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Diffusion in a granular fluid. 1. Simulation
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The linear-response description for impurity diffusion in a granular fluid undergoing homogeneous cooling
is developed in the preceding paper. The formally exact Einstein and Green-Kubo expressions for the self-
diffusion coefficient are evaluated there from an approximation to the velocity autocorrelation function. These
results are compared here to those from molecular-dynamics simulations over a wide range of density and
inelasticity, for the particular case of self-diffusion. It is found that the approximate theory is in good agree-
ment with simulation data up to moderate densities and degrees of inelasticity. At higher density, the effects of
inelasticity are stronger, leading to a significant enhancement of the diffusion coefficient over its value for
elastic collisions. Possible explanations associated with an unstable long wavelength shear mode are explored,
including the effects of strong fluctuations and mode coupling.
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[. INTRODUCTION cellent agreement of this theory with MD results at very low
number densityn, over a wide range of values far. The
Attempts to describe granular media in terms of a morgresent paper extends that study to higher densities. More
fundamental underlying statistical mechanics have met wittspecifically, three-dimensional systems with densities in the
considerable success. As a prototype for this approach, in thaterval 0.2 n* =n¢3<0.75, for 0.5< a=<1, will be consid-
preceding papefl] standard linear-response methods fromered.
normal fluids have been appliethutatis mutandisto the The HCS is known to be unstable under long wavelength
case of an impurity particle diffusing in an isolated one com-perturbations or fluctuatior8]. To avoid this problem, the
ponent fluid of smooth inelastic hard spherds=@) or disks ~ System size in most cases considered is chosen to be smaller
(d=2) of diametero. The collisions are characterized by a than the critical wavelength. The latter is a function of the
coefficient of normal restitutiom. The isolated systerfor ~ density and inelasticity, decreasing with increasing values of
with periodic boundary conditionsis not in the typical €ach. Consequently, at the highest densities and smallast
Gibbs state as for elastic collisions, but rather in a time-small system of 108 particles is required. At moderate den-
dependent homogeneous cooling st&#€S). It has been sities and inelasticities, a system size of 512 particles is used.
shown in[1], and will be elaborated further here, that this The agreement of theory and simulation is found to be quite
time-dependent HCS can be exactly transformed to good for alla atn*<0.25 and for all densities ai=0.9. At
stationary-state description. In the present paper, thisigher densities and smaller, significant discrepancies oc-
stationary-state description is evaluated by molecularcur, with the diffusion coefficient obtained from MD being
dynamics(MD) simulation to measure the mean-square dis-almost an order of magnitude greater than the theoretical
placement of the impurity, its velocity autocorrelation func- estimate an* =0.75 anda=0.5. The failure of the Enskog
tion, and the resulting diffusion coefficient defined in termstheory at high densities is well known for the case of elastic
of a formal Einstein or Green-Kubo relation, respectively.collisions, due to cage effects and correlated binary colli-
For practical purposes, attention is restricted to the case afions. However, in that case the diffusion coefficient from
self diffusion, where the mechanical properties of the impu-MD is smaller than the theoretical prediction. Therefore, it is
rity are the same as those of the fluid particles. clear that a quite different density mechanism is effective for
The velocity autocorrelation function was approximatedinelastic collisions.
in [1] using a cumulant expansion and also by means of It is reasonable to expect that the underlying instability is
kinetic theory methods. In the usual first Sonine polynomialresponsible in part for the above discrepancies. Although the
expansion for the latter, this leads to a simple exponentiainstability is, in principle, avoided by the use of small sys-
decay in an appropriate dimensionless time scale defined béems, the latter is prone to large fluctuations. These are not
low. For the numerical results considered here, one furtheguantitatively significant ate=1 but grow rapidly with de-
approximation is made in evaluating the decay rate, namelgreasinge, as can be seen in the noise level for the kinetic
two-particle velocity correlations are neglected. In this casetemperature. This will be illustrated later on in Fig. 1. A
the results are the same as those obtained from the Enskoglated issue is the role of the instability in affecting the
kinetic theory. Earlier studies of self diffusid2] show ex-  usual mode coupling corrections to the Enskog theory. Such
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157 [1], a more fundamental description via MD simulation will
be considered. The HCS distribution function for a fluid of
N+ 1 particles ind dimensions has the scaling form

1 prcs T ) =[Zv ()] N Dpk ({ai; /7 vilv(H}). (D)

© Here and in the following the notation is the same as in Ref.

ol ettty oA i [1]. In particular,v(t) is the thermal velocity defined in the
05 usual way(with Boltzmann’s constant set equal to ¢rad
/=1/ng% 1 is proportional to the mean free path of the gas.
The time dependence of the above distribution is due to col-
lisional cooling and is determined from

