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A moment method is used to solve the Enskog equation for the steady-state distribution und
conditions of uniform shear flow. Comparison to nonequilibrium molecular dynamics demonstrates th
the lowest order solution gives a good quantitative description of nonlinear effects such as shear thinn
and normal stresses in a moderately dense fluid. The results are used as a basis in the formulation
simple and quantitatively accurate kinetic model of the Enskog equation. [S0031-9007(96)02012-1]
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The hard-sphere potential has been the most inte
sively studied interaction model in many areas of stat
tical mechanics for at least two reasons. The first reas
is that hard-spheres exhibit many phenomena observe
real systems, such as the existence of liquid, solid, a
metastable phases, and indeed provide a good first appr
mation for real systems of such properties as liquid stru
ture, transport properties, and both liquid- and solid-pha
thermodynamic properties. The second reason is that
hard-sphere interaction is the only one for which a tractab
kinetic equation applicable at moderate densities, the E
skog equation [1–3], exists. The Enskog equation w
originally proposed on physical grounds as a finite-dens
generalization of the Boltzmann equation which, althoug
applicable to arbitrary two-body interaction models, is r
stricted to low densities. The generalization of the Ensk
equation by van Beijeren and Ernst [4] is capable of givin
a unified description of liquid, solid, and metastable stat
[5]. However, because of the complexity of the Ensko
equation, the only analytic solutions available are perturb
tive and recently developed numerical techniques [6] ha
yet to be widely applied so that little is known about it
description of systems far from equilibrium.

The standard method of analyzing either the Boltzma
or the Enskog equation is the Chapman-Enskog expans
[2,3] which is a perturbative expansion of the one-bod
distribution function, and the kinetic equation describin
it, in terms of the uniformity of the system. For exam
ple, in a fluid undergoing uniform shear flow (USF), in
which the local macroscopic flow velocity along thex axis
varies linearly with position along they axis, $us$rd ­ ayx̂,
this amounts to an expansion in powers of the shear ra
a. This expansion has only been performed in the ge
eral case to third order in the uniformity parameter an
the range of validity of such results is presumably limite
to near-equilibrium states; the analytic complexity of th
Chapman-Enskog procedure has proven prohibitive of t
study of higher-order effects. An alternative method
analysis of the Boltzmann equation is the moment meth
of Grad [2,7,8] according to which the distribution is ex
pressed as an expansion in terms of velocity about lo
equilibrium. Keeping all terms in the expansion gives a
infinite set of coupled equations for the generally spac
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and time-dependent coefficients which, assuming the
lidity of the expansion, is equivalent to the Boltzman
equation. Approximations are then introduced to trunc
or decouple the equations allowing for an approximate
lution. The method has found particular use in the stu
of small-wavelength hydrodynamics near equilibrium [
where the close connection between the moment met
and kinetic models has been exploited. The purpose
this Letter is to show that the method may be used to
tain good approximate solutions to the Enskog equat
for systems far from equilibrium. In the following, atten
tion is focused on USF since sheared fluids may be relia
simulated and the connection between theory and sim
tion is well understood. Indeed, for these reasons, U
has been the subject of numerous investigations over
last 20 years (see, e.g., Ref. [10]), and is often viewed
a prototypical nonequilibrium state free from complica
ing features such as boundary effects. In addition, it h
been known for some time that the hard-sphere system
unstable at high shear rates [11] and theories of the in
bility depend on knowledge of the one-body distributio
[12,13]. Since only perturbative results, which lack im
portant physical effects such as shear thinning, have b
available, these theories remain tentative. One of the m
tivations for the present work has been to allow for a mo
detailed study of this problem.

Both the Boltzmann and Enskog equations may
written in the form

≠

≠t
f 1 $y ?

