VOLUME 78, NUMBER 2 PHYSICAL REVIEW LETTERS 13 ANUARY 1997

Approximate Solution of the Enskog Equation Far from Equilibrium

James F. Lutsko*

ESADG, Dept. of Chem. Engineering, Katholieke Universiteit Leuven, 46 de Croylaan, B-3001Heverlee, Belgium
(Received 26 July 1996

A moment method is used to solve the Enskog equation for the steady-state distribution under
conditions of uniform shear flow. Comparison to nonequilibrium molecular dynamics demonstrates that
the lowest order solution gives a good quantitative description of nonlinear effects such as shear thinning
and normal stresses in a moderately dense fluid. The results are used as a basis in the formulation of a
simple and quantitatively accurate kinetic model of the Enskog equation. [S0031-9007(96)02012-1]
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The hard-sphere potential has been the most interand time-dependent coefficients which, assuming the va-
sively studied interaction model in many areas of statisidity of the expansion, is equivalent to the Boltzmann
tical mechanics for at least two reasons. The first reasoaquation. Approximations are then introduced to truncate
is that hard-spheres exhibit many phenomena observed or decouple the equations allowing for an approximate so-
real systems, such as the existence of liquid, solid, antiition. The method has found particular use in the study
metastable phases, and indeed provide a good first approxif small-wavelength hydrodynamics near equilibrium [9]
mation for real systems of such properties as liquid strucwhere the close connection between the moment method
ture, transport properties, and both liquid- and solid-phasand kinetic models has been exploited. The purpose of
thermodynamic properties. The second reason is that this Letter is to show that the method may be used to ob-
hard-sphere interaction is the only one for which a tractabléain good approximate solutions to the Enskog equation
kinetic equation applicable at moderate densities, the Erfor systems far from equilibrium. In the following, atten-
skog equation [1-3], exists. The Enskog equation wasion is focused on USF since sheared fluids may be reliably
originally proposed on physical grounds as a finite-densitysimulated and the connection between theory and simula-
generalization of the Boltzmann equation which, althoughion is well understood. Indeed, for these reasons, USF
applicable to arbitrary two-body interaction models, is re-has been the subject of numerous investigations over the
stricted to low densities. The generalization of the Enskodast 20 years (see, e.g., Ref. [10]), and is often viewed as
equation by van Beijeren and Ernst [4] is capable of givinga prototypical nonequilibrium state free from complicat-
a unified description of liquid, solid, and metastable stateing features such as boundary effects. In addition, it has
[5]. However, because of the complexity of the Enskogbeen known for some time that the hard-sphere system is
equation, the only analytic solutions available are perturbadnstable at high shear rates [11] and theories of the insta-
tive and recently developed numerical techniques [6] haveility depend on knowledge of the one-body distribution
yet to be widely applied so that little is known about its[12,13]. Since only perturbative results, which lack im-
description of systems far from equilibrium. portant physical effects such as shear thinning, have been

The standard method of analyzing either the Boltzmanravailable, these theories remain tentative. One of the mo-
or the Enskog equation is the Chapman-Enskog expansidivations for the present work has been to allow for a more
[2,3] which is a perturbative expansion of the one-bodydetailed study of this problem.
distribution function, and the kinetic equation describing Both the Boltzmann and Enskog equations may be
it, in terms of the uniformity of the system. For exam- written in the form
ple, in a fluid undergoing uniform shear flow (USF), in P 9 PR
which the local macroscopic flow velocity along tkeaxis —f+0 —=f+ = Fif =JIff], @
varies linearly with position along theaxis, () = ay%, o1 9q v
this amounts to an expansion in powers of the shear rateyhere f(g,v,t) is the one-body reduced distribution
a. This expansion has only been performed in the genfunction depending in general on position, velocity, and
eral case to third order in the uniformity parameter andime, respectively. We include in the last term on
the range of validity of such results is presumably limitedthe left an external force since this is used in most
to near-equilibrium states; the analytic complexity of thesimulations of shear flow in order to counteract the effects
Chapman-Enskog procedure has proven prohibitive of thef viscous heating to maintain a constant temperature
study of higher-order effects. An alternative method ofthus establishing a steady (time-independent) state. The
analysis of the Boltzmann equation is the moment methoéxplicit form of the collision operator on the right is given
of Grad [2,7,8] according to which the distribution is ex- in the literature [2,3] and here we note only that it is a
pressed as an expansion in terms of velocity about locdlilinear function of the distribution. The most important
equilibrium. Keeping all terms in the expansion gives andifference between the Boltzmann and Enskog collisional
infinite set of coupled equations for the generally spaceterms is that the latter is nonlocal. The moment expansion
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of these equations is generated by first expanding thkierarchy. The general form of the collisional term in the
distribution in terms of a complete set of polynomials of nth moment equation is
the velocity