0

0 10000 s* 20000

1
FIG. 1. Time evolution of the dimensionless steady temperature (1) =— E{(t)v(t), @
T** as a function of scaled dimensionless tigiefor n* =0.5. The

lower curve is fora=1, the middle fora=0.7, and the upper for where g(t) is the C00|ing rate. A direct simulation of the
a=0.5. cooling fluid, as described by the Liouville dynamics in the

mode coupling terms arise from correlations of spontaneou@ctu@l phase variables, is difficult, since the rapid cooling of
fluctuations in the long wavelength hydrodynamic modeshe fluid leads to numerical inaccuracies very soon. One
which are significantly modified by the potential instability. Method of dealing with this would be to periodically redefine
Enhanced fluctuations will be addressed in the qualitativéhe time scale of the simulation, so that the typical particle
analysis of the data below. velocity remains of the order of unity. However, if the res-
The plan of the paper is as follows. In Sec. II, the relevantcaling is only used to control the numerical stability of the
results in the preceding paper are shortly summarized, andsimulation, the state being simulated would nevertheless be
scale transformation, useful for practical purposes, is introtime dependent. For this reason, some simulation studies em-
duced. The equations of motion of the phase-space variablgdoy different type of thermostats, such as an externally im-
lead in a direct way to a steady-state simulation method foposed Brownian force or thermal boundaries, in order to gen-
the HCS. Starting from an arbitrary initial condition, the sys-erate a steady state. While these methods provide more or
tem rapidly approaches a steady state, whose properties ge&s realistic models of various experimental procedures,
simply related to those of the HCS. It is important to stresghey obviously probe a state which is in some way related to,
that this relationship is not approximate, buteractconse-  pyt not identical with, the homogeneous cooling state.
quence of a change of variables. In particular, the method to ggtg and Mareschd#], noting the fact that there is no
measure the mean-square displacement of a tagged partigiginsic time scale in the dissipative hard-sphere model,

as well as its velocity autocorrelation function is discussed in,5,,e proposed to rescale all particle velocities after every
detail. Moreover, both quantities are shown to lead to equivagjision thus establishing a steady-state similar to that de-
lent results for the self-diffusion coefficients. Although in

practice some discrepancies appear in the numerical resul?%ribed In[1]. However, this procedure has the effect of re-
obtained by the two procedures, their origin is well under-Pracing the binary collision dynamics of the dissipative hard-

stood sphere model by ai-body dynamics, since the result of a

Comparison of theory and simulation is also started incollision is to alterall atomic velocities and not just those of

Sec. II, and completed in Sec. Ill. As mentioned above, thén€ colliding atoms. It is reasonable to imagine that the bi-

agreement is fairly good at low densities, but relevant efnary dynamics is recovered in the infinite system limit, but

fects, which are not taken into account by the theory develthe connection between the HCS and this dynamics is not

oped in[1], show up even at moderate density. The peculia€lear for the case of the small systems considered in most of

nature of these effects for inelastic collisions is discussedihe MD simulations. Instead, we follow the procedure used

Numerical evidence is provided indicating that the underly-in Ref.[5], according to which aexactmapping of the HCS

ing hydrodynamic instability associated with the shear modento a steady state is exploited as the basis of the simulation

plays an essential role in the “anomalous” behavior of themethod. Following the ideas developed[i], all velocities

self-diffusion coefficient. Nevertheless, such changes in thare scaled relative t@(t) and the dimensionless time is

diffusion constant do not compromise the existence of thejiven by

diffusion process, which is confirmed for such conditions by

simulation results for the mean-square displacement. Finally, ds(t)=v(t)dt//. (3)

Sec. IV contains a short summary of the results and also

some indications of the possible extensions of the reportegthis time scale is a measure of the average collision number.

paper. The corresponding Liouville equation in these variables sup-

ports a stationary HCS solution given byfic({di ,vi'}),

where g =q;// and v{' =v;/v(t). Moreover, the average
To investigate the nature of diffusion in the HCS and tovalue of any phase functioA({q,v}) is given by Eq.(40) of

test the theoretical results presented in the preceding pap&ef. [1].

