
PHYSICAL REVIEW E, VOLUME 63, 061211
Model for the atomic-scale structure of the homogeneous cooling state of granular fluids
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It is proposed that the equilibrium generalized mean spherical model of fluid structure may be extended to
nonequilibrium states with equation of state information used in equilibrium replaced by an exact condition on
the two-body distribution function. The model is applied to the homogeneous cooling state of granular fluids,
and upon comparison to molecular-dynamics simulations, is found to provide an accurate picture of the pair
distribution function.
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The atomic-scale structure, e.g., the pair distribution fu
tion or, equivalently, the density-density equal-time corre
tion function, of both equilibrium and nonequilibrium fluid
is directly accessible to experiment by means of light sc
tering and has been used to study the behavior of com
systems such as sheared colloidal suspensions@1#. However,
the subject of nonequilibrium fluid structure remains o
scure, particularly when compared to the structure of eq
librium fluids, which is one of the most advanced areas
equilibrium statistical mechanics@2#. While kinetic theory
can provide some asymptotic results, see e.g., Refs.@3–6#,
models of the small-scale structure remain phenomenol
cal. This is not surprising; in equilibrium, one starts with t
exactN-body distribution and the problem is to integrate o
uninteresting degrees of freedom so as to get the pair di
bution function ~PDF!. Away from equilibrium, even in
steady states, theN-body distribution function is not known
and the only starting point is either a complex dynami
equation, the Liouville equation, or equivalently a coupl
set of equations, the Bogoliubov-Born-Green-Kirkwoo
Yvon ~BBGKY! hierarchy relating then body to the (n
11)-body distribution functions. Another method used
derive equilibrium integral equations is based on the fact
from the BBGKY hierarchy it is easy, essentially by integra
ing over the velocities, to derive the Yvon-Born-Green hi
archy, which relates the pair distribution function to the tr
let distribution function, the triplet to the quartic distributio
function, etc. Some sort of closure hypothesis, like the
glect of three-body correlations, then yields a closed eq
tion for the PDF, see e.g., Refs.@2,7#. However, away from
equilibrium, the distribution of velocities is not known an
this procedure cannot be followed in detail. One approac
nonequilibrium fluid structure is that of Hess and co-work
@8,9#. The object there was to describe sheared colloidal s
pensions as well as computer simulations of sheared sim
fluids. The theory, based on a kind of relaxation approxim
tion, is phenomenological and will be considered in mo
detail below. Fluctuating hydrodynamics offers another p
sibility @10–12# but is restricted to length scales much larg
than atomic length scales. Another approach, develo
about a decade later by Euet al. @13,14#, was to try to gen-
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eralize the equilibrium integral equations, like the Kirkwoo
and the Percus-Yevick equations, to nonequilibrium flui
For the reasons just mentioned, the only way to carry out
program was to start with an ansatz for then-body distribu-
tion, which allows the development to parallel that of t
equilibrium equations. Whether or not this is a good a
proach is difficult to assess since the approximations m
are uncontrolled, but it has been previously shown@15#, and
will be argued in more detail below, that velocity correl
tions are the crucial determinant of atomic-scale deviati
from equilibrium structure and, it would follow, that ap
proaches that do consider them may be missing an esse
contribution to the structure. Indeed, the role played by
locity correlations in determining one aspect of the struct
of sheared simple fluids, namely, the value and angular
pendence of the pair distribution function at contact, has
ready been demonstrated@16# and the purpose of this pape
is to show that the knowledge of such velocity correlatio
can be used to extend equilibrium structural models into
nonequilibrium domain.

In order to avoid a number of complexities associa
with the spatial anisotropy of sheared fluids, the system u
here to illustrate this model is the dissipative hard-sph
model used in the study of granular fluids. This fundame
tally nonequilibrium system presents a unique opportun
for the application and development of nonequilibrium s
tistical mechanics in a system, which is both of practic
relevance and yet sufficiently simple to be amenable to t
oretical analysis. The basis for such analysis is the Liouv
description of the dynamics of the dissipative hard-sph
model@17#. From this, Boltzmann- and Enskog-level kinet
equations for the one-body distribution function~the dense-
fluid generalization of the Boltzmann equation! follow and
their properties have been studied theoretically, in particu
the Chapman-Enskog solution to it has been developed,
ing explicit expressions for the pressure and transport pr
erties of the system@18#, and it is possible to solve it by
Monte Carlo simulation@19#. Despite the simplicity of the
dynamics, simulations have shown that this system exhib
rich phenomenology, which is only partially understood
present~see, e.g., Ref.@20#!. The starting point for describing
the phenomenology is the so-called homogeneous coo
state~HCS!; since the collisions dissipate energy, the ana
of the equilibrium state is one that is spatially homogene
but in which the temperature decreases algebraically w
time. However, this state is relatively unstable as it is sub
©2001 The American Physical Society11-1
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JAMES F. LUTSKO PHYSICAL REVIEW E 63 061211
to a number of forms of spontaneous symmetry break
The simplest example of this is the so-called clustering
stability in which sufficiently large systems, subject to
external forces, exhibit a spatial clustering. This has b
shown to be due to a small wave-vector hydrodynamic in
bility @21#. Small systems for which the maximum wave ve
tor ~as determined by the size of the simulation cell! is too
large, do not exhibit the transition. Other phenomena incl
the ‘‘shearing state’’@21#, in which the system remains struc
turally homogeneous but long-ranged momentum corr
tions develop, and ‘‘inelastic collapse’’ in which a few pa
ticles collide with one another many times until all relati
momentum is dissipated and the particles come to res
contact with one another. One motivation for trying to u
derstand the structure of the HCS is that it is needed as i
to various kinetic theory calculations that could be usefu
understanding some of these features.

