars indicate quanti
expressed in the reduced units of@1#. The dominanta de-
pendence of this expression comes fromz* ;(12a2) and
the size of the system enters through the fact that the sma
nonzero value of the wave vector the system can samp
kmin* 52p/L* , whereL* is the longest dimension of the simu
lation cell. For fixed values ofa,1, there will always be a
critical value ofL* above which the system is unstable
shear fluctuations. For values ofa above the critical value,
the decay of these fluctuations is nevertheless slowed rela
to equilibrium and we therefore reason that, even before
onset of the instability and even in systems too small
exhibit the instability, the slowing down of this mode mea
that long-lived, long-wavelength fluctuations are prese
These fluctuations give rise to the observed enhanceme
the diffusion constant. This effect is somewhat analogous
what is observed in turbulent systems since the remova
these modes in the calculation of the diffusion constant
moved a large part of the discrepancy from the Enskog p
diction. The size dependence of the deviations from the
skog results supports this conclusion, since larger syst
have a higher critical value ofa because the wave vector ca
take on smaller values. We conclude that a complete theo
ical description of diffusion in HCS will require a model fo
the memory function taking into account the slow relaxati
of the shear modes by means, e.g., of a mode-coup
mechanism.
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APPENDIX A: APPROACH TO STATIONARITY

The average value of an observableA(G) for a general
homogeneous stater(G,t) is given by Eq.~4! above which
can be written

^A;t&5E dG* r* ~G* !A~$l qi* ~s!,v~ t !vi* ~s!%! ~A1!

and

]sqi* ~s!5vi* ~s!, ]svi* ~s!5
1

2
zHCS* vi* ~s!1L* vi* ~s!.

~A2!

The subscript onzHCS* indicates explicitly that it is the di-
mensionless cooling rate associated with the HCS
4-8
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zHCS* 5
l zHCS~ t !

vHCS~ t !
, ~A3!

wherel is the mean free path andvHCS(t)5A2THCS(t)/m is
the HCS thermal velocity. The temperatureTHCS(t) obeys
the equation

] tTHCS~ t !52zHCS@THCS~ t !#THCS~ t !. ~A4!

Now make the change of variables

qi** 5qi* , vi** 5~w* /zHCS* !vi* ,

s* 5~zHCS* /w* !s, A** ~s* !5A~s!, ~A5!

to get

^A;t&5E dG** r** ~G** ,s* !A~$l qi** ,v~ t !

3~zHCS* /w* !vi** %!, ~A6!

with the definitiondG** r** (G** ,s* )[dG* r* (G* ,s). In
particular, the kinetic energy is

K 1

2
mv2;t L 5vHCS

2 ~ t !~zHCS** /w* !2

3E dG* r* ~G** ,s* !
1

2
mv** 2

[
1

2
mvHCS

2 ~ t !~zHCS** /w* !2^v** 2;s* &** .

~A7!

The corresponding temperature is

T~ t !5
2

d K 1

2
mv2;t L 52THCS~ t !S zHCS*

w*
D 2

T** ~s* !,

~A8!

whereT** (s* )[d21^v** 2;s* &** . The time derivative of
T** (s* ) is then found to be

~]s* 2w* !T** ~s* !52w*
z~ t !

zHCS~ t !
T** ~s* !. ~A9!

This is still valid for a general homogeneous state. N
assume the existence of a scaling solution, which imp
z(t)/zHCS(t)5AT(t)/THCS(t). Then

~]s* 2w* !T** ~s* !52A2zHCS* T** 3/2~s* !. ~A10!

The solution is that given by Eq.~10! of the text.

APPENDIX B: MEMORY FUNCTION MODEL

The dimensionless velocity auto correlation function
defined by
05130
s

Cvv* ~s![^c~s!c&* , c5
v0x*

A^v0x*
2&*

. ~B1!

Using the notation in Ref.@1# this can be written in terms o
the generators of the dynamics

Cvv* ~s!5E dG* ~eL* sc!rHCS* c5E dG* ce2L̄* s~rHCS* c!.

~B2!

The detailed forms for the linear operatorsL* and L̄* are
given by Eqs.~36! and ~42! of Ref. @1# but will not be re-
quired here. A projection operator is defined by

PX5rHCS* cE dG* cX. ~B3!

It follows then that

PX~s!5rHCS* cCvv* ~s!, ~B4!

with the choice

X~s!5e2L̄* s
„rHCS* ~G* !c…. ~B5!

The equation of motion forX(s) is

~]s1L̄* !X~s!50 ~B6!

and a closed equation forPX(s) is obtained by operating on
this equation withP and Q512P to get the pair of equa-
tions

~]s1PL̄* P!PX~s!52PL̄* QX~s!,

~]s1QL̄* Q!QX~s!52QL̄* PX~s!. ~B7!

Solving formally forQX(s) in the second equation and su
stituting into the first gives the desired closed equation
PX(s) @10#,

~]s1PL̄* P!PX~s!2E
0

s

ds8e2QL̄* Q(s2s8)PL̄* QL̄* PX~s8!

50. ~B8!

Use of Eq. ~B4! gives the corresponding equation fo
Cvv* (s),

]sCvv* ~s!1v1Cvv* ~s!1E
0

s

ds8M ~s2s8!Cvv* ~s8!50,

~B9!

with the definitions

v15E dG* cL̄* rHCS* c5^~L* c!c&* ~B10!

and
4-9
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M ~s!52E dG* cL̄* e2QL̄* QsQL̄* rHCS* c. ~B11!

The definition forv1 is the same as that for the Ensko
05130
approximation discussed in@1# and approximated in Eq.~14!
above. Finally, it is clear that structurally identical expre
sions would have been obtained had we performed this d
vation using the scaled variables introduced in Eq.~6! of the
text thus justifying the expression in Eq.~15!.
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