Il. STEADY-STATE SIMULATION METHOD
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*x  Tokkx _ kk Ax* | yk* | K
e R I ORI A g —a" =a ~(re)(ai -gih)ar. @)
o _ _ where gi* =vi* —v* | g#* is the unit vector pointing
The dynamics in the phase space is obtained from from atomi to atomj and the center of mass velocity re-
mains the same.
It (S)=V*(s), 4 v*(s)=1§* VE(S)+L*V*(s), (5) The relationship o™ to w* is determined by the steady-
T PAmh TS 2° LT state temperature obtained in the simulation. To see this note

that while the instantaneous kinetic energy of the entire sys-
where L* is the dimensionless Liouville operator, agd tem is clearly not constant, a corresponding “temperature”
=/{(t)/v(t) is the dimensionless cooling rate. This is thedefined asT** =d~'(v3*?;s*)** does approach a con-
same as the usual dynamics for hard spheres, except that thgint, as is shown in Appendix A,

term proportional ta’* /2 represents an acceleration between

collisions which balances the energy lost during collisions, o (5% 1/ wr\? w* P -2
thus enabling a steady state. T (s%)= 2| T T =="1¢

Although it is possible to relate average values of the 4 {FN2T™(0)
relevant dynamical functions of the original variables with 1 w*\2
the average values of the same functions of the scaled vari- — —(—) (10
ables for a general situation, attention will be restricted in the 2\ ¢~

following to the HCS for which{* is time independent. In ] -

principle, the scaled dynamics defined by Ef) can be  Thus,J* =w*/y2T** () which relates quantities measured
simulated for the properties of interest, without the compli-during the steady-state simulation to those calculateld n
cations of continuous cooling in real time. In this formula- IN summary, simulation of Eqd) is expected to yield a
tion, the simulation is qualitatively similar to that for elastic Stéady state after a short transient period. Subsequently, en-
collisions, in the sense that the system rapidly approaches$¢mble averages of properties can be determined as time av-
state for which the time average of the instantaneous scale?{@9es by making the usual assumption of ergodicity. These
temperature is constant, and subsequent determination of aRtoperties are directly related to those of the HCS by a
erage properties is simpler and numerically more accurate. Aimple scale transformation as described above. .
technical complication is the need to know the exact value of This steady-state simulation method removes any limita-
£* a priori, which in general is not possible, since it is de- tion on the time for which trajectories may be followed, but

termined by the original dynamics. Consequently, it is usefufnere are other limitations due to a long wavelength hydro-

to make a second change of scale, dynamic instability[3] for systems with dimension larger
than a critical size L.=2#w/\27%*/{* where %*
g =q*, V=WV, =p(t)/nmy(t)/ is the shear viscosity. These instabilities
occur when the decay rate of a shear mode fluctuation is less
S =(IFIw*)s,  A** (s¥)=A(S), (6)  than the cooling rate of the thermal velocity so that their size

grows relative to the temperature. In the scaled dynamics, the
where w* is an arbitrary time-independent dimensionlessinstabilities show up as ordinary unstable modes that grow

frequency. Equatioi5) then becomes exponentially withs*, and are therefore easily identified in
the simulationg5]. Since these growing modes represent a
Dge QX% (S*) = V™ (s%), spontaneous breaking of tliassumegspatial homogeneity

of the system, the impurity particle no longer undergoes
1 simple diffusion and, therefore, its motion is beyond the
A Vi (s*) = EW* Vi*(S*F)+L** v (s*), (7)  scope of this paper. The critical sitg is a function of the
density and coefficient of restitution, being smaller for high
, . density and small restitution coefficient. In all the cases re-
with 1‘:* ’tﬂe sarr?el_.*, but with the replaceme.nt{s:]i* i ported here, the system size is smaller than that required for
—{gi™ ,vi™ }. This is the form most convenient for MD ¢ instability to show up. For a system of 108 atoms and
§|mulat|on, Wlth any rea.songble'chmce fof . More QXD“C' n* <0.5, this provides no limitation on the accessible densi-
itly, the particle dynamics implied by Ed7) and imple-  {jes and coefficients of restitution, otherwise only sufficiently
men_ted in our _event-drlven swn_u!atlons consists of an accely,,,, (high) values of the densitycoefficient of restitution
erating streaming between collisions can be studied. A different limitation on the simulation is the
“inelastic collapse”[6], which occurs for small values af

Js O =V, thereby setting a lower limit on the values accessible to
simulation. For the system sizes considered in this paper, the
P Ew* VA ®) above-mentioned limits have been characterized in more de-
s 2 b tail elsewherd5].

The three-dimensional simulations reported in the follow-
while the effect of the collision of two particles is to alter ing begin in all cases with an equilibrated fluid subject to
their relative velocity according to elastic collisiondi.e., =1 w* =0) with T** =1/2. The co-
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efficient of restitution is then set to the desired value and theg000 1
scaling parameten* is set tow* = ¢£(a)2T** (0) using
the Enskog estimate for the cooling rag(«) as given by
Eq. (74) in Ref.[1]. This choice ensures that the temperature
remains of order 1 for all values af, for optimal numerical 40000
stability, as well as provides a continuous path to the equi- __,
librium system for whiche=1 andw* =0. The simulation

is then continued for 10collisions to allow the system to
reach the steady state &t* =w*?/2{*? where {* is the 200001
true cooling rate generated by the simulation. Since the larg:

est system considered consists of 500 atoms, this corre
sponds to at least210* collisions per atom, and is more

than sufficient to reach the steady state. A final simulation of o4

10’ additional collisions is then performed, during which all 0 10000 o 20000
statistical averages of interest are accumulated. Figure 1
shows the behavior of the instantaneous kinetic enéogy FIG. 2. Average mean-square dimensionless displacement

temperaturgduring several typical simulations. In all cases, (MSD) as a function of the dimensionless time in the steady-state
the instantaneous temperature fluctuates around a stationatynamics fom*=0.5. The lower curve is forr=1, the middle for
average value, with the size of the fluctuations increasing ag=0.7, and the upper fox=0.5.

the coefficient of restitution decreases. The fact that the av-

erage value itself varies with is due to(a) the inadequacy

of our knowledge of* for small values ofx and(b) to the (V¥ (s*)vE* (0))= N DGt D)

presence of long-lived shear fluctuations, or vortices, which Jmax

decay on a time scale of thousands of collisions near the N imax

instability. As will be discussed below, the latter give rise to X 2 E UIF(SHHJA*Y)
large fluctuations in all components of the kinetic contribu- 1=0j=0

tion to the pressure tensor as well as raising the apparent XolF (JA*), (13)
temperature.

The system is expected to show a typical diffusive behav- _ ) ) o
ior under the scaled dynamics after a short transient timeVherea,8=x,y,z, A** is the sampling period, anithay is
i.e., fors*>1. Then the diffusion coefficient can be obtained @ function of the amount of data available and the time at
either from the mean-squared displacem@t®D) using the ~ Which the steady state is established. Notice that the station-
Einstein relation, Eq(70) of Ref. [1], or from the Green- arity of the scaled dynamics is explicitly used to evaluate the

Kubo relation, Eq(69) of Ref.[1]. The former is evaluated, VACF for a given time separatios”™, by averaging over
for d=3, from many different samplings during the simulation. In the simu-

lations,A** is taken to be 1/4 of the Boltzmann mean free
W time atT** =1/2, i.e.,A** =/2/16\. As discussed above,
D** (s*)=—D*(s) T** =1/2 is not the exact value of the converged tempera-
4 ture, but in formulating\** only a reasonable order of mag-
1 g N nitude is required. To evaluate the right side of EL), we
= 7 | (s*)—q¥* (0)|? follow the procedure of Futrelle and McGinfy] (see also
6(N+1) g9s* =0 the discussion in Ref9]), according to which the compo-
(11) nents of the velocity for each atom sampled at intervals of
A** are stored. When the number of values stored reaches a
by a least-squares fit of the simulation data to a straight linethresholdN, , the convolution theorem is used to evaluate
We find little difference in the final value obtained using aEq. (13) by means of the fast Fourier transform, and so to
single fit of the entire data set and the average of multiple fit®btain an estimate of the velocity autocorrelation function.
performed on subsets of the data. The reported results afdhis procedure is then repeated until the end of the simula-
based on the former method. Figure 2 shows some typicdion and the various estimates, typically between tens and
simulation data exhibiting the expected linearity of thehundreds of samples, are averaged to obtain the final esti-
mean-square displacement as a functiors®of The Green- mate of the correlation function. Figure 3 shows some typi-
Kubo relation for identical particles expresses the diffusioncal correlation functions obtained in this way, usihy
coefficient in terms of the velocity autocorrelation function =1024. Here and below, we concentrate on the function
(VACF) as Cr,, as defined in the preceding paper which is just the trace
of Eqg. (13) divided by its initial value. To get the diffusion
constant, the integral of the velocity correlation function is
computed using Simpson’s rule and the variance of the pool
of estimates is used as the basis for the calculation of the
The VACF is evaluated from standard error.

l * ! !
D**(S*)=§fos ds* (V¥* (s* ).V ) (12)
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FIG. 3. Normalized velocity autocorrelation functi@f, (s*) FIG. 5. Ratio of the diffusion constant determined by MD to the

as a function of the dimensionless scaled tshen the steady-state predicted value based on the Enskog theory, as a functien ffr

dynamics forn* =0.5. The values of the coefficient of restitution n* =0.1 (full circles), n*=0.25 (full triangles, n*=0.5 (open

area=1 (lower curve, a=0.7 (middle curve, anda=0.5(upper  circles, andn* =0.75(open triangles The lines are a guide to the
curve. eye.