The remainder of this paper is organized as follows.
Sec. I, the relevant elements of kinetic theory are review
and it is shown that the PDF at contact can in general
explicitly calculated with the same level of approximation
is used to get the Enskog equation. It is noted that both
PDF at contact, as well as the pressure, can be calculate
the HCS with no further approximations even though
exact solution for the one-body distribution is not known.
Sec. II, the dynamics of the dissipative hard-sphere mode
reformulated, through a change of variables, so that the H
is mapped onto a steady state. Although mathematic
equivalent, the steady-state formulation is convenient
simulations since it avoids numerical problems associa
with the rapid decay of kinetic energy in the HCS and a
allows statistical properties, like the pressure, to be co
puted by replacing ensemble averages by time averages~the
assumption of ergodicity!. Section III consists of a presenta
tion of a model for the structure of the HCS and Sec.
presents a comparison of this model to the results of sim
tions. The paper concludes with a discussion of the res
and their bearing on the questions raised above.

I. THEORY

The model granular fluid consists of a collection ofN
classical hard spheres of diameters having positionsq and
momentap, which experience inelastic binary collisions. B
tween collisions, the atoms freely stream so the state evo
according to

mi

d

dt
qi5pi ~1!

d

dt
pi5Fi ~2!

where we allow for the possibility of an external force acti
on the particles. Henceforth, we will consider only identic
atoms and will use units in which the mass is equal to o
When two particles, sayi and j , collide, their total momen-
tum is unaffected but their relative momentum is altered
cording to
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pi j ⇒b̂i j pi j [pi j 2~11a!pi j •q̂i j q̂i j ~3!

where, in general, relative quantities are denoted aspi j 5pi

2pj , unit vectors asq̂[q/uqu, and where this equation

serves to define the momentum-transfer operatorb̂i j . The
parametera is called the coefficient of restitution and take
on values between one~elastic hard spheres! and zero~plas-
tic collisions!. Under this dynamics, the one-body distrib
tion function, f 1(x,t)[ f 1(q,p,t) and the two-body distribu-
tion function f 2(x1 ,x2 ,t) are related by the first equation o
the BBGKY hierarchy@17#

]

]t
f 1~x1 ,t !1p1•

]

]q1
f 1~x1 ,t !

5s2E dx2E
V

dŝ d~q122sŝ!~ŝ•p12!

3@a22b̂12
2111#Q~2q̂12•p12! f 2~x1 ,x2 ,t !,

~4!

where the notation indicates that integration ofŝ is over the
unit sphere,Q(x)51 for x.0, and is otherwise zero an
whereb̂i j

21 is the inverse ofb̂i j and may be easily seen to b

b̂i j
21pi j [pi j 2~11a21!pi j •q̂i j q̂i j . ~5!

Finally, the two-body distribution must satisfy the identity,
kind of boundary condition@16#,

d~q122sŝ!Q~ q̂12•p12! f 2~x1 ,x2 ,t !

5d~q122sŝ!Q~ q̂12•p12!
1

a2
b̂12

21f 2~x1 ,x2 ,t !

5d~q122sŝ!
1

a2
b̂12

21Q~2q̂12•p12! f 2~x1 ,x2 ,t !

~6!

the origin of which — basically, the conservation of pro
ability during a collision — is discussed in the append
Here, I only note that this identity is independent of, a
provides information additional to, the first BBGKY hiera
chy equation given above. In fact, as discussed in the ap
dix, it can actually be derived from the second equation
the BBGKY hierarchy. Using an abbreviated notation,W12

[d(q122sŝ), it is easily seen that the full distribution a
contact can be written as
1-2
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A MODEL FOR THE ATOMIC-SCALE STRUCTURE OF . . . PHYSICAL REVIEW E 63 061211
W12f 2~x1 ,x2 ,t !5W12Q~2q̂12•p12! f 2~x1 ,x2 ,t !

1W12Q~ q̂12•p12! f 2~x1 ,x2 ,t !

5W12Q~2q̂12•p12! f 2~x1 ,x2 ,t !

1W12

1

a2
b̂12

21Q~2q̂12•p12! f 2~x1 ,x2 ,t !.

~7!

The combinationd(q122sŝ)Q(2q̂12•p12) f 2(x1 ,x2 ,t) ap-
pearing here, as well as in the collisional term in Eq.~4!
refers to the probability for two atoms just prior to a collisio
and we refer to it as the precollisional part of the distributio
Equation~8! thus expresses the two-body distribution at co
tact solely in terms of the precollisional distribution. As di
cussed in Ref.@16#, the assumption of ‘‘molecular chaos
used to obtain the Boltzmann equation and its generaliza
to dense hard-sphere fluids, the Enskog equation, is that
precollisional distribution can be approximated by neglect
velocity correlations between the particles so that one wr

W12Q~2q̂12•p12! f 2~x1 ,x2 ,t !

.W12Q~2q̂12•p12!g0~q1 ,q2! f 1~x1 ,t ! f 1~x2 ,t !,

~8!

whereg0(q1 ,q2 ;t) is theprecollisionalPDF at timet, which
is normally taken to be the local-equilibrium form@22,23#.
Using this in Eq.~4!, the generalized Enskog equation im
mediately results

]

]t
f 1~x1 ,t !1p1•

]

]q1
f 1~x1 ,t !

5s2E dx2E dŝ d~q122sŝ!~ŝ•p12!

3@a22b̂i j
2111#Q~2q̂12•p12!g0~q1 ,q2!

3 f 1~x1 ,t ! f 1~x2 ,t ! ~9!

while from the boundary condition, we get

W12f 2~x1 ,x2 ,t !5W12Q~2q̂12•p12!g0~q1 ,q2!

3 f 1~x1 ,t ! f 1~x2 ,t !1W12

1

a2
b̂12

21

3Q~2q̂12•p12!g0~q1 ,q2!

3 f 1~x1 ,t ! f 1~x2 ,t !

5W12g0~q1 ,q2! f 1~x1 ,t ! f 1~x2 ,t !

