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Rheology of dense polydisperse granular fluids under shear
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The solution of the Enskog equation for the one-body velocity distribution of a moderately dense arbitrary
mixture of inelastic hard spheres undergoing planar shear flow is described. A generalization of the Grad
moment method, implemented by means of a novel generating function technique, is used so as to avoid any
assumptions concerning the size of the shear rate. The result is illustrated by using it to calculate the pressure,
normal stresses, and shear viscosity of a model polydisperse granular fluid in which grain size, mass, and
coefficient of restitution vary among the grains. The results are compared to a numerical solution of the Enskog
equation as well as molecular-dynamics simulations. Most bulk properties are well described by the Enskog
theory and it is shown that the generalized moment method is more accurate than the(Giraglenoment
method. However, the description of the distribution of temperatures in the mixture predicted by Enskog theory
does not compare well to simulation, even at relatively modest densities.

DOI: 10.1103/PhysRevE.70.061101 PACS nuni®)er05.20.Dd, 45.70-n, 05.60-k, 51.10+y

INTRODUCTION latter are closed equations for the one-body distribution: the
. Enskog equation involves only the assumption of “molecular
_Gran'ular systems under rapid floyv can bg modeled as ghaos” [11,12, while the Boltzmann equation is its low-
_fIU|d of me_lastlc _hard spheres for which a variety of theoret-density limit. One of the attractions of the hard-sphere mod-
ical and simulation methods may be use to explore and urgs is the existence of the Enskog equation, which allows for
derstand the rich phenomenology that they exHib#3]. Of  he description of finite density fluids outside the domain of
particular interest are sheared granular flows, in which thepe validity of the Boltzmann equation. Since one of the
velocity in th_e dlrectlon of flow'varles'wnh position in an purposes of the present work is to provide a foundation for
orthogonal direction, due to their practical relevance, accesne study of transport properties in realistic systems, the En-
sibility to experiment, and theoretlcf'il elegance. For a steadgkog equation is used as a starting point. The price paid for
rate of shearing, such systems typically reach a steady stajgis is that the results obtained must be evaluated numeri-
in which viscous heating, due to the shear, balances colliga|ly, put as discussed below, it is always possible, and quite
sional cooling, due to the inelastic collisions, thus giving anyjyia|, to take the Boltzmann limit of the final expressions
example of a steady-state nonequilibrium system. A numbeg o thereby proceed analytically in this special case.
of papers have discussed the rheology of single-component The gpecific state studied here is that of uniform shear
sheared granular fluidsl—7] in which all particles are me- oy in which the flow is described by a velocity fiefdr)
chanically identical. However, all real fluids can be expected:g_i»:ayx wherea is the shear rate. As discussed below.
to contain a distribution of particle sizes and degrees of inyis flow admits of a uniform state with spatially constant

elasticity. The purpose of this paper is to extend these studiggansity and temperature. The shear rate, temperature, and
to dense fluids composed of an arbitrary mixture of particléjegree of inelasticity are related in the steady state by the
sizes and inelasticities. requirement that the viscous heating and collisional cooling

The usugl model for granular ﬂUidS.COHSi.StS of hardy5jance. Although the Enskog equation could be solved per-
spheres which lose energy when they collide. Different modh

Is for th | il h . urbatively in the shear rate, it is difficult to carry out the
els for the energy loss are possible, and here, attention willy ansion to sufficiently high order to describe physically

be restricted to the simplest case in which the energy 10SS igeresting effects such as normal stresses and shear thinning
proportional 'Fo_ thg contribution to the !(lnetlc energy of the(although see Ref5], where this is done for the Boltzmann
normal velocities in the rest frame. This model is amenableequatior). Itis instead simpler to use a moment method with-
to the same theoreucal tools L.Jseq to stu_dy elastic har_d_—sph%%t making any assumptions about the smallness of the shear
systems provided that attention is resticted to conditions N ta a5 has been done for elastic hard spha@44 and for
which only binary collisions occur. Granular systems exhib-y.o Boitzmann equation for sheared binary flujds]. A

iting solidlike behavior must therefore be excluded from ginijar method that has been used is the so-called “general-
consideration. Then, it is possible to construct the exacl,oq maxwellian” of Chou and Richmaf6,7]. In fact, as

L|ObU\gIIed_eqybat|pn Sescpbmg thef time h(?vf?llﬁ]t'on Ofk the shown below, these two methods can actually be viewed as
N-body distribution unqtlor{S—;q rom which the Enskog special cases of a generalized moment expansion about an
and Boltzmann approximate kinetic equations follow. Thearbitrary Gaussian state.