Both methods, the Einstein relation and Green-Kubo relaconfirmed by running multiple simulations for a few sys-
tion, should yield the same values of the coefficient of selftems, and observing variations in the coefficient of self dif-
diffusion. Figures 2 and 3 show that the mean-square disusion as large as 10% when determined from the MSD,
placement becomes linear & and the velocity autocorre- Whereas that determined from the VACF showed variations
lation function decays to zero fa&* =10. For largeis* both ~ Of less than 1%.
forms for the diffusion coefficient approach a constant, and
all further discussion is restricted to thiffusion constant I1l. COMPARISON BETWEEN MD AND THEORY
The consistency between the Green-Kubo and Einstein rela- _ o
tions is confirmed in Fig. 4, where the estimates obtained by Figure 5 shows the ratio of the observed diffusion con-
both procedures are compared for a system of 108 atoms aféNts to the value predicted by the Enskog-level theory, as a
several values of the density and of the coefficient of restifunction of« for densitiem*=0.1, 0.25, 0.5, and 0.75. For
tution. While in qualitative agreement, the difference in val-the lowest density, theory, and simulation are in excellent
ues obtained by the two methods is in some cases as great@3réement even at strong dissipation, as expected from ear-
10%. It is expected that the results based on the veloci%er comparisons of simulation results and predictions of the
autocorrelation function are more accurate, because thgoltzmann-Enskog equatiof?]. As the density increases,
evaluation at each fixed time# , is based on an average over deviations from the Enskog prediction are expected, since
all times included in the simulation. In contrast, the mean{hey are known to occur even at equilibrium=1). In this
square displacement is obtained from a single evaluation fdieSPect, our results far=1 are quite consistent with previ-

eachs*. This qualitative difference in accuracy has beenOUS studies of elastic hard sphe[8$ It is seen in the figure
that deviations increase with decreasiagFor example, at

n* =0.25 the deviations are less than 10% &0 0.9, but

increase rapidly to the order of 25% far=0.5. This behav-

ior can also be observed in the normalized VACF itself
® which, in the Enskog approximatiothere and below we

refer to the first Sonine approximation to the Enskog thgory
D*(0)/DA(1) is given by exp{wi* s*), with [1]

4

1 * **:2(14-01)2

0" =——g——x(a )%, (14

s where y is the pair-correlation function for two particles at
s contact for which we use the Carnahan-Starling estimate.

; _ . . * o Combined with Eq.(12) this corresponds toDg* («)

0.4 05 06 % 07 08 09 1 =\2T** »** ~1.In Fig. 6, the logarithm of the normalized

FIG. 4. Diffusion constant as a function af for n*=o0.1  Velocity autocorrelation functionCx (s*), is plotted as a
(circles and n* =0.5 (diamonds, as determined from the mean- function of w* s*, fo_r_the case OHaSI'CCO”'S_'OnS_aa: 1,
squared displacemefpen symbolsand the velocity autocorrela- and the severa} densities we have been conS|der|ng. H_ere and
tion function (full symbols. The values are normalized with those below the choice has been made, somewhat arbitrarily but
obtained fora=1. consistently, of truncating the VACF at Gf; (s*)=—4 in

1©¢$
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4T course, this behavior increases the time integral of the veloc-
ity autocorrelation function, and it is responsible for the en-

hancement of the diffusion coefficient seen in Fig. 5, in con-

3¢ trast to the opposite behavior for high densitiesvatl.

To characterize the deviation of the VACF from the
simple exponential form, we start with an exact expression
24 for the VACF based on the Zwanzig-Mori formalisfeee
Appendix B),

-In(C*)

1 FgxCr (%) + wi* Ci (s¥)

+fs ds'M(s* —s')C** (s')=0, (15
0

0

0 1 ) 4
. _ _ whereM (s*) is known as the memory function. M (s*) is

FIG. 6. Negative logarithm of the normalized VAGE], as a  neglected, the exponential decay of the above Enskog ap-
function of time for a system in equilibriumy(=1). Symbols are as  proximation is recovered, so the memory function incorpo-
in Elg.S. The lines are a guide to the eye, except the full line, whichygtes all of the effects neglected in that approximation. A
indicates the Enskog result. simple ansatz for this function as an exponential is qualita-
. , , ) . tively successful in modeling the VACF of fluids with elastic
order to eliminate the tails which are dominated by noise.qjjisions (see[8] and references therdinand can be ex-