@9, = p(@:1)¢(q.c; t) BryinimArnApm) = f dv HyJ [ Hpry @ HpmlAnApm) »

1+ Z A[n](qs DH(E ), (2) )
where a summation ovér mis implied. For the Boltz-

where g is posmon th(le excess velocity reduced by themann equation, Grad proposed that a reasonable ap-
temperature isc = W[v — u(g,1)], p is the lo-  proximation is to include only collisional terms for
cal density,¢ is the local-equilibrium velocity distribu- which [ +m=n. This is based on the fact that for
tion and{H[,)( p)} is a complete set of polynomials in atoms interacting via an inverse fourth power potential
the components of. The equation is written using a (Maxwell molecules) all other contributions are exactly
short notation for indices whereby;,; = A,,..;,.. The co- zero [8]. In fact, for this reason, the Boltzmann equation
efficients of the expansion can depend explicitly on timecan be exactly solved for Maxwell molecules undergo-
whereas the local equilibrium distribution and the reducedng USF [14]. One reason for expecting this to be a
velocity can be time dependent only implicitly through thegood approximation for other potentials is that a similar
time dependence of the temperature and velocity fielddruncation in the case of the Chapman-Enskog expansion
The nth moment equation for the coefficients is obtained(the truncation of the Sonine expansion) is known to
by substituting the expansion into Eq. (1), multiplying by be quite accurate [3] and is also exact for Maxwell
Hp,, and integrating over velocity. The equations formolecules. Although this latter point remains true for
the density, temperature, and velocity fields are a subthe Enskog equation, it is not possible to adopt Grad's
set of the moment equations. The choice of polynomi-approximation unchanged. The reason is that some of the
als is arbitrary at this point and particular choices arecouplings for whichh + m < n are unique to the Enskog
relevant only in so far as the set of equations is trunequation, arising from the nonlocal nature of the collision
cated. | will work with the three-dimensional Hermite operator. Thus, for example, the terthss m = 0 are
polynomials used by Grad [8] since it simplifies the cal-identically zero for the Boltzmann equation because the
culations somewhat; kinetic models often use a set basddcal-equilibrium distribution is a null eigenvector of the
on the spherical harmonics [9]. The Hermite polynomialsoperator whereas for the Enskog operator, this is not true
are orthonormal and the first few afgy) = 1, H; = p;,  and these terms give an important contribution to the
andH;; = p;p; — 8;;. The orthornormality implies that transport coefficients. The simplest way to take this into
(H[)(¢)) = Apy3, Where the brackets indicate a veloc- account then is to write/[ f, f]1 = J[¢, ] + J'[ £, f]
ity average over the nonequilibrium distribution. In par— with J'[ £, f1=JLf.f] — J[$,d] and to apply Grad's
ticular, we have thadg) = (1) = p(q;1),A; = {¢c;) =0,  approximation to the operatdr.
and A;; =(cic; — 6,-,»)=P{§(21;r) 8ij, wherePK is the To apply this method to steady-state shear flow, it
kinetic part of the stress tensor. Note that the defiis necessary to take account of the external force, or
nition of the temperature as the average kinetic energthermostat, used in computer simulations. Many choices
implies that the second-order coefficient be traceless. ~ for this force are possible but we will work with the

To solve this system of equations, it is necessary to |n5|mplestFext = y¢, which corresponds to the velocity-
troduce some approximation to the collisional term whichrescaling thermostat commonly used. The first nontrivial
in general couples all moments into each equation in }hmoment equation then becomes

2a(8,(;6;)y + 6:(Aj)y) + 2v(6;; + Aij) = PX] dv Hij()J[¢,d] + CijimAim 4)

where the braced indices indicate symmetnzatlbn To test this approximation, | have performed molecular
with, e.g., 6,(;8,), = 2(5)”5», +6,;6;)) and Cppmy= ~ dynamics simulations of a sheared system of 108 hard
Bpujpm]o] T Bpjjojm; @nd x is the pair distribution spheres using Lees-Edwards [16] boundary conditions
function at contact (for which | use the Percus-Yevickand the velocity-rescaling thermostat [17]. The density
approximation to the virial equation of state [15]). Thewas chosen to be high enougpo?® = 0.5, that the
thermostat constant is fixed by taking the trace of thidinite density effects are significant but not so high
equation and using the tracelessness of the second-ordgs to invalidate the Enskog approximation. Figure 1
coefficient. This induces a nonlinearity in the equationsshows the kinetic contributions to the two viscoelastic
which must be solved numerically. In the present casefunctionsay; = (P, — Py,) anda’y, = (Py, — Pyy)

