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Model for the atomic-scale structure of the homogeneous cooling state of granular fluids
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It is proposed that the equilibrium generalized mean spherical model of fluid structure may be extended to
nonequilibrium states with equation of state information used in equilibrium replaced by an exact condition on
the two-body distribution function. The model is applied to the homogeneous cooling state of granular fluids,
and upon comparison to molecular-dynamics simulations, is found to provide an accurate picture of the pair
distribution function.
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The atomic-scale structure, e.g., the pair distribution funceralize the equilibrium integral equations, like the Kirkwood
tion or, equivalently, the density-density equal-time correla-and the Percus-Yevick equations, to nonequilibrium fluids.
tion function, of both equilibrium and nonequilibrium fluids For the reasons just mentioned, the only way to carry out this
is directly accessible to experiment by means of light scatProgram was to start with an ansatz for t@ody distribu-
tering and has been used to study the behavior of compledon, which allows the development to parallel that of the

systems such as sheared colloidal suspengiinsiowever, €quilibrium equations. Whether or not this is a good ap-
the subject of nonequilibrium fluid structure remains 0b_proach is difficult to assess since the approximations made

scure, particularly when compared to the structure of equif"re uncontrolled, but it has been previously shgu4, and

o : L ill be argued in more detail below, that velocity correla-
“bm_l_m _fImds, W.h'(.:h IS one of_the most ad\{anc_ed areas Oﬁ[Iivons are the crucial determinant of atomic-scale deviations
equilibrium statistical mechanid®]. While kinetic theory

id ot it i from equilibrium structure and, it would follow, that ap-
can provide some asymplolic results, see €.g., R8s, roaches that do consider them may be missing an essential
models of the small-scale structure remain phenomenolog

> RO s X cContribution to the structure. Indeed, the role played by ve-
cal. This is not surprising; in equilibrium, one starts with thelocity correlations in determining one aspect of the structure
exf’;\ctN-bo_dy distribution and the problem is to mtegra_te (_)ut_of sheared simple fluids, namely, the value and angular de-
uninteresting degrees of freedom so as to get the pair distrhendence of the pair distribution function at contact, has al-
bution function (PDP. Away from equilibrium, even in  ready been demonstratgii6] and the purpose of this paper
steady states, th-body distribution function is not known s to show that the knowledge of such velocity correlations
and the only starting point is either a complex dynamicalcan be used to extend equilibrium structural models into the
equation, the Liouville equation, or equivalently a couplednonequilibrium domain.

set of equations, the Bogoliubov-Born-Green-Kirkwood- In order to avoid a number of complexities associated
Yvon (BBGKY) hierarchy relating then body to the @  with the spatial anisotropy of sheared fluids, the system used
+1)-body distribution functions. Another method used tohere to illustrate this model is the dissipative hard-sphere
derive equilibrium integral equations is based on the fact thafhodel used in the study of granular fluids. This fundamen-
from the BBGKY hierarchy it is easy, essentially by integrat- tally nonequilibrium system presents a unique opportunity
ing over the velocities, to derive the Yvon-Born-Green hier-for the application and development of nonequilibrium sta-
archy, which relates the pair distribution function to the trip-istical mechanics in a system, which is both of practical
let distribution function, the triplet to the quartic distribution relevance and yet sufficiently simple to be amenable to the-

function, etc. Some sort of closure hypothesis, like the nepretical analysis. The basis for such analysis is the Liouville

glect of three-body correlations, then yields a closed equagescription of the dynamics of the dissipative hard-sphere

tion for the PDF. see e Ref2,7]. However, away from model[17]. From this, Boltzmann- and Enskog-level kinetic
o » S€€ €.9., R y equations for the one-body distribution functi¢the dense-
equilibrium, the distribution of velocities is not known and

thi d t be foll din detail. O h tquid generalization of the Boltzmann equatidiollow and
IS procedure cannot be Tollowed In detail. Une approach o, qj, properties have been studied theoretically, in particular,
nonequilibrium fluid structure is that of Hess and co-worker

X . : Sthe Chapman-Enskog solution to it has been developed, giv-
[8,9]. The object there was to describe sheared colloidal susmg explicit expressions for the pressure and transport prop-

pensions as well as computer simulations of sheared simplgties of the systeri18], and it is possible to solve it by
fluids. The theory, based on a kind of relaxation approximaijonte Carlo simulatiorf19]. Despite the simplicity of the
tion, is phenomenological and will be considered in moredynamics, simulations have shown that this system exhibits a
detail below. Fluctuating hydrodynamics offers another posrich phenomenology, which is only partially understood at
sibility [10-12 but is restricted to length scales much largerpresenisee, e.g., Ref20]). The starting point for describing
than atomic length scales. Another approach, developethe phenomenology is the so-called homogeneous cooling
about a decade later by Et al. [13,14], was to try to gen-  state(HCS); since the collisions dissipate energy, the analog
of the equilibrium state is one that is spatially homogeneous
but in which the temperature decreases algebraically with
*Email address: jim.lutsko@skynet.be time. However, this state is relatively unstable as it is subject
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to a number of forms of spontaneous symmetry breaking.
The simplest example of this is the so-called clustering in-
stability in which sufficiently large systems, subject to no
external forces, exhibit a spatial clustering. This ha}s.beegvhere, in general, relative quantities are denotegasnp,
shown to be due to a small wave-vector hydrodynamic insta- ) A i !
bility [21]. Small systems for which the maximum wave vec- —Pj. unit vectors asq=q/|q|, and where th'SA equation
tor (as determined by the size of the simulation c&dltoo  serves to define the momentum-transfer operaipr The
large, do not exhibit the transition. Other phenomena includgarameter is called the coefficient of restitution and takes
the “shearing state21], in which the system remains struc- on values between or(elastic hard sphergand zero(plas-
turally homogeneous but long-ranged momentum correlatic collisions. Under this dynamics, the one-body distribu-
tions develop, and “inelastic collapse” in which a few par- tion function, f;(x,t)=f(q,p,t) and the two-body distribu-

ticles collide with one another many times until all relative tion functionf,(x,,x,,t) are related by the first equation of
momentum is dissipated and the particles come to rest ifhe BBGKY hierarchy[17]

contact with one another. One motivation for trying to un-
derstand the structure of the HCS is that it is needed as input
to various kinetic theory calculations that could be useful in
understanding some of these features.