An objection to using the moment method with the En-
skog equation is that the calculations are technically difficult.
*Electronic address: jlutsko@ulb.ac.be In particular, the collision integrals which occur in the study
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of sheared fluids can be challenging to evaluate even in thgrainsi and | collide, their relative velocity after collision,
case of the simpler Boltzmann theofsee, e.g., Refl15)).  vj=v{-v], is given by

One contribution of this work is to present a generating func- - - na o

tion technique which greatly simplifies the calculations. It is oij = vij ~ (1 + arr )G (@ - vi). @
shown that all integrals of interest can be obtained by differyynere o is the coefficient of restitution for collisions be-
entiating and taking appropriate limits of a single generating\yeen grains of speciasands. The collisions are elastic if

function which itself simply involves the evaluation of a few a,s=1 while ;o< 1 leads to an irreversible loss of energy in

Gaussian integrals. With this technique, it is straightforwardgach collision. Between collisions, the grains stream freely
to evaluate all results for the most general case of differings, that their velocities are constant. This model is a particular
particle sizes and coefficients of restitutionDndimensions.  ¢a5e of endothermic hard-sphere collisions in which the en-
The final results in fact turn out to be as simple in Structurésrgy |oss is proportional to the kinetic energy along the line
as the equivalent model of sheared single-component elasti¢ ™  .qjlision  in  the rest frame E;-Ej

hard sphere§l3,14. —_(1_.2\1 A =2 ;

A question which has aroused considerable interest is the (1 arir')z'uri'i(q'.' Uij) .w.here the reduc.ed Mass ks
degree to which mean-field theories, such as the Ensko s/ (my+my). Finally, it is useful o define the momen-
Boltzmann kinetic theory, are applicable to granular system}um.eXCh"ﬁmge operator for any function of the relative ve-
[16]. This provides another reason for studying the particula ocities g(vjj) as
case of USF as it is possible to simulate USF with the use of N SN T A n s
modified periodic boundaries by means of the Lees-Edwards 0ij9(wij) = 9(ij) = olwij = (1 +arr)0 (G -0y)] (2
simulation techniqugl7] so as to compare the approximate and all other velocities are left unchanged. Its inverse is
kinetic theory to numerical experiments. Furthermore, the
Enskog equation may be solved numerically by means of the ] G =gl G, - 1+ag, & @G 3
direct simulation Monte CarlgDSMC) method[18]. Both ij 9wip) =91 v @ i (G - vij) |-
methods are used here in order to elucidate the accuracy of H
the analytic calculations as a method of solving the Enskog The statistical properties of the system are determined by
equation and of the Enskog approximation itself compared tone- and two-body distribution function$.(q,v;t) and
simulation. frlrz(ﬁl,ﬁl;dz,iz;t), respectively. The former gives the prob-

The organization of this paper is as follows. In Sec. II, theability density of finding a grain of specigswith the given
Enskog theory is reviewed and the moment method for solvposition and velocity at timé and the latter gives the joint
ing it is presented. It is shown how the moment method camprobability for two grains. The one-body distribution satisfies
be extended to allow for an arbitrary Gaussian reference statn exact equatiofthe first of the Born-Bogoliubov-Green-
and the generating function formalism is introduced. TheKirkwood-Yvon (BBGKY) hierarchy

lowest nontrivial moment solutions of the Enskog equation
: . d .
are then described and used to calculate the pressure tensor <_ +0y - —)f (Gy,01:t)
. . N r 1:V1,
for USF, which thus describes the pressure, normal stresses, Jt d 0y

and shear viscosity of the fluid in the steady state. In Sec. Ill, o

the solution of the moment equations is compared to DSMC == dGpdv,T- (121, (G1,01;02,020),  (4)
and MD results for a model polydisperse fluid for a range of r

applied shear rates. The generalized moment method
shown to be superior to the simpi&rad moment method
and the Enskog theory is shown to give a good description of — ... 1, e Ao oA
many rheological properties over a wide range of densities. T-(ij) = - &(a; - Ufi’j){a i 11(9(_ 0ij + Q)0 - Gij»
However, the description of the distribution of temperatures H

as a function of grain size is shown to be poor, raising ques- (5

tions as to the accuracy of Enskog theory. The paper conynhere@(x)=1 if x>>0 and 0 otherwise. A similar equation
cludes with a discussion of the use and applicability of thgg|ates the two-body distribution to the three-body distribu-

{Rhere the binary collision operator is

results. tion, and so on. The Enskog approximation results from not-
ing that the combination &(dip~ 0y, )O(-v12-81)
I. THEORY frr,(d1,01;02,02;t) picks out the precollisional part of the
A. Enskog approximation distribution and assuming thatrior to collision and at the

moment of contacthe grains are uncorrelated. The specific

Consider a system df grains which are modeled as hard assumption is that

spheres. Each sphere is described by a positjpaelocity,

v, and a species label A grain of species has massn, 8(G12= 07 1,)O(= V12 Q1) fr 1, (G2, 011 G2, 023 1)
while two grains of species and s collide when they are _ .. .
separated by a distanegs. This array of hard-sphere diam- = 8012~ 01,r,)O (= V12 Qo) r (A1, 0151)

eters may be specified arbitrarily but an important special . (G Tt 5 Gt 6
case is that of additive hard-sphere diameters wherein each (G202 Dty iV, ©)

species has a fixed diameter and crrS:%(crrﬂrS). When  where the term)(rlrz(dl,ﬁz;t), the spatial pair distribution
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function (pdf), accounts for spatial correlations as exist even
in equilibrium. If it is taken to be the local-equilibrium func-

PHYSICAL REVIEW E 70, 061101(2004)

q'(r,) = 2 Meryr, (1 +ap o )fdxldxzﬁlz(mz'l;lz)z

tional of the nonequilibrium densities, then the approxima- 2nir,

tion is completely specified and is known as the generalized

Enskog approximatioif19].