all numerical integrals were performed to a relativeas a function of shear rate and compared to the results
accuracy of one part in Fand solution of the moment of the second-moment calculations. The agreement is
equations by iteration to one part in30 reasonable over the entire range of shear rates. In
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0.12 ing n. =0 so that the approximation becomésf, f] ~
—v(f — p¢). Because the BGK model preserves many
of the most important properties of the Boltzmann equa-
tion, there has been considerable interest in its analysis
and a BGK-type model of the Enskog equation, which
we refer to as the DSB model, has recently been pro-
posed [18]. The difficulty of formulating such a model
lies in capturing the effects of the nonlocality of the col-
0 | , , , , lision operator. Most importantly, the local equilibrium
0 05 1 a* 15 2 25 dlstrlbL_ltl_on is not a null eigenvector of the Ens_kog opera-
tor as it is of the Boltzmann operator so the simple BGK

FIG. 1. The kinetic part o/ (i) as a function of reduced gnnroximation is obviously inappropriate. The idea be-
shear rate. The circles (squares) are the simulation results, t

full (dashed) line is the result of the moment solution, and nd the DSB ”.‘O.de' IS, In our language, to first separate
the dotted (dot-dashed) line is the result of the kinetic modelthe Enskog collision operator into two parts s/, f] =
Eq. (6). JOLE 1+ ULFF1 = JOLF, £, whereJP[ £, f] is

the Boltzmann operator, and to approximate the first term

] . ) . ) as in the BGK model and the second term by its projection
particular, while ¢, is relatively independent of the gnto the conserved variables as

shear rateyy, shows strongly nonlinear behavior which

is accurately modeled. Figure 2 shows the kinetic part(J[f,f]—J(B)[f,f])~HI~(E)B,-[Z][",]A[1]A[,,,]

of the shear viscosityy, defined byan = P,,. This ! .

again shows strongly nonlinear behavior and is again well + 3H () BysinmAmApmy - (9)

modeled by the calculations. These results verify therhe motivation for this approximation is to keep only

accuracy of the second moments since, as indicated aboM@iose projections of the collision operator that contribute
the measured functions constitute a direct measuremegy the pressure tensor and heat-flux vector in the hy-

of these coefficients. The collisional contributions to thedrodynamic equations thus including the collisional con-

pressure tensor are not as accurately modeled as are figyutions to those quantities [note that(¢) is just the
kinetic contributions due to the faqt that Fhey depend iNyelocity while H,, (¢) is proportional to the energy]. Note
general on all moments of the distribution. They arethat the coefficientsBy, ;-] Occurring in this equation
nevertheless quite reasonable, the deviations from thg§e the same as defined in Eq. (3) since the projection
simulation values being on the order of 20% at the highesif the Boltzmann operator onto the conserved densities
shear rates. A detailed comparison of these quantities wilk identically zero. It has been shown to give a good
be presented at a later date. gualitative description of shear-thinning and viscoelastic
Ingeneral, itis analytically difficult to calculate the cou- effects in USF. However, despite its qualitative success,
plings in the moment equations for the higher-order mothe model does not give the collisional contributions to the
ments even in the case of the Boltzmann equation.  ARjistribution function so that, e.g., the kinetic parts of the
obvious approximation is to replace these by a simpleransport coefficients do not contain any collisional con-
approximation of the formBp.(jm) ~ —»(8100(xm) +  tributions. Furthermore, because of the coupling of the

SmoS[ayry) for n > n., wheren, is some cutoff. Thisis yelocity and energy to the full, infinite, set of moments,
known as the Jackson-Gross extension of the BGK modghe model cannot, unlike the BGK model, be explicitly

(see, e.g., Ref. [9]); the BGK model itself consists of tak-solved even in the case of USF. The first problem is due

to the fact that the local equilibrium collisional contribu-
tions are being treated too crudely and is easily remedied

0.08 -

0.04 +

o181 by separating out the tert{ ¢, ¢ ] explicitly. As to the
complexity of the model, our results indicate that it is suf-

016 1 ficient to retain only the lowest order contributions in the
projection of the collision operator. This leads us to the

0.14 1 approximation

012 ILf f1~ b, 41 — v(f — ¢) + Hi(E)C] A

Ny + 3Hp (©) (Cly yuAim + ChypAimr) (6

0 05 1 a*15 2 25 with Cliypmy = Cpjim) — Cpijpo;- We have chosen, for

FIG. 2. The kinetic part of the shear viscosity as a function ofs'lmpllcr[yé:I to mCIL.jge . only thﬁse terms thatdgrl]ve tfrlle
reduced shear rate. The circles are the simulation results, tngest-or' er contri ut|_0.n5' to the pre_ssure_an eat flux.
full line is the result of the moment solution, and the dashed!he leading, local-equilibrium, term gives rise to the col-
line is the result of the kinetic model, Eq. (6). lisional contributions to the kinetic parts of the transport
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