1W12Q~ q̂12•p12!S 1

a2
b̂12

2121D
3g0~q1 ,q2! f 1~x1 ,t ! f 1~x2 ,t ! ~10!
06121
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thus expressing the distribution at contact as the sum o
uncorrelated term, the first on the right, and a term expre
ing the corrections due to momentum correlations. In eq
librium, the second term vanishes. Naturally, the momenta
the atoms are correlatedaftera collision and, in fact, Eq.~10!
allows us to determine these correlations in a manner con
tent with the degree of approximation of the generalized E
skog equation. Although such an evaluation might be use
a number of different ways, I will here focus one particul
application of it to the problem of understanding the stru
ture of the nonequilibrium state. Specifically, integrati
over momenta gives

W12n~q1 ;t !n~q2 ;t !g~q1 ,q2 ;t !

5W12n~q1!n~q2!g0~q1 ,q2 ;t !

1W12g0~q1 ,q2!E dp1 dp2 Q~ q̂12•p12!

3S 1

a2
b̂12

2121D f 1~x1 ,t ! f 1~x2 ,t !, ~11!

where the nonequilibrium density is n(q1 ;t)
5*dp1f 1(x1 ,t). Equation~11! thus gives us an approximat
evaluation of the contribution of momentum correlations
the structure of the fluid as expressed through the PDF. T
relation was first used in Ref.@16# to characterize velocity
correlations in a sheared fluid and has recently been use
a study of velocity correlations in granular fluids near eq
librium @24#.

The macroscopic balance equations for the density, m
mentum fieldmU , and energy density (3/2)kBT follow from
~4! by multiplying by 1,p1, and (1/2m)p1

2, respectively, and
integrating overp1 to get @18#

]

]t
n1“•nU50,

]

]t
Ui1U•“Ui1~mn!21] j Pi j 50, ~12!

]

]t
T1U•“T1

2

3nkB
~Pi j ] jUi1“•q!52T3/2z

and explicit forms of the pressure tensorPi j , heat flux vector
q and cooling ratez are given in the literature@18#. The
source term in the temperature equation is due to the coo
caused by the inelastic collisions. It is easy to see tha
spatially homogeneous solution to these equations is pos
with

n~r ,t !5n0 ,

U50, ~13!

]

]t
T52T3/2z,

wheren0 is a constant. Because there is no potential ene
in hard-sphere systems, the time and energy scales are s
1-3
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JAMES F. LUTSKO PHYSICAL REVIEW E 63 061211
the temperature and so, on dimensional grounds, it is c
that z is independent of temperature; the temperature
therefore given byT(t)5T0@11 1

2 zT0
1/2t#22 thus explicitly

demonstrating the cooling. A linear stability analysis of t
equations~12! expanded about the homogeneous cool
state shows that the state is unstable against small w
vector fluctuations@21#.

The PDF at contact for HCS can also be evaluated w
out explicit knowledge of the one-body distribution~see the
Appendix! and is

x~ŝ![
1

VE dq1 dq2 d~q122sŝ!g~q1 ,q2 ;t !

5
11a

2a
x0 , ~14!

wherex0 is defined by an analogous expression to this w
g(q1 ,q2 ;t) replaced byg0(q1 ,q2 ;t). Finally. since it will be
of use below, we quote the expression for the collisio
contribution to the pressure, which is

1

nkBT
pc5

1

3 (
i 51

3
1

nkBT
Pi j

c

5
11a

4
s3E

V
dŝE dx1 dx2 d~q122s!

3Q~2q̂12•p12!~ q̂12•p12!
2f 1~x1 ,t !

3 f 1~x2 ,t !g0~q1 ,q2 ;t !

5S 11a

2 D4hx0~ t !, ~15!

whereh5(p/6)ns3. The last line follows from the spatia
isotropy of the HCS and also does not require expl
knowledge of the one-body distribution, which is use
since an exact solution to the Enskog equation for the o
body distribution for HCS is not known.

II. MAPPING HOMOGENEOUS COOLING STATE
TO A STEADY STATE

Since the time scale is determined by the temperature
can simplify the description of this state by making a chan
of variables. Specifically, define a scaled time coordinate
ws5 ln(t/t0) wherew and t0 are arbitrary constants, and th
corresponding equations of motion are

d

ds
q5ci ,

~16!
d

ds
ci5wci ,

wherecW i5wt0ewspi is the momentum~velocity! in the new
coordinates. To carry through the statistical description,
must define a new set of probability densities. If we den
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the set of positions and velocities of atomsx1 . . . xm in the
original system byGm and of those in the scaled system b
Gm8 , then them-body distribution will transform according to

f m~Gm ,t !5J f̃m~Gm8 ,t !, ~17!

where J5u]Gm8 /]Gm8 u5(wt0ews)mD is the Jacobian of the
transformation for aD-dimensional system. We then find
e.g., that Eq.~4! becomes

]

]s
f̃ 1~x18 ,s!1c1•

]

]q1
f̃ 1~x18 ,s!1

]

]c1
•wc1 f̃ 1~x18 ,s!

5s2E dx18 dx28E dŝ d~q122sŝ!~ŝ•c12!

3@a22b̂i j
2111#Q~2q̂12•c12! f̃ 2~x18x28 ,t ! ~18!

so that the only change is that a new term appears in
streaming operator. This term has the same form as the
ficial thermostats used in the study of shear flow@11#; how-
ever, here it arises solely from a change of variables. T
balance equations become

]

]t
ñ1“•ñV50,

]

]t
Vi1V•“Vi1~mñ!21] j P̃i j 2wVi50, ~19!