B. Hydrodynamic fields

X8Oz = 07,r,)O(= U1z V1 fr (X1, %03 )

1
X[V-u(gt)] - éhzf dx &(F = xG = (1 =x)0),
0

The local hydrodynamic fields of partial number densities

n.(g,t), local velocityU(d,t), and temperatur@(q,t) are de-

fined as

n(G1) = f 4G 16,510,
H(G00G0 =3 f 65 Mt (G510,
r

D - 21 ..
EkBT(q7t) = 2 f dUEmrUZfr(q,U 1t)! (7)
r

wherep(d,t)==,mn,(q,t) is the total mass densitf} is the
dimensionality of the system, arkg is Boltzmann's con-
stant. The exact time evolution of these fields follows from g 1) = 2 (1- ar ; it s

Eq. (4), which gives[10]

—n,+§-(ﬁnr)+§-ﬂ‘=0,

J L. = _ P
—0+0-Vi+pV-P=0,
ot
g . - . 2 ea - 2
—+0-V|T--V + P:VU+V . -q]=—
(at . ) §|:J' anB[ . al anB§
(8)
with the number current
K= f dof, (7,00, )Vy, (9)

where V;=5,-0(Gy,t), the pressure tensdt=PX+PV with
kinetic and collisional contributions

SK(th) = 2 ml‘ J dJlfr(F1617t)\71\717
r

RE 2 ML+ ¢ )fdxldqulquz(qlz 019’

r1f2
X (012~ 07 1,)O(= Gro - U1 Fr r (X1, %03 1)
1
Xf dx &(1 = x0y ~ (1 =x)0), (10)
0
the heat flux vectog=g*+q"+qg’ with

K n 1 ez oD
qK(rvt) = 2 Emr dvlfr(rvvlat)vlvia
r

ml_er
_—2 (1- arr)zﬂrl Zm, +mr2

rirz

4t =

X J dxgAXG1o(812 - U12)°8(G2 = 07 )
XO(= 012 v12)fr (X1, X23)

1
XJ dx o(F = xGy = (1 =x)Gp), (11)
0

where the center-of-mass velocit\\]:(mrlﬁﬁ mrzﬁg)/ (my,
+m, ) and the energy sink term

f dx,dXo(Gpz - 1712)3

firz

X 8Oz = 07,r,)O(= U1z V1 fr (X0, X3 1) (7 = G-

(12)

Using the approximation given in E¢6) gives expressions
for the fluxes and the heat sink which only require knowl-
edge of the one-body distribution function.

C. Uniform shear flow

The Enskog equation is indeterminate until some bound-
ary condition is specified. If periodic boundary conditions
are imposed, then it is easy to see that the Enskog equation
admits of a spatially homogeneous solution which is, how-
ever, time-dependent due to the cooling resulting from the
dissipative collisions. This is the well known homogeneous
cooling state(HCS). Uniform shear flow(USF) is another
simple nonequilibrium state supported by this system. In
USF, the density and temperature are spatially homogeneous
while the velocity field varies linearly with position, viz.,
G(r)=a- r, where the shear tensa, will be taken to beaky
in a Cartesian coordinate system. There is therefore a flow in
the x direction which varies linearly in thg direction. We
hypothesize that in this case the distribution will only depend
on the peculiar velocity,(q,v;t)=f,(V=0-a-G;t). The En-
skog equation then becomes

d - J -
(—— 1-aT-f)frl<v1;t>
at A

A6, T-(12)f, (Vi:0F, (VaiDxr (61 Goit).

--3

(13

In fact, the linear flow field is the only one that makes the
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collisional term on the right independent of position as fol-independent, spatially homogeneous distribution function is
lows from the observation that it will be independent of po-in fact compatible with these boundary conditions and they
sition only if G(qg;) —U(d,) is a function ofq,,. [The function are also amenable to application in molecular-dynamics
Xr,r,(d1,02; 1), evaluated in the local equilibrium approxima- computer simulations, as discussed in more detail below.
tion, will only depend ondgy;, if the density is uniforni. In Before turning to the construction of a spatially uniform,

fact, the requirement thﬁ(ﬁl)—ﬁ(ﬁz):lj(ﬁlz) for some field time-independent solution of the Enskog equation, some