The remainder of this paper is organized as follows. In
Sec. |, the relevant elements of kinetic theory are reviewed ~ A
and it is shown that the PDF at contact can in general be =02f dxzf do 8(qi—o0o) (o p12)
explicitly calculated with the same level of approximation as @
is used to get the Enskog equation. It is noted that both the —20 -1 -
PDF at cor%act, as well e?s tr?e pressure, can be calculated in Xla by 110~ Gz Pra)Ta(Xa X2, 1),
the HCS with no further approximations even though the 4
exact solution for the one-body distribution is not known. In
Sec. Il, the dynamics of the dissipative hard-sphere model is
reformulated, through a change of variables, so that the HC@here the notation indicates that integrationsofs over the
is mapped onto a steady state. Although mathematicallyinit sphere,®(x)=1 for x>0, and is otherwise zero and

eguivalfant, the stgady—gtate formglation is convenient. folyhereb =1 is the inverse ob,; and may be easily seen to be
simulations since it avoids numerical problems associated Y !

with the rapid decay of kinetic energy in the HCS and also

allows statistical properties, like the pressure, to be com- aA_q 1 ~

puted by replacing ensemble averages by time aver@ges bij “pij=pij — (1+ @ 7)pij- i dij - )
assumption of ergodicily Section Il consists of a presenta-

tion of a model for the structure of the HCS and Sec. IV _ o ) . )
presents a comparison of this model to the results of simulaFinally, the two-body distribution must satisfy the identity, a
tions. The paper concludes with a discussion of the result§ind of boundary conditiof16],

and their bearing on the questions raised above.

pij= by pi=pi — (1+ @)p;; - ;i ()

J
Efl(xl O+ pl'a_qlfl(xl 1)

I. THEORY 8(Q1=00) O Q1o P12 F2(X1,X2,1)
Th.e model granular fluiq consists.of a C(')I.Iection rof = 5(Qyo— 00) O (Qpp plZ)iBIZlfz(leX2vt)
classical hard spheres of diametehaving positiongy and a?
momentap, which experience inelastic binary collisions. Be-
tween collisions, the atoms freely stream so the state evolves ~ 1. A
according to g =0(0go— O'U)?blzl(a(_%z' P12 f2(X1,X2,1)
d (6)

mi 5% =Pi (1)

the origin of which — basically, the conservation of prob-
GiPi=Fi (2)  ability during a collision — is discussed in the appendix.

Here, | only note that this identity is independent of, and
where we allow for the possibility of an external force actingProvides information additional to, the first BBGKY hierar-
on the particles. Henceforth, we will consider only identicalchy equation given above. In fact, as discussed in the appen-
atoms and will use units in which the mass is equal to onediX, it can actually be derived from the second equation of
When two particles, sayandj , collide, their total momen- the BBGKY hierarchy. Using an abbreviated notatiov,,
tum is unaffected but their relative momentum is altered ac= 6(q.,— o), it is easily seen that the full distribution at
cording to contact can be written as
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_ - thus expressing the distribution at contact as the sum of an
Wiafo(xq X2, 1) =Wio® (= taz Pr)fa(Xa Xz 1) uncorre?ated te?m, the first on the right, and a term express-
+ W10 (12 P12) Fo(Xg .%o, 1) ing the corrections due to momentum correlations. In equi-
A librium, the second term vanishes. Naturally, the momenta of

=W4,0 (=12 P12) F2(X1,X5,1) the atoms are correlatexditer a collision and, in fact, Eq10)

allows us to determine these correlations in a manner consis-
tent with the degree of approximation of the generalized En-
skog equation. Although such an evaluation might be used in
a number of different ways, | will here focus one particular

(7)  application of it to the problem of understanding the struc-

. . ture of the nonequilibrium state. Specifically, integrating

The combinationd(g;,— 00) O (—q1- P12 f2(X1,X2,t) ap-  over momenta gives

pearing here, as well as in the collisional term in E4).

refers to the probability for two atoms just prior to a collision Wion(dy;t)n(az;t)9(as,02;t)

and we refer to it as the precollisional part of the distribution. _ .

Equation(8) thus expresses the two-body distribution at con- =Wi2n(42)n(42)9o(0s,d2;1)

tact solely in terms of the precollisional distribution. As dis- -

cussed in Ref[16], the assumption of “molecular chaos” +W1290(Q1,QZ)J dp; dp, © (012 P12)

used to obtain the Boltzmann equation and its generalization

to dense hard-sphere fluids, the Enskog equation, is that this 1.,

precollisional distribution can be approximated by neglecting X| bz =1 fa(x1, D) f1(X2,1), (11)

velocity correlations between the particles so that one writes @

where the  nonequilibrium  density is n(q;;t)

1. ~
+leg b2 ® (—Qup P12 fo(X1, X2, t).