]

]t
T̃1V•“T̃1

2

3nkB
~ P̃i j ] jVi1“•q̃!22wT̃52T̃3/2z,

where

V~q,s!5E dc cf̃ 1~x18 ,s!,

3
2 kBT̃~q,s!5E dc 1

2 mc2 f̃ 1~x18 ,s!,

etc. Now, the temperature of the homogeneous state is g
by

T̃~ t !5S 2w

z
D 2X11S 2w

zAT̃~0!
21D e2wtC22

~20!

so that any initial temperature will equilibrate to a fin
stable value of (2w/z)2. Thus, the original homogeneou
cooling state is mapped by this change of variables ont
superficially steady state. It is worth noting that if one we
to return to the original form of the dynamics and were
periodically rescale the momenta of the atoms so as to
store the temperature to its original value, then it is easy
see that as the time interval between rescalings goes to z
the resulting equations of motion can be written in the fo
~16! with the constant replaced by a complicated function
the momenta. Periodic rescaling is commonly used in sim
lations of sheared fluids and has recently been employe
the simulation of HCS@24,25#.
1-4
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A MODEL FOR THE ATOMIC-SCALE STRUCTURE OF . . . PHYSICAL REVIEW E 63 061211
This mapping also makes the hydrodynamic instabi
apparent. If we expand~ 19! about the steady state and reta
terms to second order in the gradients~i.e., the Navier-Stokes
equations! and to first order in the densities and transform
Fourier space~with wave vectork), it is easy to see that th
vorticity, v5 k̂3V, satisfies

] tv1~n0k22w!v50, ~21!

wheren0 is the shear viscosity evaluated at densityn0 and
temperatureT̃05(2w/z)2. It is obviously unstable for suffi-
ciently small wave vectors and for sufficiently large system
we therefore expect a spontaneous shear to develop~note

that n0;AT̃0 so that the arbitrary constantw, plays no role
in the stability criterion!. It should also be noted that there
a closely related instability in the total (k50) velocity in the
mapped system which, in the linear stability analysis, ob

]

]t
Vi~0!2wVi~0!50 ~22!

and so is clearly unstable for all system sizes. Since we a
liberty to choose the initial conditions to be those for whi
Vi(0)50, we will find that this represents a minor proble
in the simulations and is of no theoretical significance.

III. MODELING THE STRUCTURE OF THE HCS

In this section, we will assume spatial homogeneity
that the PDF depends only on the scalar separation betw
atoms. The simplest realistic model for the structure of
equilibrium hard-sphere fluid is the Percus-Yevick appro
mation~see e.g., Refs.@2,26#!. This consists of the Ornstein
Zernike equation

h~r !5c~r !1rE dr 8c~ ur2r 8u!h~r 8!, ~23!

whereh(r )5g(r )21 andc(r ) is the direct correlation func
tion, together with the boundary conditions

Q~s2r !h~r !52Q~s2r !,
~24!

Q~r 2s!c~r !50,

where the first condition is exact while the second defines
approximation. Comparison with computer simulation sho
that the Percus-Yevik approximation for the pair distributi
function is quite accurate for separations greater that ab
two hard-sphere diameters but less accurate near con
The description of the small-separation structure can be
nificantly improved by considering the Yukawa closure f
the Ornstein-Zernike equation, which replaces the bound
condition on the direct correlation function by

Q~r 21!c~r !5(
i 51

m

Ki

e2v i r

r
~25!

and choosing the constantsKi and v i to reproduce known
properties, for example, takingm51 and fitting the
06121
,

s

at

o
en
e
-

e
s

ut
ct.
g-

ry

Carnahan-Starling equation of state as calculated by both
pressure equation and the compressibility equation.
original mean spherical approximation~MSA!, for arbitrary
pair potentials F(r ), consists of requiring thatQ(r
2s)c(r )5F(r ) where the effective hard-sphere diameter
fit according to some criterion. The PY approximation
then seen to be the MSA for hard spheres. Equation~25! may
therefore be viewed as either the MSA for a potential tha
the sum of Yukawas or as a general expansion with coe
cients to be fitted in which case it is termed the generali
MSA or GMSA and can be viewed as being systematic si
any function could be fitted as a sum of Yukawas.

Note that Eq.~23! defines the direct correlation functio
and that the first of the boundary conditions in Eq.~24! is an
exact requirement. The only way in which this model us
the assumption that the system being modeled is in equ
rium is through the arguments that lead to the conclusion
the direct correlation function is short ranged and hence
justification for the boundary conditions in Eqs.~24! and
~25!. This connection to the equilibrium state is made ev
weaker in a reformulation of the model due to Yuste a
Santos@27–29#. They begin by noting that the Laplace tran
form of the quantityrg(r ), in the PY approximation, is natu
rally written as

G~ t ![E
0

`

dr e2srrg~r !

5
tF~ t !e2t

1112hF~ t !e2t
~26!

with

F~ t !5
11A1t

S01S1t1S2t21S3t3
. ~27!

They go on to point out that given the second equality of E
~26! and making a Pade´ approximation for the functionF(t)
one can deduce the correct order of the numerator and
nominator of F(t) as well as the PY expressions for th
coefficients based solely on the asymptotic properties of
PDF. Specifically, they note that~i! g(r ) at contact is given
by g(s)5 limt→` t2F(t) thus fixing the relative number o
terms in the numerator and denominator,~ii ! limr→` g(r )
51 implies thatG(t) →

t→0
t22, and~iii ! the fact that the static

structure factor, given byS(q)5 limt→ iq Re@ tG(t)#, is finite
at q50 implies, given the previous condition, that for sma
t, G(t)5t221o(1). ~The last condition is equivalent to as
suming that long-range correlations do not exist.! The mini-
mal approximant satisfying these conditions is that given
Eq. ~27! with the PY value for the coefficients. They als
note that the extension of the Pade´ approximant to include
one more term in both the numerator and denominato
exactly equivalent to the one-Yukawa closure while the f
ther extension of the approximation corresponds to a clos
consisting of a sum of Yukawas. This method is also sho
to give the PY solution for sticky hard spheres as well as
exact structure for both ordinary and sticky hard spheres
1-5
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one dimension. A straightforward extension of these id
has also been used to model the square-well fluid. Thus
this formulation, the PY form ofG(t) is taken as an ansat
characteristic of hard-core systems and the functionF(t)
modeled as a Pade´ approximant subject to whatever know
edge exists about the structure.