The data confirm findings of earlier studig& that the En-  ,octeq to work also for inelastic systems, when formulated in
skog theory gives a good description at low densities, bu he dimensionless times*. If we substitute M(s*)

increasingly underestimates the diffusion constant, due to thQM(O)exp(—)\s*) into Eq. (15), and solve for the VACF
neglect of correlated collisions and cage effects, at higher ’ ;

densities with a maximum deviation arouni=0.5. Above With the boundary conditiof;; (0)=1, the resulting model

this density, the neglected processes begin to cancel one an-

other and nean* =0.75, the diffusion constant crosses the y —1

Enskog prediction, and for higher densities is overestimated C** (s*)= ———exp( — y, wi* s¥)

by Enskog theory. Since the Enskog theory is exact at short Y-+

times[1], these effects appear as deviations from the simple y,—1

exponential form of the VACF at longer times. + ———exp(—y_w7*s*), (16)
Now considerz< 1. A similar plot, Fig. 7, for an inelastic Y+T Y-

system witha=0.7, again shows good agreement with the

Enskog prediction at the lowest density, but it exhibits muc where the gonstant§3+ andy_ can pe related t4(0) and

larger deviations than in the elastic case at higher densiti%' Figure 7 '”C"%des the result of fitting these wo parameters

except at short times where the Enskog theory is exact, ag the data, being evident that the above model is able to

already pointed out. Interestingly, the data clearly indicate gapture the crossover from the Enskog behavior at short

crossover to a slower constant decay rate at longer times. fmes to the slower relaxat!on for longer times.
While the memory function model provides a framework

4- for describing the results of the simulations, it does not ex-
plain them, since any effect not captured in the Enskog
theory will give rise to a nonzero contribution to the memory
3] . function. In a previous studjb], similar deviations from the
Lot Enskog theory were found for the pressure of the system, and
-In(C*,,) evidence was provided there suggesting that the large dis-
2] crepancies between theory and simulation for dense, dissipa-
7 tive states may be due to the underlying hydrodynamic in-
stability. Additional support for this possibility comes from
11 3 Fig. 8 which shows the diffusion constants obtained from the
simulation data for systems composed by 500 particles com-
pared to those for systems composed by only 108 particles.
0 : : . For a density oln* =0.25, there is a significant further in-
0 5 o7is 10 5 crease of the diffusion constant in the large system relative to
FIG. 7. Negative logarithm of the normalized VAGE:, as a  the small system as decreases, with the diffusion constant
function of dimensionless time for the steady-state dynamics witf?f the 500 atom system growing to almost twice that of the
a=0.7. Symbols are as in Fig. 5. The lines are the results of fits o.08 atom system at=0.5. Atn* =0.5, the enhancement is
the memory function model with an exponential kernel as discusse@ven larger, but we knoys] that the system is in the un-
in the main text. The lowest-density results are indistinguishablestable regime, at least far<0.7 and possibly for smaller
from the Enskog prediction on this scale. values, so that most of the enhancement is undoubtedly due
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3 -
D*(c))/De(cs)

34
D*(c)/D*(1)

0.5 0.6 07 o 08 0.9 1 1 t t t t t
0.4 05 06 o 07 08 0.9 1

FIG. 8. Diffusion constants fom* =0.25 (circles and n*
=0.50 (squares as a function ofa, for 108 atoms(full symbolg
and 500 atomgopen symbols The values are normalized to the
a-dependent Enskog prediction. The lines are a guide to the eye.about 10%, which we believe to be a finite-size effect due to

the removal of a significant fraction of the degrees of free-
to the spontaneous formation of shear flow in the systemdom of the system. Fan* =0.5 it also reduces the steady-
This suggests that in the smaller systems, although they atgate temperature from nearly twice the initial temperature
stable, there are present large fluctuations characteristic @§ee Fig. 1 to about 1.5** (0) thus demonstrating the size
the instability, such as spontaneous vortices that form angf the contribution of these fluctuations to the temperature.
breakup. In this case, the impurity would find itself in a When the same procedure is applied to a system of 500 at-
fluctuating local flow field which could enhance the velocity oms, the shift in the equilibrium diffusion constant is negli-
correlations. gible. The results obtained by this method are presented in

To test whether a local flow field plays a relevant role inFigs. 9-11. In the graphs, thedependant diffusion constant
the self-diffusion process, two different methods were usethas been scaled by its measured equilibrium value. The con-
to calculate the autocorrelation of the impurity veloa#ya-  clusion emerging from the figures is that thedependence
tive to the instantaneous local flow fielah the first method,  of the diffusion constant is substantially closer to the Enskog
the instantaneous local flow field was calculated by dividingform. However, this method may be criticized on the grounds
the simulation cell into 3=27 cubic subcells. Then each that the statistics of the local velocity field are poor, since the
atom’s velocity relative to the instantaneous average velocityalculations only involve a few atoms in each cell. We, there-
of the fluid in the subcell containing it, was used when cal-fore, also consider a second method which is specifically
culating both the temperature and the VACF. For the 10&esigned to eliminate only the part of the local flow due to
particle system, this procedure leads to a lowering of thehe longest wavelength fluctuations in the system. A local
measured value of the equilibrium diffusion constant byflow field u is defined by summing over the smallest Fourier

components compatible with the size and shape of the simu-
2251 lation cell,

FIG. 10. The same as Fig. 9 fa =0.50.