- . L N comments can be made about the generality of these results.
U(dyo) is only satisfied forU(qy,)=U(d;2) (demonstrated by  Fjrst the only properties of the flow state used so far are that

takingg,=0). One must also have thatd,) is odd, as shown the flow field is a linear function of the coordinate and that
by reversing the arguments, and thaf{(p/qg)G;] the shear tensor satisfie@sa=0 [needed to convert the spa-
=(p/q)l(q,), for arbitrary integerg and g, as follows by tial derivative on the left in Eq4) into a velocity derivative
iterating withd,=-G,. The only continuous function satisfy- in Eg. (13)]. Second, the Boltzmann equation results from
ing these constraints is one lineargpn which is to say USF. taking the lowest-order term in an expansion of the integral
Another consequence of the assumption of a uniform stat# Eq. (13) in terms of the hard-sphere diameter. This results
is that the density and temperature are spatially uniform angh the replacement of;,— Vy, S0 that, in this approxima-
it may be verified that the pressure tensor, heat-flux vectotion, the collision integral is independent of position for any
number flux, and heating rate are all spatially uniform aschoice of the flow field.

well. The equations for the hydrodynamic fields then become
Il. MOMENT SOLUTIONS TO THE ENSKOG EQUATION

—n, =0, A. Moment expansion

In order to develop an approximate solution of the Enskog
equation without making any restrictive assumptions about

iﬁ: 0, the size of either the shear rate or the degree of inelasticity,
dt the distribution function is expanded in a complete set of
polynomials about some suitable reference si{@@,21.
9 2 o 2 Here, more generally than is usually done, the reference state
il WBR = ng’ (14 will be taken to be an arbitrary Gaussian so that the expan-

sion takes the form
which shows that the hydrodynamic fields will also be inde- - o s e o
pendent of time if the viscous heating, characterized by the fi(V;{ng, T) = nidetI) Y27 P%exp- V- I" - V)
second term on the left in the temperature equation, balances 1 — R
the cooling described by the source term on the right. It is X(E —IE A[nH|n(\’2Fr1’2-V)>, (15)
therefore consistent to hypothesize not only a spatially uni- n=0 M1

form solution to the Enskog equation, but that a time- herel™ is a positive-definite, real, symmetric matrix and an
independent solution exists. In this steady state, the only wd . positive- ' » Symmetr ;
gbbrewated notation is used wherdRy=i, - --i,,. As such, it

guantities having the units of time are the temperature an ] ) - 5
the shear rate. It will therefore be the case that the relevarfi@? be written, via Cholesky decomposition, d3
dimensionless control parameter & =a\(m}o)?/kgT,  =I"Y2.(I"™Y3)T for some matrixI"™2. The functions used in
where the average diameter(is)==,.x X0 and the aver- the expansion are the Hermite polynomig24] given by
age mass ismy=2,x,m,. For a given set of material param-

; ; ; : — 25 0 9_
eters, the steady state will be unique in that the valug afs H|n(6) =(-1D"eff——.. —e (16)
determined from Eq(14) will be independent of the shear ac,  IG,
rate a applied through the Lees-Edwards boundary condi
tions: in other words, for a given value af the temperature
will relax to a value such that the same valueadis always

i1
'so that, e.g.H;;(€)=cic;—&;. They are orthonormal i® di-
mensions because

achieved. U A

Does this mean that once the fluid is moving according to\ 5 J dce Hln@HJm(a = mn _ E _ ‘Siljl'“ ‘Sinjna
the linear velocity profile, it will continue to do so forever? Plialz i
The answer is that it depends on the boundary conditions (17)

which have so far not been specified. The steady-state d'Str\'/(/hereP(---) indicates that the sum is over all permutations,

bution hypothgsized,_ and t_he susta_ineo_l USF it i_mplie§, i%o that the coefficients of the expansion are related to the
only possible if the distribution function is compatible with velocity moments via

some set of boundary conditions. For example, if the system
is bounded with rigid moving walls, then the final distribu- T P ;

tion will depend on the detailed dynamics of collisions of fdv fr(V,{nS},T)H,n(Cr) =nrAn' (18)
grains with the wall. Here, however, we will assume the R .

imposition of Lees-Edwards boundary conditions which arewhere C,=\2I"V/2.V. Evaluating Eq(7) relates the lower-
periodic boundaries in the comoving frame. A time- order coefficients to the hydrodynamic fields as
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n(g,t) = n,A", degrees of freedom in the reference state and those in the
moment expansion are possible, but do not appear to offer
any qualitative advantages. For example, one could use the

p(G.DU(G) = 2 mn A+ 3 X mn (V20T AT restrictions

r roj
< m o

1 - IM=—"—1,

DnkgT =23 {mn, Tr{ ()] el
r

+mn T2 AT ()2 (19 S YA =0, (24)

r i

implying A’=1 and ErEjmrnr(\s’Zﬁl’Z)alA}:O. The kinetic
contribution to the stress tensor is so that the reference state is simple equilibrium. This possi-
bility will not be considered here, although there is nothing
- to rule it out in principle. Note that in no case can we force
=2 mrfdv fr(Viing, VIV the temperatures of the subspecies to be equal since that
' would eliminate certain degrees of freedom altogether and
1 I S = Sy this would lead to inconsistencies when we use the expan-
= EE mn [ 1+ A) -T2 (200 sion to solve the Enskog equation.
' Substituting the general expansion given in ELp) into