With this justification in mind, we consider the applic
tion of this approach to the nonequilibrium HCS. In equili
rium, the next inclusion of an additional term in the nume
tor and denominator ofF(z) introduces two new paramete
that are used to fit a known equation of state~normally the
Carnahan-Starling equation of state! through both the pres
sure equation and the compressibility equation. The pres
equation for hard spheres in three dimensions reads@2#

p

nkBT
5114hxeq ~28!

and so allows to calculate the PDF at contact, recallxeq
5g(s), from the equation of state. In a nonequilibriu
state, the collisional boundary condition can be used,
gether with assumption of molecular chaos, to give the sa
information. The equilibrium compressibility equation is

S ]

]r
bPD 21

511rE drW@g~r !21#

51224h lim
t→0

G~ t !2G~2t !

2t
, ~29!

and for this, there is no obvious substitute for the noneq
librium state. With nothing to use in its place, I will continu
to apply this even in the nonequilibrium state, calculating
pressure from Eq.~15!, which might be viewed as a loca
equilibrium approximation. In fact, the resulting model
relatively insensitive to the value used for the pressure s
this only fixes the area of the structure function whereas
results are quite sensitive to the value of the PDF at cont
Usingg0(q1 ,q2 ;t).geq(q12) as is normally done in Ensko
theory, the model is given by

F~ t !52
1

12h

11A1t1A2t2

S01S1t1S2t21S3t31S4t4
~30!

with

S051,

S15A121,

S25A22A11
1

2
, ~31!

S352A21
1

2
A12

112h

12h
,

S45
1

2
A22S 112h

12h DA11
21h

24h
,
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A15
1

2
1A 1

12h

~h21!22Z@6hg~1;a!11#

~21h!22g~1;a!~h21!2
,

A25g~1;a!

~112h!A12
1

2
~21h!

116hg~1;a!
,

and

Z[S ]

]r
bPD 21

5S 11
11a

2
~Zeq

2121! D 21

~32!

with the Carnahan-Starling expression@2#

xeq5

12
1

2
h

~12h!3
~33!

together with Eqs.~15! and ~14! completes the model. This
then reduces to the GMSA in equilibrium and can be seen
its natural generalization to a spatially isotropic nonequil
rium state.

IV. MOLECULAR-DYNAMICS SIMULATIONS

To determine the structure of the model granular syste
I have performed molecular-dynamics simulations of sm
systems of 108 and 500 particles in three dimensions g
erned by the steady-state dynamics described by Eq.~16! and
subject to periodic boundary conditions. The density w
taken to ben* 50.5; high enough that finite density effec
are important but low enough that the Enskog approximat
is expected to be valid. The choice to simulate the stea
state dynamics, rather than to simulate the ‘‘real’’ dynam
of the cooling system, was made on the basis that the
tems cool very rapidly so that the time scales involved in
simulations become very large, the velocities and energ
very small, and numerical inaccuracies due to round-off er
are a significant problem. This could be dealt with by pe
odically rescaling the velocities~i.e., redefining the time unit
as in Refs.@24,25#! but it is more elegant and efficient t
directly simulate the steady-state dynamics. Furthermore,
changes needed to implement this starting with a code
simulating equilibrium hard spheres are minimal. One po
that does require attention is the instability with respect
the total momentum. Even if initial conditions are chosen
that the total momentum is zero at the start of the simulati
round-off errors lead to the spontaneous appearance
nonzero total momentum, which then quickly goes due to
instability. This effect is, however, benign and is easily su
pressed by calculating the total momentum during e
propagation step and subtracting (1/N) of its value from the
momentum of each particle.

The starting point for the simulations was an equilibriu
configuration of velocities and positions. The value of t
thermostat constantw was set arbitrarily. For each value o
a, the simulations were ‘‘equilibrated’’ for a total of 3
3106 collisions and then statistics gathered over a sec
1-6
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FIG. 1. The PDF at contact for
n*50.5 from simulation of 108 at-
oms ~circles!, 500 atoms
~squares!, and from Eq.~14!. The
lines between the simulation dat
are only a guide to the eye.
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series of 33106 collisions. To obtain steady-state averag
of one-body properties, quantities were time averaged o
periods of 104 collisions throughout the simulations; the
samples were then treated as statistically independent
mates and their average and standard error computed@30#.
The errors in all quantities reported below are found to
small, less than 1%. The determination of collisional effec
such as in the pressure and the PDF at contact, is some
different. For any collisional quantity of the form

A[(
i , j

A~xi ,xj !d~qi j 21! ~34!

the ergodic assumption gives

^A&5
1

TE0

T

dt A~ t !

5(
i , j

1

TE0

T

dt A~xi ,xj !d~qi j 21!

5(
i , j

1

2TE0

T

dt d~t i j 21!S A~ i j !

uqi j •pi j u
1

A~xi8 ,xj8!

uqi j •pi j8 u D ,

~35!

where the first two lines integrate the total time depende
of the functionA. The third line follows from a change o
variable in the delta function,pi j (pi j8 ) is the relative momen-
tum of the colliding pair immediately before~after! the colli-
sion, andt i j is the time at which the pair~i,j! collides~which
could be imaginary or outside the range of integration in
cating in either case that they do not collide!. The last ex-
pression obviously reduces to a sum over collisions:

^A&5
1

2T (
coll isions,g

S A~g!

uqg•pgu
1

A~g8!

uqg•pg8 u D
tg

, ~36!
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whereg represents the colliding pair and which is the for
used to evaluate the collisional part of the PDF at conta
@N(N21)/2V#4pg(1)5^( i , jd(qi j 21)&. Using uqg•pg8 u
5auqg•pgu, this becomes

g~1!5
1

2pn S a11

2a D 1

T (
coll isions,g

1

uqg•pgu
Q~2qg•pg!

~37!

while for the pressure one finds

pc5
~11a!

2T (
coll isions,g

uqg•pguQ~2qg•pg! ~38!

and in both cases, the step function indicates that the exp
sion is evaluated with the precollisional momenta. Fina
we present below determinations of the PDF for finite se
rations. These are determined in the obvious way by loop
over all pairs of atoms and creating a histogram of the se
rations. The bin size used was 0.025~hard-sphere diameters!
and these were compiled every 104 collisions and the results
averaged to obtain the final histogram.