W10 (= Q1o P12 F2(X1, X2, 1) = [dp,f1(xy,t). Equation(11) thus gives us an approximate
- evaluation of the contribution of momentum correlations to
=W320 (=12 P12)9o(d1,02) F1 (X1, 1) F1 (X2, 1), the structure of the fluid as expressed through the PDF. This

(8)  relation was first used in Ref16] to characterize velocity
correlations in a sheared fluid and has recently been used in
wheregy(d;,92;t) is theprecollisionalPDF at timet, which @ study of velocity correlations in granular fluids near equi-

is normally taken to be the local-equilibrium forf@2,23. librium [24].
Using this in Eq.(4), the generalized Enskog equation im-  The macroscopic balance equations for the density, mo-
mediately results mentum fieldmU , and energy density (3/R}T follow from

(4) by multiplying by 1,p;, and (1/2n)p?, respectively, and

J J integrating overp, to get[18
o1 f1 P2 —fa(xg,t) grating overp; to get[18]
a1

J
R L En+V~nU=O,
=(sz dxzf do d(dio—o0) (o P12
d
" ~ 1. . ) -1yp. =
X[a_zbij1+1]®(_Q12'p12)gO(Q1:QZ) atU'+U VUi+(mn)~d;P;; =0, (12

X f1(Xg, D) F(X2,t) ) P 2
S THU- VT o (P U+ V- 0) = = T3
while from the boundary condition, we get Jt NKe

and explicit forms of the pressure tengy, heat flux vector

Wiof 5(X1,X2,1) = W10 (— Q12 P12)9o(d1,d2) q and cooling rate/ are given in the literatur¢18]. The
source term in the temperature equation is due to the cooling
X (Xq, 1) F1(Xo,t) + W iB—l caused by the inelastic collisions. It is easy to see that a
pan R 12 2712 spatially homogeneous solution to these equations is possible
R with
X O (=012 P12)90(d1,92) B
n(r,t)=no,
X f1(X1,t)f1(X2,t)
uU=0, (13
=W1200(d1,02) f1(X1,t) f1(X2,1)
0 e
i

“ 1.
+ W10 (012 P12) ( 2 b, — 1)
whereng is a constant. Because there is no potential energy
X go(01,02) f1(Xq,t)f1(X2,t)  (10)  in hard-sphere systems, the time and energy scales are set by
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the temperature and so, on dimensional grounds, it is cleahe set of positions and velocities of atoms. . . X, in the
that ¢ is independent of temperature; the temperature i®riginal system byl",, and of those in the scaled system by
therefore given byT(t)=To[1+%§Té’2t]‘2 thus explicity T/, then them-body distribution will transform according to
demonstrating the cooling. A linear stability analysis of the

equations(12) expanded about the homogeneous cooling fm(Fm,t)=J~fm(Fr’n,t), (17)
state shows that the state is unstable against small wave-
vector fluctuation$21]. where J=1dI"} /dT' || = (wt,e"$)™P is the Jacobian of the

The PDF at contact for HCS can also be evaluated withtransformation for aD-dimensional system. We then find,
out explicit knowledge of the one-body distributi¢see the  €.9., that Eq(4) becomes
AppendiX and is

Jd ~ Jd ~
—f1(x1,8)+ ¢ a_qlfl(xi’sH ) -we,f1(x1,8)

.1 . 9s Jc,
X(U)Ev dg, dg, 8(d12— 00)g(d1,02:1)
1t =02f dx;dx;f do 8(0y— o0) (0 Cpo)
- 2 X0 (14)

X[a bt +110(— G el Ta(xixz, ) (18)
wherey, is defined by an analogous expression to this with ; ;
0(0y.0,:1) replaced bygo(qy a,:1). Finally. since it will be so that the only change is that a new term appears in the

: bel e th ion for th lisi treaming operator. This term has the same form as the arti-
of use below, we quote the expression for the ColliSioNakjqiy| thermostats used in the study of shear fldw]; how-
contribution to the pressure, which is

ever, here it arises solely from a change of variables. The

3 balance equations become

1 1 1
B
nkBT 3 i=1 nkBT J

e~
En+V~nV=O,
1+« R
:To'sf dO'f XmdXZ 5(qlz_0') 9
¢ VIV TV (mR) 1B —wyi=0,  (19)

X O (— 012 P12) (12 P12)2F1 (X1, 1)

i d~ ~ 2 - ~ ~ ~
X f1(X2,1)90(d1,0251) ET+V'VT+ M(Pijﬁjvﬁv'q)—ZWT: — T2,
1+«
=| =5 47xo(1), (15  where
where 7= (w/6)no>. The last line follows from the spatial V(q,S)=J decfy(x},s),

isotropy of the HCS and also does not require explicit

knowledge of the one-body distribution, which is useful

since an exact solution to the Enskog equation for the one- ng'T(q,S):J dc%mczfl(xi,s),
body distribution for HCS is not known.

etc. Now, the temperature of the homogeneous state is given

II. MAPPING HOMOGENEOUS COOLING STATE by
TO A STEADY STATE
- 2w\ ? 2w -2
Since the time scale is determined by the temperature, we T(t)=<? (1+ ( = 1) e ™ (20)
can simplify the description of this state by making a change ¢NT(0)

of variables. Specifically, define a scaled time coordinate vi
ws=In(t/ty) wherew andt, are arbitrary constants, and the
corresponding equations of motion are