24

U= 2> ugkekr, (17)

|k|=2m/L

D*(a)/D*(1)
1754

154

1.25 ¢

9
1 } } ' 4 ' ] D*(e)/D*(1)
0.4 0.5 06 o 07 0.8 0.9 1

FIG. 9. Diffusion constants fan* =0.25 as a function o for 54
108 atoms, calculated from the Green-Kubo relatiemor bars and
connecting ling by removing the longest Fourier modédia-
mondsg, and by using the cell method of computing the local ve- . : - _ .
locity field (circles. All data are normalized to the values deter- 0.4 05 06
mined for «a=1. The heavy line is the prediction from Enskog

theory. FIG. 11. The same as Fig. 9 fa* =0.75.

a 07 0.8 0.9 1
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where L3 is the volume of the cubic simulation cell. The classic sense that the time constant associated with its decay
Fourier components are determined from the instantaneowgoes to zero as the critical value af is approached from

velocities of the bulk fluid via above. A linear stability analysis in the steady-state variables
[5] shows that the shear fluctuations of wave-ve&tdecay
2 Cier. exponentially with a time constant of*k*?—* where

Ua(k)= N+1 E. Vig® (18) n* is the shear viscosity and the stars indicate quantities

expressed in the reduced units [@f. The dominanta de-

This method is expected to give better statistics than the cef€ndence of this expression comes frgt~(1- o) and
method discussed above. We then use this flow field to defin&€ Size of the system enters through the fact that the smallest
the relative velocity used in the calculation of the temperaonzero value of the wave vector the system can sample is
ture and the VACF. Figures 911 also show the resulting<min=27/L*, whereL* is the longest dimension of the simu-
diffusion constant when this method of subtracting the in-lation cell. For fixed values o<1, there will always be a
stantaneous fluctuations is used. From the figures followsritical value ofL* above which the system is unstable to
that both methods are mutually consistent over the ranggéhear fluctuations. For values af above the critical value,
0.5<a<1, and that the agreement between the simulatiorthe decay of these fluctuations is nevertheless slowed relative
results and the theoretical prediction from Enskog theory ig0 equilibrium and we therefore reason that, even before the
significantly improved. The effects of subtracting the localonset of the instability and even in systems too small to
flow field are much larger for the inelastic case due to theexhibit the instability, the slowing down of this mode means

mechanism responsible for shear instability. that long-lived, long-wavelength fluctuations are present.
These fluctuations give rise to the observed enhancement of

the diffusion constant. This effect is somewhat analogous to
what is observed in turbulent systems since the removal of

In this paper, we have continued the discussion of diffuthese modes in the calculation of the diffusion constant re-
sion in a model granular system begun in R&]. The main moved a large part of the discrepancy from the Enskog pre-
motivation has been to show that transformation to thediction. The size dependence of the deviations from the En-
steady-state dynamics allows us to carry over many standagkog results supports this conclusion, since larger systems
methods of nonequilibrium statistical mechanics with rela-have a higher critical value ef because the wave vector can
tively minor modifications. Here, the exact correspondencéake on smaller values. We conclude that a complete theoret-
between the usual formulation of the dissipative hard-spherigal description of diffusion in HCS will require a model for
model of granular fluids and the steady-state dynamics waie memory function taking into account the slow relaxation
exploited to formulate a particularly convenient simulationof the shear modes by means, e.g., of a mode-coupling
method which eliminates the need for additional complicadmechanism.
tions such as exothermic boundary conditions. We have dem-
onstrated that in the steady-state variables, the homogeneous ACKNOWLEDGMENTS
cooling state exhibits standard diffusive behavior such as the ]
linear increase of the mean-squared displacement with time, The research of J.W.D. was supported by the National
and the correspondence between the Einstein and Greeficience Foundation, Grant No. PHY 9722133. J.J.B. ac-
Kubo methods of determining the diffusion constant. In ad-knowledges partial support from the DireaciGeneral de
dition, the simplest approximation of Enskog kinetic theory!nvestigacia Cientfica y Tecnica(Spain through Grant No. -
provides excellent agreement at low densities for the whol&B98-1124. J.L. acknowledges support from the Universite
range of inelasticity 0.5 e<1. However, although the for- Libre de Bruxelles.
malism and concepts of the statistical mechanics of diffusion
have been shown to give an adequate description of diffusion APPENDIX A: APPROACH TO STATIONARITY
in the HCS, large quantitative deviations from the Enskog
kinetic theory predictions have been observed even at rela- "€ average value of an observaBli¢l’) for a general
tively moderate densities. At the level of the VACF, it was homogeneous stajg(I',t) is given by Eq.(4) above which
shown that the deviations are principally due to a crossovefan be written
from the Enskog time dependence, which is exact for short
times, to another, sIOV\_/er _decay which nevert_heless also ap- <A;t>:J dr* p* (T AG/ G (), (DVF (S)}) (AL)
pears to be exponential in form. The analytic form of the
VACF was shown to be well approximated by modeling the
memory function of the diffusive process by a simple expo—and
nential as has been used in early studies of memory effects in
equilibrium fluids[8].