Figure 1 shows the PDF at contact as determined from
simulations and from the collisional boundary condition. F
a.0.6, the agreement is seen to be good but below th
becomes worse values; furthermore, there appears to
strong number dependence to the results with the larger
tem diverging more rapidly from the prediction. In bo
cases, simulations are only possible fora above some
threshold; below this, the simulation code fails due to t
time between collisions becoming smaller and smaller u
the machine precision is reached. A detailed analysis of
sequence of collisions shows that this is due to a small n
ber of particles with virtually no momentum relative to on
another colliding over and over again—in other words, t
is the phenomena of elastic collapse described by McNam
and Young@31#. The threshold for the collapse is in th
range 0.3,a,0.4 for the 500 particle system and 0.2,a
,0.3 for the 108 particle system. In both cases, prior to
1-7
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FIG. 2. The PDF at equilib-
rium (a51) for n*50.5 as deter-
mined from simulation of 500 at-
oms ~circles! and from the
~GMSA! model ~curve!. Lengths
are shown in units of the hard
sphere diameter.
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collapse, the value of the PDF at contact is several times
highest values shown in Fig. 1.

Similar behavior is seen in the pair distribution functio
For reference, Fig. 2 shows the PDF at equilibrium as de
mined from the 500-atom simulations and from the mod
the agreement is seen to be excellent as is also the cas
the data coming from the 108-atom system. Figures 3 an
show the nonequilibrium part of the PDF@i.e., g(r )
2geq(r )] for the 108-atom system as determined by sim
lation and by the nonequilibrium GMSA fora50.7 and 0.5,
respectively, and in both cases, the extended MSA is see
give a good quantitative description of all features of t
nonequilibrium structure.~In fact, since the molecular dy
namics results are, by their nature, binned, the theore
curve is obtained by integrating the model PDF over bins
the same size and position as used in the simulations.! Fig-
ures 5 and 6 show that, not surprisingly, the agreement is
as good for the 500-atom system, particularly at the sma
value ofa.

The disparity between the results for the two system
06121
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to
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much greater than one finds in equilibrium and sugges
qualitative difference between them. One obvious poss
source of such a difference is the hydrodynamic instabi
discussed above. Using the values for the transport co
cients given by Ref.@18#, one finds the critical size curve
shown in Fig. 7, which indicates that the 108-atom system
always stable but that the 500-atom system becomes uns
arounda,0.6, however, knowledge of the transport coef
cients at smalla is only approximate so these numbers m
only be indicative of the position of the instability. Neve
theless, the importance of the instability in the larger syst
is easily confirmed and Fig. 8, showing the velocities in o
direction versus the positions along another as taken fro
snapshot of the 500-atom system witha50.5, shows a spon
taneously formed shearing profile. In a larger system,
would manifest itself in the form of vortices. Further ev
dence of the instability can be found in the kinetic contrib
tions to the pressure tensor where, beginning ata50.7 in the
500-atom system, an oscillation develops whereby a la
fraction, on the order of 2/3 of the kinetic energy is conce
trated in first one component of the pressure tensor and
-

-

FIG. 3. The nonequilibrium
part of the PDF,dg(r )5g(r ;a)
2g(r ;1), for n*50.5 atoms with
a50.7 as determined from simu
lation of 108 atoms~circles! and
from the model~curve!. Lengths
are shown in units of the hard
sphere diameter.
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FIG. 4. Same as Fig. 3 fora
50.5 and 108 atoms.

FIG. 5. Same as Fig. 3 fora
50.7 and 500 atoms.

FIG. 6. Same as Fig. 3 fora
50.5 and 500 atoms.
061211-9
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FIG. 7. The critical system
sizes as a function ofa for n*
50.5. Systems falling below the
curve are unstable. Lengths ar
shown in units of the hard-spher
diameter.
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another indicating that macroscopic flows are forming. T
obvious interpretation is that arounda50.7 the shear mode
is soft or unstable. There is no evidence of such an unst
mode for any value of ata in the 108-atom system. Thi
picture is thus in qualitative agreement with the predictio
based on the calculations described above and has rec
been observed in other studies@25#.

We can suppress the instability in a crude way by pe
odically adjusting the velocities of the atoms. In these ‘‘co
strained’’ simulations we interpose correction whereby a
every 100 collisions, we calculate the amplitude of the lon
est wavelength Fourier modes of the systems@i.e., A l

52/N( i 51
N ci cosk l•qi for k15(2p/L) x̂, etc.# and we then

subtract the mode from each atom’s velocity (ci→ci

2( l 51
3 A l cosk l•qi). This is a crude procedure in that th

amplitudes of the modes are only approximately set to z
and it also has the effect of removing kinetic energy from
system~which is, however, masked by the input of kinet
energy coming from the equations of motion!. A more el-
egant procedure could be devised based on standard
06121
e
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tly
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r
-

ro
e
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equilibrium molecular-dynamics techniques such as Gau
principle of least constraint@32#, but as the present purpos
is only to control the unstable mode, the crude method w
deemed sufficient. As shown in Fig. 9, the result is to g
better agreement in the measured value of the PDF at con
between the two systems while having relatively little effe
in the smaller system except at the highest values of alp
Figure 10 shows that the PDF, as determined from the c
strained simulation of the larger system, is in considera
better agreement with the model.

V. DISCUSSION

The main purpose of this paper has been to show that
GMSA can be extended to nonequilibrium systems by
placing the equilibrium input required by the GMSA wit
accessible nonequilibrium information coming from the c
lisional boundary condition and, incidently, to elucidate t
atomic-scale structure of the HCS of granular fluids. In ord
to compare the predicted values of the PDF at contact
-
s
-

FIG. 8. A snapshot of the 500
atom system; the horizontal axis i
the position, in units of the hard
sphere diameter, along thex axis
of the simulation, the vertical axis
shows the momentum along thez
direction. The curve is a sine
function fitted to the data.
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FIG. 9. The PDF at contact for
n*50.5 from the original uncon-
strained simulation of 108 atom
~open circles!, the constrained
simulation of 108 atoms~circles!,
and the constrained simulation o
500 atoms~squares! and from Eq.
~14! ~line!. The lines between the
simulation data are only a guide t
the eye.
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the pressure with the results of simulations, the equation
motion of the dissipative hard-sphere system were map
onto those that describe a steady state, thus allowing u
use standard methods of steady-state simulation such a
replacement of ensemble averages by time averages.
comparisons with molecular-dynamics simulations also sh
that the pair distribution function at contact can be used a
signal of the onset of elastic collapse—its value steadily
verges from the predicted value as the elastic collapse thr
old is approached and its value in the simulations that fea
the collapse is very large.