%o that any initial temperature will equilibrate to a final
stable value of (%/¢)?. Thus, the original homogeneous
cooling state is mapped by this change of variables onto a
d superficially steady state. It is worth noting that if one were
—0g=¢;, to return to the original form of the dynamics and were to
ds periodically rescale the momenta of the atoms so as to re-
(16) store the temperature to its original value, then it is easy to
ic. —WG see that as the time interval between rescalings goes to zero,
ds™ v the resulting equations of motion can be written in the form
. (16) with the constant replaced by a complicated function of
wherec;=wtye"p; is the momentuntvelocity) in the new  the momenta. Periodic rescaling is commonly used in simu-
coordinates. To carry through the statistical description, weéations of sheared fluids and has recently been employed in
must define a new set of probability densities. If we denoteahe simulation of HC$24,25.
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This mapping also makes the hydrodynamic instabilityCarnahan-Starling equation of state as calculated by both the
apparent. If we expand19) about the steady state and retain pressure equation and the compressibility equation. The
terms to second order in the gradiefits., the Navier-Stokes original mean spherical approximatigMSA), for arbitrary
equationgand to first order in the densities and transform topair potentials ®(r), consists of requiring that®(r
Fourier spacéwith wave vectok), it is easy to see that the —o)c(r)=®(r) where the effective hard-sphere diameter is

vorticity, o=k x V, satisfies fit according to some criterion. The PY approximation is
then seen to be the MSA for hard spheres. Equa@&nhmay
é’tw-i—(vokz—w)a):O, (21) therefore be viewed as either the MSA for a potential that is

) ) ] ] the sum of Yukawas or as a general expansion with coeffi-
where v, is the shear viscosity evaluated at densityand  cjents to be fitted in which case it is termed the generalized
temperaturel ,= (2w/{)?. It is obviously unstable for suffi- MSA or GMSA and can be viewed as being systematic since
ciently small wave vectors and for sufficiently large systemsany function could be fitted as a sum of Yukawas.
we therefore expect a spontaneous shear to develog Note that Eq.(23) defines the direct correlation function

that v~ \To SO that the arbitrary constamt, plays no role and that the first of the boundary conditions in E2) is an
in the stability criteriof. It should also be noted that there is €xact requirement. The only way in which this model uses
a closely related instability in the totak € 0) velocity in the ~ the assumption that the system being modeled is in equilib-

mapped system which, in the linear stability analysis, obey&um is through the arguments that lead to the conclusion that
the direct correlation function is short ranged and hence the

justification for the boundary conditions in Eq&4) and
(25). This connection to the equilibrium state is made even
weaker in a reformulation of the model due to Yuste and
and so is clearly unstable for all system sizes. Since we are &antod27-29. They begin by noting that the Laplace trans-
liberty to choose the initial conditions to be those for whichform of the quantityrg(r), in the PY approximation, is natu-
V;(0)=0, we will find that this represents a minor problem rally written as

in the simulations and is of no theoretical significance.

P
—Vi(0)—wVi(0)=0 (22)

G(t)Ef dre srg(r)
I1l. MODELING THE STRUCTURE OF THE HCS 0

In this section, we will assume spatial homogeneity so tF(t)e !
that the PDF depends only on the scalar separation between PR — (26)
atoms. The simplest realistic model for the structure of the 1+129F(t)e
equilibrium hard-sphere fluid is the Percus-Yevick approxi-Wi,[h
mation(see e.g., Ref§2,26]). This consists of the Ornstein-
Zernike equation 1+At
R So+ Sit+ Syt + Sot® @0

h(r)zc(r)+pf dr'c(Jr=r'Dh(r’"), (23
They go on to point out that given the second equality of Eq.
whereh(r)=g(r)—1 andc(r) is the direct correlation func- (26) and making a Padapproximation for the functiof (t)

tion, together with the boundary conditions one can deduce the correct order of the numerator and de-
nominator of F(t) as well as the PY expressions for the
O(o—r)h(r)=-06(c—r), coefficients based solely on the asymptotic properties of the
(29 PDF. Specifically, they note théit) g(r) at contact is given
O(r—o)c(r)=0, by g(o)=lim,_ .. t?F(t) thus fixing the relative number of

h he i dition hile th d def hterms in the numerator and denominat@r) lim,_., g(r)
where the first condition is exact while the second defines the_ ; implies thatG(t) — t~2, and(iii) the fact that the static

approximation. Comparison with computer simulation shows t—0

that the Percus-Yevik approximation for the pair distributionstructure factor, given b$(a) =lim,_;q REtG(t)], is finite
function is quite accurate for separations greater that abowt q=0 implies, given the previous condition, that for small
two hard-sphere diameters but less accurate near contagt.G(t)=t2+o0(1). (The last condition is equivalent to as-
The description of the small-separation structure can be siguming that long-range correlations do not exi¥he mini-
nificantly improved by considering the Yukawa closure for mal approximant satisfying these conditions is that given in
the Ornstein-Zernike equation, which replaces the boundargq. (27) with the PY value for the coefficients. They also

condition on the direct correlation function by note that the extension of the Padgproximant to include
m one more term in both the numerator and denominator is
e ' exactly equivalent to the one-Yukawa closure while the fur-
O(r—1)c(r)=2, K; (25) . -
= r ther extension of the approximation corresponds to a closure

consisting of a sum of Yukawas. This method is also shown
and choosing the constanits and v; to reproduce known to give the PY solution for sticky hard spheres as well as the
properties, for example, takingn=1 and fitting the exact structure for both ordinary and sticky hard spheres in
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one dimension. A straightforward extension of these ideas a2 .
has also been used to model the square-well fluid. Thus, in Al:E 1 =Y Z[6ng(l,a)+1],
this formulation, the PY form o6(t) is taken as an ansatz 2 127 (2+9)—29(L;e)(n—1)?
characteristic of hard-core systems and the functdi)
modeled as a Padepproximant subject to whatever knowl-
edge exists about the structure.