Physically, we have shown by means of constrained simu-
lations that the deviations from the Enskog model are prima- (A2)
rily due to the effect of the longest wavelength velocity
modes in the system. For sufficiently large systems, the shedihe subscript or(},cg indicates explicitly that it is the di-
mode is linearly unstablén the steady-state picturen the  mensionless cooling rate associated with the HCS

IV. DISCUSSION

1
I (=VE(9), IV (8)= 5 LheaVl (8)+ LV} (9).
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DIFFUSION IN A GRANULAR FLUID. II. SIMULATION

7 Lres(t)
o= ——————, A3
Ehes Uhes(t) (A3)
where/ is the mean free path angicg(t) = V2Thcgt)/mis
the HCS thermal velocity. The temperatufgct) obeys
the equation

I Thes(t) = = Cred Thes(H) I Thes(t). (A4)
Now make the change of variables
G =Gl V= (WG9
S*=(LhedWr)s,  A** (s*)=A(s), (A5)
to get
(A;t>=J dI** p** (I'** ,s*)A({/ ™" ,v(t)
X(Lled WV, (A6)

with the definitiond™* p** (I'** ,s*)=dI"* p*(I'*,s). In
particular, the kinetic energy is

1
<—mvz;t

Mot =oed DR

1
Xf dr*p*(r** ,S*)Emv**Z

1
= 5 Mohes D™ 20™ 2i8*)**

(AT)
The corresponding temperature is
2/1 sl
T(t)= —<—mv2;t> = ZTHCS(t)( —g“cs) T** (s%),
d\2 w*
(A8)

where T** (s*)=d~}(v** 2;s*)** . The time derivative of
T** (s*) is then found to be

w* 4(t)
{hedt)

(Ige —W*)T** (s*)=— T** (s*). (A9)

PHYSICAL REVIEW E 65 051304

*
Uox

Wosd)*

Using the notation in Ref1] this can be written in terms of
the generators of the dynamics

Cr(s)=(H)p)*, o= (B1)

Ch(9)= f dI* (e£" ) pficsth= f dIr* ye £ S(plicah).
(B2)
The detailed forms for the linear operatof$ and £* are

given by Eqgs.(36) and (42) of Ref.[1] but will not be re-
quired here. A projection operator is defined by

PX=plicsih f dT™* yX. (B3)
It follows then that
PX(s) = plicstCy,(S), (B4)
with the choice
X(s) =€ (ol T*) ). (B5)
The equation of motion foK(s) is
(9s+ L*)X(8)=0 (B6)

and a closed equation féX(s) is obtained by operating on
this equation withP and Q=1—P to get the pair of equa-
tions

(9s+PL*P)PX(s)=—PL*QX(s),
(st QL*Q)QX(S)=—~QL*PX(s).
Solving formally forQX(s) in the second equation and sub-

stituting into the first gives the desired closed equation for
P X(s) [10],

(B7)

3 S ok ’ 3 3
(9s+PL* P)PX(S)—f ds'e  QETRE=SIPL*QL*PX(S')
0

=0. (B8)

Use of Eq. (B4) gives the corresponding equation for

This is still valid for a general homogeneous state. NowC;,(s),
assume the existence of a scaling solution, which implies

L)/ Zncs(t) = VT(1)/Thcs(t). Then
(dgx —W*)T** (¥) = — 20fcsT** ¥4s*).  (A10)
The solution is that given by Eq10) of the text.

APPENDIX B: MEMORY FUNCTION MODEL

The dimensionless velocity auto correlation function is
defined by

S
3sCx,(s)+ w,Ch (s)+ f ds'M(s—s")C},(s")=0,
0
(B9)

with the definitions

*

HCS (B10)

w1=f dT* Y L* phiesth=((L* ) h)*

and

051304-9



JAMES LUTSKO, J. JAVIER BREY, AND JAMES W. DUFTY

M(S):_J dr yL* e_QZ*QSQZ*P:ics . (B1Y

PHYSICAL REVIEW B5 051304

approximation discussed ji] and approximated in Eq14)
above. Finally, it is clear that structurally identical expres-
sions would have been obtained had we performed this deri-
vation using the scaled variables introduced in @&.of the

The definition forw, is the same as that for the Enskog text thus justifying the expression in EA.5).
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