The significant differences observed between the 108-
500-atom systems were seen to be largely due to the
hydrodynamic modes present in the larger system. Never
less, even when these are accounted for, there remai
significant deviation of the simulation results from the va
ous predictions of the Enskog theory. It is tempting to co
clude that this is due to a poor estimation of the quantityx0,
for which we use the equilibrium value, but examination
the pressure shows that the answer cannot be this simple
PDF at contact would require alarger value forx0 that in-
06121
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a
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creases witha in order to be in agreement with the simul
tions, whereas Fig. 11 shows that pressure would requi
smaller value that decreased witha ~in both the uncon-
strained and constrained simulations!. We thus conclude tha
the deviations are due to the Enskog approximation itself
could probably be described via mode coupling. Nevert
less, thatx0 should depend ona is intuitively clear; atoms
moving slowly away from a collision will be more likely to
be knocked, by a third atom, into a second collision with o
another leading to such a dependence.

As mentioned in the Introduction, one phenomenologi
approach to the description of nonequilibrium structure
that of Hess and Rainwater@8,9#. In its simplest form, this
reduces to a relaxation model for the nonequilibrium con
bution to the PDF:

]

]t
g~r ,t !1v~r ,t !•“g~r ,t !5t21@g~r ,t !2g0~r !#, ~39!

where t is a relaxation time andg0(r ) is taken to be the
equilibrium PDF. It is clear that for a homogeneous stea
g
-

FIG. 10. Same as Fig. 6 fora
50.7 and 500 atoms and showin
data from the constrained simula
tion.
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FIG. 11. The collisional con-
tribution to the reduced pressure
P/nkBT, for n*50.5 as deter-
mined from the unconstrained
108-atom simulation~diamonds!
and from Eq.~15!.
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state with no flow this gives the trivial result thatg(r ,t)
5g0(r ). However, this model is intended only as a simp
fication of a more complex model given by

]

]t
g~r ,t !1v~r ,t !•“g~r ,t !1D“•$g0~r ,t !“@g~r ,t !/g0~r !#%

50, ~40!

whereD is a kind of diffusion constant. Again, for a homo
geneous steady state with no flow, only the last term surv
so that this reduces to

g0~r !
1

r 2

d

dr
r 2

d

dr

g~r !

g0~r !
1

dg0~r !

dr

d

dr

g~r !

g0~r !
50, ~41!

which has the solution

g~r !5g0~r !1S g~1!

g0~1!
21D f ~r !

f ~1!
g0~r !,

~42!

f ~r !5E
r

`

dr
r 22

g0~r !
,

where we have used the boundary condition limr→`g(r )
51. Although this has an interesting structure, the funct
f (r ) is positive definite so that for HCS the differenceg(r )
2g0(r ) is also, which precludes a description of the oscil
tory nature of the differences found in the simulation.

Another approach is the theory of Eu and Gan@13,14#,
also mentioned in the introduction. This theory is based
an ansatz for theN-body nonequilibrium distribution and
takes the form of an integral equation:

ln y~q1 ,q2 ;t !5nE dq3 f NE~q1 ,q3 ;t !y~q1 ,q3 ;t !

3$y~q2 ,q3 ;t !@11 f NE~q2 ,q3 ;t !#21%

~43!
06121
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where

g~q1 ,q2 ;t !5exp@2VNE~q1 ,q2 ;t !#y~q1 ,q2 ;t !,

f NE~q1 ,q3 ;t !5exp@2VNE~q1 ,q2 ;t !#21 ~44!

and where the nonequilibrium potentialVNE(q1 ,q2 ;t) is a
sum of the equilibrium potential and terms related to t
moments of the velocity. This formulation has the desira
property that, if linearized in the density by replacin
ln y(q1 ,q2 ;t).y(q1 ,q2 ;t)21, it reduces to the PY approxi
mation in equilibrium. It is difficult, however, to see how t
incorporate the exact requirement of the information com
from the collisional boundary condition and it is therefore
open question whether this can give a model comparabl
the nonequilibrium GMSA described above. Indeed, in
derivation of this model, the authors explicitly neglect velo
ity correlations of the kind used here to control the model
the structure. Nevertheless, the solution of this model to
low for such a comparison would be of some interest.

It is also appropriate to comment on the applicability
the Enskog-level description of the system. The density c
sen for the simulations is one at which the Enskog desc
tion of elastic hard spheres is very good with most quanti
being accurately predicted to within a few percent. Furth
more, neither the calculation of the pressure nor the PDF
contact requires explicit knowledge of the one-body distrib
tion at contact which is good, because no exact solution
the Enskog equation for HCS exists. Nonetheless, the res
described above show that there are systematic deviat
from the Enskog predictions at all values of the coefficient
restitution. Evidence has also been given that these ar
least partly due to the presence of soft modes within
system. The conclusion is therefore mixed; while the Ensk
description seems to be qualitatively accurate, all but
very smallest systems will contain soft or unstable mod
that result in significant deviations from it. This, more th
the separation of time scales discussed in Ref.@33#, would
seem to be the greatest obstacle to using a Boltzma
Enskog description of the one-body function or of using
1-12
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hydrodynamic description of the macroscopic state. Inde
the Enskog and hydrodynamic descriptions are successf
predicting fairly well the location of the hydrodynamic inst
bility in the vorticity. A better test of these issues would
to study a related system, such as a sheared granular
which may be more stable.