With this justification in mind, we consider the applica- A=9(1;a)

1
(1+279)A— 5(2+ 7)

. . o o 1+67%9(1;a) '
tion of this approach to the nonequilibrium HCS. In equilib-
rium, the next inclusion of an additional term in the numera-gnd
tor and denominator df(z) introduces two new parameters
that are used to fit a known equation of statermally the d -1 1t _ -1
Carnahan-Starling equation of statrough both the pres- Z= %'BP =1+ T(Zeq -1 (32
sure equation and the compressibility equation. The pressure
equation for hard spheres in three dimensions r¢2afs with the Carnahan-Starling expressidi
p 1
mzl"_‘l”)(eq (28) 1_577
Xeq™ 3 (33

and so allows to calculate the PDF at contact, regal| (1=7)

=g(o), from the equation of state. In a nonequilibrium
state, the collisional boundary condition can be used, to
gether with assumption of molecular chaos, to give the sam
information. The equilibrium compressibility equation is

together with Eqs(15) and (14) completes the model. This
then reduces to the GMSA in equilibrium and can be seen as
fts natural generalization to a spatially isotropic nonequilib-

rium state.
d -1 -
%BP) = 1+pf drlg(r)—1] IV. MOLECULAR-DYNAMICS SIMULATIONS
To determine the structure of the model granular system,
. G(H)—=G(—t) : . )
=1-247lm , (29) | have performed molecular-dynamics simulations of small
t—0 2t systems of 108 and 500 particles in three dimensions gov-

erned by the steady-state dynamics described bylsjand

and for this, there is no obvious substitute for the nonequisubject to periodic boundary conditions. The density was
librium state. With nothing to use in its place, | will continue taken to ben* =0.5; high enough that finite density effects
to apply this even in the nonequilibrium state, calculating theare important but low enough that the Enskog approximation
pressure from Eq(15), which might be viewed as a local- is expected to be valid. The choice to simulate the steady-
equilibrium approximation. In fact, the resulting model is state dynamics, rather than to simulate the “real” dynamics
relatively insensitive to the value used for the pressure sincef the cooling system, was made on the basis that the sys-
this only fixes the area of the structure function whereas théems cool very rapidly so that the time scales involved in the
results are quite sensitive to the value of the PDF at contacsimulations become very large, the velocities and energies
Using do(ds,d2;t) =Jeq(d12) as is normally done in Enskog very small, and numerical inaccuracies due to round-off error

theory, the model is given by are a significant problem. This could be dealt with by peri-
odically rescaling the velocitigs.e., redefining the time unit
F(t)= 1 1+ A t+At2 as in Refs[24,25) but it is more elegant and efficient to

~ 125 (30 girectly simulate th dy-state dynamics. Furth h
1297 S + St +St2+ St3+ S, 14 irectly simulate the steady-state dynamics. Furthermore, the
Sot Sit+ S+ S-S, changes needed to implement this starting with a code for

with simulating equilibrium hard spheres are minimal. One point
that does require attention is the instability with respect to
So=1, the total momentum. Even if initial conditions are chosen so
that the total momentum is zero at the start of the simulation,
Si=A;—1, round-off errors lead to the spontaneous appearance of a

nonzero total momentum, which then quickly goes due to the
instability. This effect is, however, benign and is easily sup-

S$=A— A1+ 3, (3)  pressed by calculating the total momentum during each
propagation step and subtractingN}/of its value from the
momentum of each particle.

1 1+29 . . . . _
S;=—A,+ 2A1 o7 The starting point for the simulations was an equilibrium
n

configuration of velocities and positions. The value of the
thermostat constamw was set arbitrarily. For each value of
«, the simulations were “equilibrated” for a total of 3
24y’ x 10 collisions and then statistics gathered over a second
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FIG. 1. The PDF at contact for
9(o) n*=0.5 from simulation of 108 at-
oms (circles, 500 atoms
(squareys and from Eq.(14). The
lines between the simulation data
are only a guide to the eye.

0 } } t t t } } } t |
0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1
o

series of 3x10° collisions. To obtain steady-state averageswherey represents the colliding pair and which is the form
of one-body properties, quantities were time averaged oveaused to evaluate the collisional part of the PDF at contact,
periods of 16 collisions throughout the simulations; these [N(N—1)/2V]4mg(1)=(Zi-;8(q;—1)). Using |q,-p;]
samples were then treated as statistically independent est-= a|qy.py|, this becomes

mates and their average and standard error comd@@d

The errors in all quantities reported below are found to be 1 (a+1\1

small, less than 1%. The determination of collisional effects, 9(1)= ﬁ(g)f 2 0(-d,-p,)
such as in the pressure and the PDF at contact, is somewhat colifsionsy |-,/ 3
different. For any collisional quantity of the form (37

while for the pressure one finds
A= 2, A X))oy~ 1) (34) (1ta

C

2T collisionsy
the ergodic assumption gives
and in both cases, the step function indicates that the expres-
1 (T sion is evaluated with the precollisional momenta. Finally,
(A)= ?J dt A(t) we present below determinations of the PDF for finite sepa-
0 . . . . .
rations. These are determined in the obvious way by looping

17T over all pairs of atoms and creating a histogram of the sepa-
= 2 T dt A(x;,x;) 8(di;— 1) rations. The bin size used was 0.02@rd-sphere diametgrs
<) 1Jo and these were compiled every*I@bllisions and the results
. Iy averaged to obtain the final histogram.
=> idet 8(r;—1) AL | AKX) , Figure 1 shows the PDF at contact as determined from the
=i 2T Jo |Qij : pij| |qij . pi’jl simulations and from the collisional boundary condition. For

a>0.6, the agreement is seen to be good but below this it
@9 :
ecomes worse values; furthermore, there appears to be a
strong number dependence to the results with the larger sys-
fem diverging more rapidly from the prediction. In both
cases, simulations are only possible far above some
threshold; below this, the simulation code fails due to the
time between collisions becoming smaller and smaller until
the machine precision is reached. A detailed analysis of the
“sequence of collisions shows that this is due to a small num-
ber of particles with virtually no momentum relative to one
another colliding over and over again—in other words, this
is the phenomena of elastic collapse described by McNamara
and Young[31]. The threshold for the collapse is in the
. (39 range 0.3X a<<0.4 for the 500 particle system and &2
ty < 0.3 for the 108 particle system. In both cases, prior to the

where the first two lines integrate the total time dependenc
of the functionA. The third line follows from a change of
variable in the delta functior; (pi’j) is the relative momen-
tum of the colliding pair immediately befadiaften the colli-
sion, andr;; is the time at which the paii,j) collides(which
could be imaginary or outside the range of integration indi
cating in either case that they do not collidé&he last ex-
pression obviously reduces to a sum over collisions:

Aly) Ay

(A) ,
9Pl [a,-py)

2T collisions y
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225 1

FIG. 2. The PDF at equilib-
rium (ae=1) for n*=0.5 as deter-
mined from simulation of 500 at-
oms (circles and from the
(GMSA) model (curve. Lengths
1.25 - are shown in units of the hard-
sphere diameter.

a(r)

0.75 } t t {

collapse, the value of the PDF at contact is several times theuch greater than one finds in equilibrium and suggests a
highest values shown in Fig. 1. qualitative difference between them. One obvious possible
Similar behavior is seen in the pair distribution function. source of such a difference is the hydrodynamic instability
For reference, Fig. 2 shows the PDF at equilibrium as deterdiscussed above. Using the values for the transport coeffi-
mined from the 500-atom simulations and from the model:cients given by Ref[18], one finds the critical size curve
the agreement is seen to be excellent as is also the case ®RfOWN in Fig. 7, which indicates that the 108-atom system is
the data coming from the 108-atom system. Figures 3 and glways stable but that the 500-atom system becomes unstable
show the nonequilibrium part of the PDF.e., g(r) arounda< 0.6, however, knowledge of the transport coeffi-

_ ~ - . cients at smalk is only approximate so these numbers may
Iat?gg(;)r}dfg;/ttni #c))ﬁ eﬁﬁmbﬁiﬁegMass Ad%ezrnan;e:ngyosslmu only be indicative of the position of the instability. Never-

. . . heless, the importance of the instability in the larger system
re_spectlvely, and n bo_th cases,_th_e extended MSA is seen fg easily confirmed and Fig. 8, showing the velocities in one
give a good quantitative description of all features of the

oo . direction versus the positions along another as taken from a
nonequilibrium structure(In fact, since the molecular dy- napshot of the 500-atom system with 0.5, shows a spon-
namics results are, by their nature, binned, the theoreticgheqsly formed shearing profile. In a larger system, this
curve is obtained by integrating the model PDF over bins ofyoyid manifest itself in the form of vortices. Further evi-
the same size and position as used in the simulajiéfig:  gence of the instability can be found in the kinetic contribu-
ures 5 and 6 show that, not surprisingly, the agreement is N@fons to the pressure tensor where, beginning=0.7 in the
as good for the 500-atom system, particularly at the smallespo-atom system, an oscillation develops whereby a large
value of . fraction, on the order of 2/3 of the kinetic energy is concen-

The disparity between the results for the two systems israted in first one component of the pressure tensor and then

04 1

03 T

FIG. 3. The nonequilibrium
part of the PDF,é9(r)=9(r;«)
—g(r;1), for n*=0.5 atoms with
a=0.7 as determined from simu-
lation of 108 atomgcircles and
from the model(curve. Lengths
are shown in units of the hard-
sphere diameter.

02 1

a(n

0.1 +

0 I.. v w.-.. L1 II e

25 3

01+
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FIG. 4. Same as Fig. 3 fos

=0.5 and 108 atoms.

FIG. 5. Same as Fig. 3 fot
=0.7 and 500 atoms.

FIG. 6. Same as Fig. 3 fos
=0.5 and 500 atoms.
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20 +

FIG. 7. The critical system
sizes as a function o for n*
=0.5. Systems falling below the
curve are unstable. Lengths are
shown in units of the hard-sphere
diameter.

0 t t t t t t t t {
0 0.1 0.2 0.3 04 o 0.5 0.6 0.7 0.8 0.9

another indicating that macroscopic flows are forming. Thesquilibrium molecular-dynamics techniques such as Gauss’
obvious interpretation is that arourd=0.7 the shear mode principle of least constrairff32], but as the present purpose
is soft or unstable. There is no evidence of such an unstabls only to control the unstable mode, the crude method was
mode for any value of atr in the 108-atom system. This deemed sufficient. As shown in Fig. 9, the result is to give
picture is thus in qualitative agreement with the predictionsbetter agreement in the measured value of the PDF at contact
based on the calculations described above and has recentigtween the two systems while having relatively little effect
been observed in other studiezs]. in the smaller system except at the highest values of alpha.
We can suppress the instability in a crude way by periFigure 10 shows that the PDF, as determined from the con-
odically adjusting the velocities of the atoms. In these “con-strained simulation of the larger system, is in considerably
strained” simulations we interpose correction whereby aftebetter agreement with the model.
every 100 collisions, we calculate the amplitude of the long-
est wavelength Fourier modes of the systefns., A,
=2/N=N ¢ cosk,-q; for ky=(27/L)x, etc] and we then
subtract the mode from each atom’s velocitg;—c The main purpose of this paper has been to show that the
—>3 JA cosk;-q;). This is a crude procedure in that the GMSA can be extended to nonequilibrium systems by re-
amplitudes of the modes are only approximately set to zerglacing the equilibrium input required by the GMSA with
and it also has the effect of removing kinetic energy from theaccessible nonequilibrium information coming from the col-
system(which is, however, masked by the input of kinetic lisional boundary condition and, incidently, to elucidate the
energy coming from the equations of motio® more el-  atomic-scale structure of the HCS of granular fluids. In order
egant procedure could be devised based on standard not compare the predicted values of the PDF at contact and

V. DISCUSSION

20 +

FIG. 8. A snapshot of the 500-
atom system; the horizontal axis is
the position, in units of the hard-
sphere diameter, along theaxis
of the simulation, the vertical axis
shows the momentum along tlze
direction. The curve is a sine
function fitted to the data.