Each species has a temperature given by the Enskog equation, multiplying bML}(\e"ZF”llz'Vl), and
integrating over velocities yields an infinite hierarchy of
coupled equations for the moments which are given explic-
itly in Appendix A. The nth-order approximation is usually
taken to consist of truncating the expansion in @) to the
— l{mrn Tr[(f’r)—l] first n terms and using the first equations of this hierarchy
' to determine the moments. The remainder of this paper will
- - o focus on the simplest nontrivial approximations, which are in
+mn T2 A ()7} (21)  poth cases the second-order approximation. For the GME,
Calculation of the velocity moments of E¢L5) shows SOMe simplification allows the moment approximation to be
that there are actually redundant degrees of freedom in th&rtten as

sense that any change i can always be compensated by f1
changes in the coefficients of the expansion. These redundant ay 12
degrees of freedom can most conveniently be eliminated by

restricting the form of eithef™ or A{z, although one could

imagine applying the restrictions to higher moments. Thereyith

are two cases of particular interest. In the firBt,is left

unspecified and we s@l{l =0 so that all information about £rie B T —

the second moments comes from the Gaussian. This will be i1i2 == 27 “de(l™I") dVldVquZVlilvlizT—(lz)
referred to below as the generalized moment expansion or R,

GME. In the second casd, is specialized to a diagonal Xexp(—Vy - IV =V, - T Vy) (26)
matrix by setting

DnksT, = m, f dV f,(Vi{ng, )V

1"271lp

+a(lyf 6+ T80 = 2 n e, EiY2 (25)
2

and wherey, ., = X; r,(01,d1+ 0ys012; 1) is independent of;
m; T (22) andq,, in a homogeneous systerrl. This system of equations
2kgT, suffices to determine the matric€ét. For a given applied
shear ratea, the steady-state temperature, and hence the di-
where the parametef are to be determined. In this case, mensionless shear raté, is then determined from the sec-
only the trace of the second-order coefficients is set to zergnd moments from Eq(19). Explicitly, the temperature is

so that T=2,xT, where the partial temperatures are given by

=

2 A =0. (23) M =
i DkgT, = ?Tr[(l“rl) 1. (27

This represents an expansion about a local equilibrium state

in which the temperatures of the different species are alThis lowest-order GME corresponds to the “generalized
lowed to vary and will be referred to below as the simpleMaxwellian” approximation of Chouwet al. [6,7]. For the
moment expansion or SME. Further tradeoffs between th&€ME, the moment equations are
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i 5 J M r N
MAili2 ot (A, + 8i,) +al8a Ay + S, Ay + 6,8y

+ 5xi25ily)

Cl2. - Al1 4 DMI2. - A2
I1'2)1l2" J1l2

iqindalo" 1o

B2

I1l2

= E nrz)(rlr2

2

1
+-2( )1,
2]112

Tr(A'1) =0 (29)
with

B =
- f dV3dV,dGH; ; (COT-(12D, (Vi T )P, (Voi T, ),

M2 =
l1'2)1)2

- f dV3dV,dpH; i (C)T-(12®, (V4;T,)

XH; ; (C® (VoiT, ),

Mz =
l1'2)1)2

- f dV3dV,ddpH; i (C)T-(12)

XD, (Vi; T, )0 (Vo T )H;(Co),
m, 1/2
& - —L) 3
] (kBTrJ ]
. m \D2 p( m, )
d (VT = ! ) exp| - V2. 29
(Vi) <2kBTr7T 2KkgT, - 29

The first of Eqs.(28) are a set of linear equations for the by differentiating with respect to the matriceg andI’

coefficientsA'%

PHYSICAL REVIEW E70, 061101(2004

stantZ must also be determined. For the second-order GME,
this is not an issue since the approximate distribution is
Gaussian. For the SME, one has that

/
m )Dz -DI2
1 Ce
X (1 + 52 A Hi, (V22 V))
“hlp

m eX

m; V2

fr(V;{ns}vT) = nr( kT,

2kgT,

ml’
2kgT,

- nrdeI(I+ Kr)—1/27T—D/2
xexp(- SV (i’+/&’f)-1-\7)
ri1i2

which is structurally the same as the GME except that the
matrix of second moments is determined through the linear-
ized equationg28) and (29). Thus, in this formulation, the
second-order GME and SME are virtually identical except
for the approximations used to determine the second mo-
ments.

(31

B. Generating function for collision integrals

All of the collision integrals that will be needed can be
obtained from the generating function

I1 (du)ij)expd VT-(12)

=1

Zj'2=~ 7 ® f d\71d\72ddz(

xexp(=Vy TV, =V, - 172 V,) (32

i?and

» Whereas the second can be thought of as gne vectorA,; and taking appropriate limit&uch asA — 0).

set of constraints that serve to determine the partial tempergor example, by inspection, one has that

tures.
Finally, one problem with the moment expansion in gen-

eral is that the truncated distributions are not necessarily

positive definite. Arad hocprocedure to rectify this problem
is to resum the truncated moment expansion so that on
writes, in the general case,

f.(V:{ng,T) = n,detl’) 27 2exp(- V - I - V)

X (
= an‘lw‘D’zexp<

1
+EH

n

1 - -
1+ 3 S A H, (2072 9)
. |n

n

P

—V.TT.