The nonequilibrium GMSA described here works surpr
ingly well. Encouraging results have also been found wh
this model was applied to simple sheared fluids@15# and a
systematic study of this system is in progress. It is also
interest to try to improve on the use of the compressibi
equation in the nonequilibrium model: one substitute wo
be information coming from kinetic theory such as t
asymptotic behavior of the PDF for which various a
proaches are possible.

APPENDIX: ORIGIN OF THE COLLISIONAL
BOUNDARY CONDITION

1. From Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy

It is instructive to derive the collisional boundary cond
tion from the BBGKY hierarchy, the first equation of whic
appears above as Eq.~4!. The second BBGKY equation is

F ]

]t
1p1•

]

]q1
1p2•

]

]q2
2T̄2~x1 ,x2!G f (2)~x1 ,x2 ;t !

5E dx3@ T̄2~x1 ,x3!1T̄2~x2 ,x3!# f (3)~x1 ,x2 ,x3 ;t !,

~A1!

where the collision operator is

T̄2~x1 ,x2!5s0
2E

V
dŝ Q~p12•ŝ !~p12•ŝ !

3@d~q122s0ŝ !a22b̂12
212d~q121s0ŝ !#

5E ds d~s2s0!Q~p12•ŝ !~p12•ŝ !

3@d~q122s!a22b̂12
212d~q121s!#

5d~q122s0!~p12•q12!@Q~p12•q12!a
22b̂12

21

1Q~2p12•q12!#

5d~q122s0!~p12•q12!@a22b̂12
2111#

3Q~2p12•q12!. ~A2!

We now observe that no matter what the state, the at
cannot overlap, so we must be able to write the distribut
as

f (2)~x1 ,x2 ;t !5Q~q122s0! f̃ (2)~x1 ,x2 ;t !, ~A3!

so that
06121
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Fp1•
]

]q1
1p2•

]

]q2
GQ~q122s0! f̃ (2)~x1 ,x2 ;t !

5p12•q12d~q122s0! f̃ (2)~x1 ,x2 ;t !1Q~q122s0!

3Fp1•
]

]q1
1p2•

]

]q2
G f̃ (2)~x1 ,x2 ;t ! ~A4!

so that there are two sources of singularities in the sec
BBGKY equation; one coming from the collision operat
and one from the streaming operator. If we integrateq12 over
a vanishingly small interval centered ats0, only the singular
terms will contribute so that we conclude they must can
independently of the regular terms. This gives

p12•q12d~q122s0! f̃ (2)~x1 ,x2 ;t !

5d~q122s0!~p12•q12!@a22b̂12
2111#

3Q~2p12•q12! f̃ (2)~x1 ,x2 ;t ! ~A5!

or

d~q122s0!Q~p12•q12! f̃ (2)~x1 ,x2 ;t !

5d~q122s0!a22b̂12
21Q~2p12•q12! f̃ (2)~x1 ,x2 ;t !,

~A6!

which is the desired result relating the postcollisional dis
bution, on the left, to the precollisional distribution on th
right. It is thus apparent that this identity carries part of t
information of the second BBGKY hierarchy.

2. From conservation of probability

It is clear that the probability to find two atoms movin
towards each other with a given relative momentum is
same as that to find two atoms in contact moving away fr
one another with the corresponding postcollision mom
tum:

d~q122sŝ!Q~2q̂12•p12! f 2~x1 ,x2 ,t !d3x1 d3x2

5d~q122sŝ!Q~ q̂12•p128 ! f 2~x18 ,x28 ,t !d3x18 d3x28 .

~A7!

Using

d3x1 d3x25
1

a2
d3x18 d3x28 ,

~A8!

f 2~x1 ,x2 ,t !5b̂12
21f 2~x18 ,x28 ,t !,

this can be written as
1-13
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d~q122sŝ!Q~ q̂12•p128 !
1

a2
b̂12

21f 2~x18 ,x28 ,t !

5d~q122sŝ!Q~ q̂12•p128 ! f 2~x18 ,x28 ,t !. ~A9!

The factors ofa in the Jacobian arise because of the cha
from pre- to postcollisional momenta (p128 52ap12 gives
one factor ofa) and because the relation between positio
q(t) after the collision and positions before the collision a
involves the momenta giving a second factor ofa.

3. Evaluating correlations at contact

From the identity and the assumption of molecular cha
we have

d~q122sŝ!V f2~x1 ,x2 ,t !

5d~q122sŝ! f 1~x1 ;t ! f 1~x2 ;t !g0~q1 ,q2 ;t !

1d~q122sŝ!Q~ q̂12•p12!~a22b̂12
2121!

3 f 1~x1 ;t ! f 1~x2 ;t !g0~q1 ,q2 ;t !, ~A10!

so that if averages overf 1(x1 ;t) f 1(x2 ;t)g0(q1 ,q2 ;t) are de-
noted by ^ . . . &0, then for any two-body functionA

5( j , iA(xi ,xj )d(qi j 2sŝ) one finds
if

v

06121
e

s

s,

A~ ŝ !5^A&

5^A&01
N~N21!

2V E dx1 dx2 d~q122sŝ!

3A~x1 ,x2!Q~ q̂12•p12!~a22b̂12
2121!

3 f 1~x1 ;t ! f 1~x2 ;t !g0~q1 ,q2 ;t !

5^A&01
N~N21!

2V E dx1 dx2 d~q122sŝ!

3 f 1~x1 ;t ! f 1~x2 ;t !g0~q1 ,q2 ;t !~a21b̂1221!

3Q~ q̂12•p12!A~x1 ,x2!

5^A&01(
j , i

^d~qi j 2sŝ!@Q~2q̂i j •pi j !a
21b̂i j

2Q~ q̂i j •pi j !#A~xi ,xj !&0 ~A11!

and, in particular, ifA(xi ,xj )51/4pn2 then

g~ ŝ !5g0~ ŝ !1
12a

2a
g0~ ŝ !

5
11a

2a
g0~ ŝ ! ~A12!

as reported in the text.
,
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