20 -
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FIG. 9. The PDF at contact for

6t n*=0.5 from the original uncon-
strained simulation of 108 atoms
g(o) (open circley the constrained
simulation of 108 atomscircles),
4T and the constrained simulation of

500 atomgsquaresand from Eq.
(14) (line). The lines between the
simulation data are only a guide to
27 the eye.

0 t t t t t t t t t {
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

the pressure with the results of simulations, the equations afreases withy in order to be in agreement with the simula-

motion of the dissipative hard-sphere system were mappeiibns, whereas Fig. 11 shows that pressure would require a

onto those that describe a steady state, thus allowing us smaller value that decreased with (in both the uncon-

use standard methods of steady-state simulation such as thgained and constrained simulatiprid/e thus conclude that

replacement of ensemble averages by time averages. Tlige deviations are due to the Enskog approximation itself and

comparisons with molecular-dynamics simulations also shoveould probably be described via mode coupling. Neverthe-

that the pair distribution function at contact can be used as kess, thaty, should depend om is intuitively clear; atoms

signal of the onset of elastic collapse—its value steadily di-moving slowly away from a collision will be more likely to

verges from the predicted value as the elastic collapse thresbe knocked, by a third atom, into a second collision with one

old is approached and its value in the simulations that featuranother leading to such a dependence.

the collapse is very large. As mentioned in the Introduction, one phenomenological
The significant differences observed between the 108- andpproach to the description of nonequilibrium structure is

500-atom systems were seen to be largely due to the sofhat of Hess and Rainwat¢8,9]. In its simplest form, this

hydrodynamic modes present in the larger system. Nevertheeduces to a relaxation model for the nonequilibrium contri-

less, even when these are accounted for, there remainsbation to the PDF:

significant deviation of the simulation results from the vari-

ous predictions of the Enskog theory. It is tempting to con- d _

clude that this is due to a poor estimation of the quantiy ag(r,t)Jrv(r,t) Vg(r=7""g(r,) = go(], (39)

for which we use the equilibrium value, but examination of

the pressure shows that the answer cannot be this simple; theéhere 7 is a relaxation time andjy(r) is taken to be the

PDF at contact would require larger value for xq that in-  equilibrium PDF. It is clear that for a homogeneous steady

1+

0.75

057 FIG. 10. Same as Fig. 6 far
=0.7 and 500 atoms and showing
data from the constrained simula-
tion.

g(n)

0.25

4 ' y L L L
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FIG. 11. The collisional con-
tribution to the reduced pressure,
P/nkgT, for n*=0.5 as deter-
mined from the unconstrained
108-atom simulation(diamond$
and from Eq.(15).

0 0.1 0.2 0.3 0.4 05 & 0.6 0.7

state with no flow this gives the trivial result thg{r,t)
=g0o(r). However, this model is intended only as a simpli-
fication of a more complex model given by

Jd
Eg(r,t)—l—v(r,t) : Vg(r!t)+ DV {go(r,t)V[g(r,t)/go(r)]}

01

(40

whereD is a kind of diffusion constant. Again, for a homo-

0.8 0.9 1

where
9(d1,92;t) =exd — Vne(ds,d2;t)]y(ds,023t),
fne(ds,dsit) =exd — Ve(dr,dz2;5t) ] -1 (44)
and where the nonequilibrium potentislfg(q;,0,;t) is a
sum of the equilibrium potential and terms related to the

moments of the velocity. This formulation has the desirable
property that, if linearized in the density by replacing

geneous steady state with no flow, only the last term surviveg, y(01,02:t)=Y(dy,0.;t) — 1, it reduces to the PY approxi-

so that this reduces to

1d ,d g(r) dgo(r) d g(r)
%) 2 g drgotn) T dr argon) O @Y
which has the solution
g(1) f(r)
g("):go(r)"'(m_l)f(_l)go(r),
(42)

o r_z
f(r):Jr SUPAGE

where we have used the boundary condition, ligog(r)

mation in equilibrium. It is difficult, however, to see how to
incorporate the exact requirement of the information coming
from the collisional boundary condition and it is therefore an
open question whether this can give a model comparable to
the nonequilibrium GMSA described above. Indeed, in the
derivation of this model, the authors explicitly neglect veloc-
ity correlations of the kind used here to control the model of
the structure. Nevertheless, the solution of this model to al-
low for such a comparison would be of some interest.

It is also appropriate to comment on the applicability of
the Enskog-level description of the system. The density cho-
sen for the simulations is one at which the Enskog descrip-
tion of elastic hard spheres is very good with most quantities
being accurately predicted to within a few percent. Further-
more, neither the calculation of the pressure nor the PDF at

=1. Although this has an interesting structure, the functiorgontact requires explicit knowledge of the one-body distribu-

f(r) is positive definite so that for HCS the differengér)

—0o(r) is also, which precludes a description of the oscilla-

tory nature of the differences found in the simulation.
Another approach is the theory of Eu and Jas,14),

tion at contact which is good, because no exact solution to
the Enskog equation for HCS exists. Nonetheless, the results
described above show that there are systematic deviations
from the Enskog predictions at all values of the coefficient of

also mentioned in the introduction. This theory is based onestitution. Evidence has also been given that these are at

an ansatz for theN-body nonequilibrium distribution and
takes the form of an integral equation:

Iny(q;,0,;t) = nf dags fne(dr,03:t)y(ds,0s;5t)

X{y(02,93:t)[1+ fye(dp,03;t) ] — 1}
(43

least partly due to the presence of soft modes within the
system. The conclusion is therefore mixed; while the Enskog
description seems to be qualitatively accurate, all but the
very smallest systems will contain soft or unstable modes
that result in significant deviations from it. This, more than
the separation of time scales discussed in R&3], would
seem to be the greatest obstacle to using a Boltzmann/
Enskog description of the one-body function or of using a
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hydrodynamic description of the macroscopic state. Indeed, 9 9 ~
the Enskog and hydrodynamic descriptions are successfulci{r’pl' ﬂ + P2 ﬁ}@)(%z— o) TA(xy,Xz51)
predicting fairly well the location of the hydrodynamic insta- ! 2
bility in the vorticity. A better test of these issues would be
to study a related system, such as a sheared granular fluid,  =p;» q120(q10— 50) F D (X1, X ;1) + O (01— 07p)
which may be more stable.