-

\Y,

A H (V2. \7)> . (30
. In

where the new coefﬁcientg[n are chosen so that the two

series agree, term by term, up to the desired oxdierother
words, the two series differ only in terms of the same order
as the neglected termdn general, the normalization con-

Eirllirzz =2 de(ﬁrlfr2)1/2!jm~
A—0

rqr
Z''2,
I2

dAL IA
e

"1

2kgT

rqro — H rqr
i = lim  EZ2,
1'2 my 1'2

firx., 1

rqro 1

Ciligiaia ™~ 2kgT

d

lim  de(I"172)12
M

2kgT,
Lol
1 hle

M1 FXH 1

m. g 2
k T al—*rl + 5jlj2
B % i,

)

lim Z"'2

A—gdAip I A,
r.n"l

r

12
1l

lim
hag my
X
M= 2KgTy
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F L T lim EXz, (33 Ev2=
l'2:J1)2 2kBTr1 kBT’zr m, -0z 12’ 'z
2kg

STt NP
X

while with a comparison of Eqg10), evaluated for a uni-
form system, and EqB4), the collisional contribution to the
pressure is found to be

2
~r7 ) 1/2 rqr W, W,
Py, = 2 e, e X, AE(TTT2) my i ——-Z702, oy otz || o Dtz ) 39)
rirz 07N, Xerr, Xr,
(34)
_ o . _ from which immediately follows the coefficients for the
The generating function is shown in Appendix B to be simple moment approximation
rlrz_ [ra1ro)-1/2 Hryr SA 6 Wryr
=g [ [l =2 v, [ )
1 12

X |:'2r1r2<(]_ + arlrz)umr_ﬂz> - Erlfz(O):| (35

with o Wryr, Wi, W
X | dg g 0 F +F
J q Q|1q|2 (Y : ) 0( lerz 1
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1f2

- 2w, + AT g, 1 - X w. . \2
Z'1"2(x) = XflrzFl( 12 ~ — EX(A . Q)Xrlrz v |:2( rlr2> + 2:| ,
rry

1 e = e = A
X exp(ZA -G2(x) - A = xw A -q),

L
e ™ T m l2di2
f27 7T

X

nu)——i5 e xexp(-

Xer,= VG- (4 729 g,

é’rlrz(x) =T l4 Z(f’rl + f’rz)—l — oL a0+ X2 . 84,

Wffz)

_ M. r "
- O'rDlr:(l + a’rlrz)ﬁ f dq Xrlr2F1< X
r

T1f2

W,
Fo

1 er rra
——D ~ 40y r2(1 ar r2)

Mrgr,
w2

1

><F1<err2),
Yflrz

3 Tr2>
2

12

X

)

)

YI’ 1’

2

kBTr

1P s 40_D 1(1 . )/«LrlrzY_l B
igizdaiz = Gryr m. "2\ m
A o A 1
Wrr, = Orr, 084, (36) w
rqr
><jdqqqa-q[F( 12)
and, in particular, 1z Yer,
Wiir, Wiir,
Fo(x) =erf(x) - 1, |5 )Rl ¥
"2 12
2
Mr ¢ m,
1 D-1 2 12 1
Fi})=—= 4 xerf(x) - 1]. (37 * 30'r1r2(1 * arlrz) ( m ) keT,
NTT 1
. . . NN erfz
(Appendix B also discusses the general case of an arbitrary XYrr, | d0G,0,9,,0,F: v
flow state) The elements needed for the second-order mo- M2
ment equations are worked out in Appendix C, where it is
shown that where
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kgT, keT, _ d < _ < _ < -
VIR PULE L) (4o M) ne[o]}, - ald [T (o]l + 8 (o)
m, m,
o1+ 0, \[ o1+ 0,\P7t
which, together with Egs(21), (25), and (28), and the re- =—nfd0'2X(0'2)X< 12 2)( 12 2) [1+a(0y,07)]
quirement tha&,n, T,=nT, complete the specification of the
second-order moment approximations. The collisional contri- y ,LL(0'1,0'2)~E 43
bution to the pressure is m(ay) i4,(01,02) (43
i\ii2 E nrlnrz rlr Xrqr 2(1 ®ror, ) with
r1r2
A W(ay,0%)
W, r (0q,00) = fdQX(O',O')F (—)
><,u,l,2quq, C],2 1r |:FO<X12) |12 1,02 1,02)F1 X(oy,05)
rlrz o R R o R R
W W X[ oy - @3 b, + (T o) - @30 ]
rqr rqr
+2 12F1< ”)] (41)
1 1 ~A A ~
Xfl’z X’l’z + 5[1 + a(UlyUZ)]ﬁa(pr]o(-;a)-Z) dg g, %,
g1
The evaluation of the SME model in the Boltzmann limit
' w(oy, w(oy,
obtained by expanding in the hard-sphere diameters and XX (01,02){< (o 02)> o( (o 02)>
keeping only the leading ordéwhich here amounts to tak- X(oy,0) X(oy,0)