≠

≠ $q
f 1

≠

≠ $y
? $Fextf ­ Jf f, fg , (1)

where fs $q, $y, td is the one-body reduced distributio
function depending in general on position, velocity, a
time, respectively. We include in the last term o
the left an external force since this is used in mo
simulations of shear flow in order to counteract the effe
of viscous heating to maintain a constant temperat
thus establishing a steady (time-independent) state.
explicit form of the collision operator on the right is give
in the literature [2,3] and here we note only that it is
bilinear function of the distribution. The most importa
difference between the Boltzmann and Enskog collisio
terms is that the latter is nonlocal. The moment expans
© 1997 The American Physical Society 243
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of these equations is generated by first expanding
distribution in terms of a complete set of polynomials o
the velocity

fs $q, $y, td ­ rs $q; tdfs$q, $c; td

3

(
1 1

X
n­1

1
n!

Afngs $q, tdHfngs$c; td

)
, (2)

where $q is position, the excess velocity reduced by th
temperature is$c ­

1p
kBTs $q,td

f $y 2 us $q, tdg, r is the lo-

cal density,f is the local-equilibrium velocity distribu-
tion and hHfngs $pdj is a complete set of polynomials in
the components of$p. The equation is written using a
short notation for indices wherebyAfng ; Ai1···in

. The co-
efficients of the expansion can depend explicitly on tim
whereas the local equilibrium distribution and the reduc
velocity can be time dependent only implicitly through th
time dependence of the temperature and velocity fiel
The nth moment equation for the coefficients is obtaine
by substituting the expansion into Eq. (1), multiplying b
Hfng, and integrating over velocity. The equations fo
the density, temperature, and velocity fields are a su
set of the moment equations. The choice of polynom
als is arbitrary at this point and particular choices a
relevant only in so far as the set of equations is tru
cated. I will work with the three-dimensional Hermite
polynomials used by Grad [8] since it simplifies the ca
culations somewhat; kinetic models often use a set ba
on the spherical harmonics [9]. The Hermite polynomia
are orthonormal and the first few areHf0g ­ 1, Hi ­ pi,
andHij ­ pipj 2 dij. The orthornormality implies that
kHfngs $cdl ­ Afng, where the brackets indicate a veloc
ity average over the nonequilibrium distribution. In pa
ticular, we have thatAf0g ­ k1l ­ rs $q; td, Ai ­ kcil ­ 0,
and Aij ­ kcicj 2 dijl ­ PK

ij s $q; td 2 dij, wherePK
ij is the

kinetic part of the stress tensor. Note that the de
nition of the temperature as the average kinetic ene
implies that the second-order coefficient be traceless.

To solve this system of equations, it is necessary to
troduce some approximation to the collisional term whic
in general couples all moments into each equation in
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hierarchy. The general form of the collisional term in th
nth moment equation is

Bfng flg fmgAflgAfmg ;
Z

d $y HfngJffHflg, fHfmggAflgAfmg ,

(3)

where a summation overl, m is implied. For the Boltz-
mann equation, Grad proposed that a reasonable
proximation is to include only collisional terms for
which l 1 m ­ n. This is based on the fact that fo
atoms interacting via an inverse fourth power potenti
(Maxwell molecules) all other contributions are exactl
zero [8]. In fact, for this reason, the Boltzmann equatio
can be exactly solved for Maxwell molecules underg
ing USF [14]. One reason for expecting this to be
good approximation for other potentials is that a simila
truncation in the case of the Chapman-Enskog expans
(the truncation of the Sonine expansion) is known
be quite accurate [3] and is also exact for Maxwe
molecules. Although this latter point remains true fo
the Enskog equation, it is not possible to adopt Grad
approximation unchanged. The reason is that some of
couplings for whichl 1 m , n are unique to the Enskog
equation, arising from the nonlocal nature of the collisio
operator. Thus, for example, the termsl ­ m ­ 0 are
identically zero for the Boltzmann equation because t
local-equilibrium distribution is a null eigenvector of the
operator whereas for the Enskog operator, this is not tr
and these terms give an important contribution to th
transport coefficients. The simplest way to take this in
account then is to writeJf f, fg ­ Jff, fg 1 J 0f f, fg
with J 0f f, fg ­ Jf f, fg 2 Jff, fg and to apply Grad’s
approximation to the operatorJ 0.