The nonequilibrium GMSA described here works surpris-
ingly well. Encouraging results have also been found when
this model was applied to simple sheared flUid§] and a

systematic study of this system is in progress. It is also o that there are two sources of singularities in the second
interest to try to improve on the use of the compressibilitygggky equation; one coming from the collision operator
equation in the nonequilibrium model: one substitute wouldynq one from the streaming operator. If we integrpteover

be information coming from kinetic theory such as the g yanishingly small interval centeredag, only the singular
asymptotic behavior of the PDF for which various ap-terms will contribute so that we conclude they must cancel
proaches are possible. independently of the regular terms. This gives

J J F(2)
X Dl'a—%ﬂLpz'a—%f (X1,X2;1) (A4)

APPENDIX: ORIGIN OF THE COLLISIONAL

. —oNF2 .
BOUNDARY CONDITION P12 0120(d12~ 00) (X0 X231)
— -2p-1
1. From Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy = 8012~ 00) (P12 Ui @ ?by, +1]
It is instructive to derive the collisional boundary condi- X O(—Pio U1 FA (X1, %25 1) (A5)

tion from the BBGKY hierarchy, the first equation of which
appears above as E@l). The second BBGKY equation is

J J

_ — T (2) .
8t+pl &Q1+p2 a0, T_(Xq1,X2) [F*)(Xq,X251)

8(U12— 00)O (P 41 TU(Xq,Xo31)

_ _ =6(Qq2— Uo)a_261_21®( P12 %2)7(2)()(1 Xo3t),
= f dXa[ T (X1,X3) + T (X2,X3) 1F (X1, %5, X351),

(A6)
(A1)
- . which is the desired result relating the postcollisional distri-
where the collision operator is bution, on the left, to the precollisional distribution on the
right. It is thus apparent that this identity carries part of the
Tf(Xl,X2)=(r§de<Af 0 (pyy t})(plz- (}) information of the second BBGKY hierarchy.
X[ 8(qy— an)afzﬁlle_ S(Qpot o'o(})] 2. From conservation of probability
It is clear that the probability to find two atoms moving
N R towards each other with a given relative momentum is the
= f do 8(o—00)O (P12 0)(P12 0) same as that to find two atoms in contact moving away from
one another with the corresponding postcollision momen-
X[ (G, 0)a” b1y — 8(drp+ 0)] tum:

e 8(Qro— 00)O (= qyp P1o) Fo(Xq X0, 1) d3%, d3x
= 8012~ 00) (P12 Y1) [O (P11 @ 2D iz Tz PTaX % e

+O(—p12 0] = 8(012— 00) O (Arp P1o) Fa(X] X5 1) d3%; ;.
(A7)
= 8(012— ) (P12 Y[ @ 2Dy +1]

Using
XO(— P12 d12)- (A2)

We now observe that no matter what the state, the atoms
cannot overlap, so we must be able to write the distribution

as (A8)

1
3y 3. — 3/ 3%’
d°x, d Xz_azd X1 d°X5,

~ _R-1 ' 2
FO(xy %11 = O (Gro— 7o) TP (X Xoit),  (A3) Falx1, %2, ) =Dz Talxg 2. 1),
so that this can be written as
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NP DU A(5)=(A)
8(Q12— 00) O (01 P1o) 015 Fa(X1 X3, 1)
a N(N-1) )
- ~ ’ ’ ’ :<A>0+ 2V f dxl dX2 5(q12_ (TO')
=68(012—00)O(Arz P fa(X1.%5,1).  (A9)

X A(Xq,%2) O (02 P1o) (@ 2Dt —1)
The factors ofe in the Jacobian arise because of the change 1:%2)0(Quz P22 v

from pre- to postcollisional momentg{,=— ap;, gives X f1(x1;0)F1(X2;1)90(A1,0251)
one factor ofa) and because the relation between positions

(t) after the collision and positions before the collision also —N(N_ ) 5
q P =(A)ot >V dxy dx; 6(Q—o0)

involves the momenta giving a second factoraof
X F10xa ;1) F1(Xo 1) Gol(Ga . 8z; ) (@ *Dip— 1)

3. Evaluating correlations at contact .
X O (012 P12 A(X1,X2)

From the identity and the assumption of molecular chaos,
we have . R A
. =(A)o+ 2, (8(d;—0a)[O(—ay-py)a by

(o= o)V ix(Xq1,Xz,t) I=l

= 8(Guy— 00 F1(%0 1) Fa(Xo11)Go( 01 G t) ~ O JAKG X))o (ALD)
and, in particular, ifA(x; ;) = 1/4wn? then
+ (01— 00)O(Q1p Pro)(a 2Dy, —1) . - l-a .
g(o)=go(a)+ ——go(o)
X F1(X0 0 f1(X231) P0Gy, 0231), (A10) ° 2o 7°
. 1+« -
so that if averages ovédr (x4 ;t)f1(X2;t)go(q1,02;t) are de- = do(0) (A12)
noted by (...), then for any two-body functionA 2a
=3 5iA(X X)) 8(q;; —cr&) one finds as reported in the text.
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