=1/y 77] is performed in Appendix D. For a one-component
system, the GME results are in agreement with Chou and
Richman[6,7] while the Boltzmann limit of the SME is in
agreement, for a one-component system, with the expres- — A -1 <1 A
sions given by Garz¢15]. In this simple case, the angular X(on2) = Jq o) + o],
integrals can be performed analytica(lsee Appendix D It

is remarkable that the structure of the these terms is virtually

identical to the equivalent quantities which occur in the el- W(oy,07) :<
ementary case of the moment solution of the Enskog equa-

tion for USF of elastic hard spherg¢&3,14. The practical
result is that it is technically no more difficult to work wit
an arbitrary mixture than with a single species.

ing the limit w, ., —0 and using Fo(0)=—1 and F4(0) o (W(f’lvffz)){2<w(ffl,ffz))2+2}}’

! X(O']_,0'2) X(O’l,0'2)

+
= “2)” &4 (49)

h and the contributions to the pressure become

P = f dox(o) [T (o]

I
C. Polydisperse granular fluids te
As an extreme example, these results can be generalized 5
to describe a polydisperse granular fluid in which there is a jv _ 1, dorydex(o)X(0) oLt oy ot oy
continuous distribution of grain sizes, masses, and coeffi- 12" 4 PRI 2 2
cients of restitution. This is equivalent to having an infinite

number of species and in general one must supply the distri- X[1 + a0y, o) (g, 0) J g1 § .6 X(oy, o)
bution of grains among the species, ie.,as well as the 172

hard-sphere dlametersrrr, and coefficients of restitution

a.. In fact, formally, the species label can be replaced by a [F(,(W(Ul’UZ)) + (W(01’02)> 1( W(Ul’UZ))}
continuous index over some interval, sgy 1], and sums X(oy,09) X(oy,09) X(oy,07)
over species replaced by integrals over this index. In the (45)
event that each species has a unique hard-sphere diasmeter

and the hard-sphere diameters are additive, i.e., where some model faw(oy,05) and the massas(o;) must

be supplied. The generalization of the SME expressions is

1
Trer = 5(0, *+ o), (42 gable to implement, but if the integrals are performed us-

ing n-point Gaussian quadratures, thefdox(a)F (o)

similarly straightforward. These expressions appear formi-

it makes sense to replace the integrals over species labels by =L;wx(0;) F(a;), wherew; are the Gaussian weights and
integrals over the distribution of hard-sphere diameters. Spghe o; are determined by the Gaussian abscissas. In this form,

cifically, the measures,dr becomex,(dr/do)do=x(0)do,  the calculation is identical to that fon species withx,

wherex(o) is the fraction of grains having diameter The  =w;x(g;). Thus, numerically, there is no practical difference

moment equations then become between the polydisperse fluid and a mixture witepecies.
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I1l. COMPARISON TO SIMULATION equilibrium fluid. Shear flow was again imposed by means of
Lees-Edwards boundary conditions. After turning on the
shear flow and collisional dissipation, the systems were al-

In order to evaluate the models presented here, three typé@wed to relax for a period of 5 10 collisions after which
of calculations were performed for three-dimensional Sysstatistics were gathered for anothex 30’ collisions. Errors
tems: numerical solution of the second-order moment exparivere computed by estimating the desired statistics using data
sions, numerical solution of the Enskog equation by mean§om each period of T0collisions and calculating the stan-
of direct simulation Monte CarlgDSMC), and molecular- dard error between the estimatéise same method was used
dynamicgMD) simulations. Comparison of the first two elu- in the DSMC calculatiop In the figures shown below, error
cidates the accuracy of the second-order moment approxim&2ars are in general not given because in most cases, the es-
tions while comparison of both to the MD indicates the timated errors are comparable to or smaller than the size of
accuracy of the underlying assumptions, i.e., that the staté'® symbols. Exceptions to this the case of the tempera-
obtained is indeed USF and the assumption of moleculaiure distributiongare explicitty commented upon in the text.
chaos. Larger systems were not simulated as they are subject to