To apply this method to steady-state shear flow,
is necessary to take account of the external force,
thermostat, used in computer simulations. Many choic
for this force are possible but we will work with the
simplest $Fext ­ g $c, which corresponds to the velocity-
rescaling thermostat commonly used. The first nontriv
moment equation then becomes
2asdxsidjdy 1 dxsiAjdyd 1 2gsdij 1 Aijd ­ rx
Z

d $y Hijs$cdJff, fg 1 Cij,lmAlm , (4)
n
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where the braced indices indicate symmetrizat
with, e.g., dxsidjdy ­

1
2 sdxidjy 1 dxjdijd and Cfng fmg ;

Bfng fmg f0g 1 Bfng f0g fmg and x is the pair distribution
function at contact (for which I use the Percus-Yev
approximation to the virial equation of state [15]). T
thermostat constant is fixed by taking the trace of
equation and using the tracelessness of the second-
coefficient. This induces a nonlinearity in the equatio
which must be solved numerically. In the present ca
all numerical integrals were performed to a relat
accuracy of one part in 104 and solution of the momen
equations by iteration to one part in 103.
er

,

To test this approximation, I have performed molecu
dynamics simulations of a sheared system of 108 h
spheres using Lees-Edwards [16] boundary conditi
and the velocity-rescaling thermostat [17]. The dens
was chosen to be high enough,rs3 ­ 0.5, that the
finite density effects are significant but not so hi
as to invalidate the Enskog approximation. Figure
shows the kinetic contributions to the two viscoelas
functionsa2c1 ­ sPxx 2 Pyyd anda2c2 ­ sPyy 2 Pxxd
as a function of shear rate and compared to the res
of the second-moment calculations. The agreemen
reasonable over the entire range of shear rates.



VOLUME 78, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 13 JANUARY 1997

,
n
e

h
a

th
o

h

r
t
e
w

-
o
A
p

d
k

o

e

ny
a-

ysis
ch
ro-
el
l-

ra-
K
e-
ate

rm
ion

ly
te

hy-
n-

tion
ties
od
tic
ss,
he
he
n-
he
s,
ly
ue
-
ied

f-
e

he

e
ux.
l-
rt
FIG. 1. The kinetic part ofc1 (c2) as a function of reduced
shear rate. The circles (squares) are the simulation results
full (dashed) line is the result of the moment solution, a
the dotted (dot-dashed) line is the result of the kinetic mod
Eq. (6).

particular, while c1 is relatively independent of the
shear rate,c2 shows strongly nonlinear behavior whic
is accurately modeled. Figure 2 shows the kinetic p
of the shear viscosity,h, defined byah ­ Pxy . This
again shows strongly nonlinear behavior and is again w
modeled by the calculations. These results verify
accuracy of the second moments since, as indicated ab
the measured functions constitute a direct measurem
of these coefficients. The collisional contributions to t
pressure tensor are not as accurately modeled as are
kinetic contributions due to the fact that they depend
general on all moments of the distribution. They a
nevertheless quite reasonable, the deviations from
simulation values being on the order of 20% at the high
shear rates. A detailed comparison of these quantities
be presented at a later date.

In general, it is analytically difficult to calculate the cou
plings in the moment equations for the higher-order m
ments even in the case of the Boltzmann equation.
obvious approximation is to replace these by a sim
approximation of the formBfng flg fmg , 2nsdl0dfng fmg 1

dm0dfngflgd for n . nc, wherenc is some cutoff. This is
known as the Jackson-Gross extension of the BGK mo
(see, e.g., Ref. [9]); the BGK model itself consists of ta

FIG. 2. The kinetic part of the shear viscosity as a function
reduced shear rate. The circles are the simulation results,
full line is the result of the moment solution, and the dash
line is the result of the kinetic model, Eq. (6).
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ing nc ­ 0 so that the approximation becomesJf f, fg ,
2ns f 2 rfd. Because the BGK model preserves ma
of the most important properties of the Boltzmann equ
tion, there has been considerable interest in its anal
and a BGK-type model of the Enskog equation, whi
we refer to as the DSB model, has recently been p
posed [18]. The difficulty of formulating such a mod
lies in capturing the effects of the nonlocality of the co
lision operator. Most importantly, the local equilibrium
distribution is not a null eigenvector of the Enskog ope
tor as it is of the Boltzmann operator so the simple BG
approximation is obviously inappropriate. The idea b
hind the DSB model is, in our language, to first separ
the Enskog collision operator into two parts asJf f, fg ­
JsBdf f, fg 1 sJf f, fg 2 JsBdf f, fgd, where JsBdf f, fg is
the Boltzmann operator, and to approximate the first te
as in the BGK model and the second term by its project
onto the conserved variables as

sJf f, fg 2 JsBdf f, fgd , His$cdBiflg fmgAflgAfmg

1
1
3 Hrrs $cdBssflg fmgAflgAfmg . (5)

The motivation for this approximation is to keep on
those projections of the collision operator that contribu
to the pressure tensor and heat-flux vector in the
drodynamic equations thus including the collisional co
tributions to those quantities [note thatHis$cd is just the
velocity whileHrr s$cd is proportional to the energy]. Note
that the coefficientsBfng flg fmg occurring in this equation
are the same as defined in Eq. (3) since the projec
of the Boltzmann operator onto the conserved densi
is identically zero. It has been shown to give a go
qualitative description of shear-thinning and viscoelas
effects in USF. However, despite its qualitative succe
the model does not give the collisional contributions to t
distribution function so that, e.g., the kinetic parts of t
transport coefficients do not contain any collisional co
tributions. Furthermore, because of the coupling of t
velocity and energy to the full, infinite, set of moment
the model cannot, unlike the BGK model, be explicit
solved even in the case of USF. The first problem is d
to the fact that the local equilibrium collisional contribu
tions are being treated too crudely and is easily remed
by separating out the termJff, fg explicitly. As to the
complexity of the model, our results indicate that it is su
ficient to retain only the lowest order contributions in th
projection of the collision operator. This leads us to t
approximation

Jf f, fg , Jff, fg 2 ns f 2 fd 1 His$cdC0
i,lmAlm

1
1
3 Hrr s$cd sC0

ss,lmAlm 1 C0
ss,lmAlmrd , (6)

with C0
flg fmg ; Cflg fmg 2 Cflg f0g. We have chosen, for

simplicity, to include only those terms that give th
lowest-order contributions to the pressure and heat fl
The leading, local-equilibrium, term gives rise to the co
lisional contributions to the kinetic parts of the transpo
245
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coefficients. It could also be replaced by a projection o
a finite number of moments although this would mean lo
ing all explicit collisional contributions to the higher-orde
moments. Finally, we note that only the coefficientAlrr

contributes directly to the heat flux so that the last te
might be further simplified.

In the BGK model of the Boltzmann equation, th
choicen ­

16
p

pr

5 results in the model giving a very goo
quantitative approximation to the viscosity (within 2%
of the exact result from the Boltzmann equation). T
equivalent choice for the Enskog equation,n ­

16
p

prx

5 ,
wherex is the pair-distribution function at contact, give
an equivalently accurate approximation to the Ensk
viscosity. Furthermore, the model is, like the BGK mod
exactly solvable for USF. The results for the kinetic pa
of the normal stresses and the shear viscosity, with
suggested choice ofn, are also shown in Figs. 1 and
where it is seen that they are in excellent agreement w
the moment solution as well as with the simulations. T
serves to justify the fundamental ideas behind the D
approach to modeling the Enskog equation. Howev
the utility of such models obviously lies in the analys
of more complex problems for which good approxima
solutions to the Enskog equation, as presented here
USF, do not exist.

The author is grateful to the Dept. of Physics at t
Univ. of Fla. where part of this work was completed an
to J. W. Dufty, Andres, Santos, and J. J. Brey for seve
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