The focus here will be on the steady-state properties o¥arious hydrodynamic instabilities which violate the assump-
the systems, so that when evaluating the SME and GMgion that the state is USE23,24. It is important to note that
models, the time derivatives are set identically to zerothe MD code only allows for binary collisions: in the event
Implementation of thestatio SME requires the numerical ©f clustering, which could lead to higher-order collisions, the
evaluation of the coefficients given in E@Q9) and the solu- ~ condition is flagged and the code aborts. For the simulations
tion of equations(28) for the partial temperatures and the Presented below, this never occurred.
shear rate as a function of the global temperature and coef-
ficient of restitution[the second-order moments are deter-
mined from EQ.(28) which are linear so that moments may ) . )
be taken as given functions of the other paramgtefe One check on the expressions given here is to compare to
GME requires a similar numerical evaluation of the functionthe results of Montanero and Garzo, who have evaluated the
E/1"2 and solution of the nonlinear moment equations, EqsSME in the Boltzmann limit for a binary mixture and com-
(25) and (27). All numerical calculations were performed pared to DSMC S|mulat|on_s fora_varlety of combmatlons of
using the Gnu Scientific Librarj22]. In all cases, thétwo- ~ Mass, diameter, and density ratios. The expressions for the
dimensional numerical integrals were calculated using the SME when evaluated fan(c)*=0.001, so as to achieve the
GSL routine “gags”(Gauss-Kronrod 21-point integration Boltzmann limit, do indeed agree well with the data given in
rule applied adaptively until the desired accuracy isRef. [25]. A particular case is foroy=o,=02=1,m
achieved with a specification of relative accuracy of 0 =10M, a1;=a1,=@2,=0.75, and x;=x,=0.5, for which
and absolute accuracy of Ttfor the inner integral and 1&  Montanero and Garzo repoRy,=-0.498 andP;,=0.723
and 106 for the outer integrals. The linear equations for thefrom DSMC simulations andD)'f =-0.498 andPX =0.743
SME moments were solved by LU decomposition and therom their evaluation of the SME in the Boltzmann limit. |
nonlinear equations for the partial temperatures and shedind that the(very low density SME givesty:—O.4981 and
rate were solved with the GSL “hybrids” algorithfRowell's Pyy:0.7435, in excellent agreement. By comparison, the
hybrid method with numerical evaluation of the Jacohian GME gives Pfy:—0.496 andP{fy:O.726 and so is in even
Convergence was considered to be achieved when the sum loétter agreement with the DSMC numerical solution of the
the absolute value of the residuals was less thad. Ihe  Boltzmann equation. In addition, in the same limit, the GME
same methods and tolerances were used to solve the nonlig- able to account for at least some of the normal stress
ear moment equations for the GME. differencesPX - P¥ that the SME misses$n the SME in the

- . yy
The second set of calculations performed consisted of thBoltzmann limit, pﬁfy: pZK) but which are clearly nonzero in

numerical solution of the Enskog equation by means of thehe DSMC calculations.Z
DSMC method[18]. These calculations were performed us-
ing a cubic cell with sides equal to the maximum of the
hard-sphere diameters, with ®1points and a time step of
At=0.0117%n, Wherer, is the mean free time. All calcu- A simple model was used in which the diameters are ad-
lations began from an initial configuration corresponding toditive, the masses scale with the diameters in the usual way,
the equilibrium hard-sphere fluid. Shear flow was imposed
by means of Lees-Edwards boundary conditions which are
periodic boundaries in the Lagrangian frafi€]. For each
combination of temperature, shear rates, and coefficients of d th fficients of restituti | ddit
restitution, the initial configuration was relaxed over a periodan € coetlicients of restitulion are also additive,
of 100n,; and steady-state statistics, reported below, were 1
then obtained by averaging over another 490 a(0y,07) = E[a(o'l) +a(0y)]. (47)
Finally, these calculations are compared below to
molecular-dynamics simulations. In all cases, the system$he distribution of diameters was taken to be a simple trian-
consisted of 500 grains and the starting configuration was thgular distribution,

A. Simulation and numerical methods

B. Binary mixtures

C. Polydisperse model

4
m(o) = fpoa% (46)
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{u_2(0—1+u), 1-u<o<1
X(o) = (48)

u?(l+u-o), 1<o<1l+u

so that the average diameter is 1 and the polydispersity, de-
fined as the variance divided by the average of the sizes, is
8=(1/46)u. The coefficients of restitution were assumed to
scale linearly with the diameter with the smallest grains be-
ing hard,a(c=1-u)=1, and the largest being sofi{c=1
+U)=ap<1, whereqg is a free parameter, so that the aver-
age value iSa)=(1+ag)/2. The equilibrium pair structure
function x(o,0») was evaluated using the approximation of ol i1, T )
Ref.[26] and the accuracy of this approximation was verified 002503075 1 0 02505075 1 0 02505073
in the equilibrium(ay=1) simulations. In all of the calcula-

tions reported here, the integrals over the distribution of FIG. 1. The absolute values of the kinetic part of the stress
hard-sphere diameters were performed using a Gausnsor(i.e., the second momentsormalized tonkgT for three den-
Legendre integration scheme with 10 points. Using fivesities as determined by the GMEolid lineg, SME (open symbolg
points, the results differed by about 10%. When evaluatingind DSMC(filled symboly. Note that thexy moments are actually

the equations for an equilibriutfag=1) mixture, the differ-  negative.

ence between the 5 and 10 point schemes was also about

10% and the absolute accuracy of the 10 point scheme conand remain reasonable even at the highest density. In particu-
pared to the known exact results was 1%. The MD andar, thexy moments are in good agreement at all densities.
DSMC simulations were performed with a system obtainedThese results show that the GME gives an accurate estimate
by a random sampling over the distribution of hard-spheref the second velocity moments as determined by the Enskog
diameters. A variety of simulations was also performed withequation and that the Enskog equation gives a reasonable
other samplings and it was confirmed that the results reapproximation to the second moments at all densities inves-
ported below do not vary significantly from sample to tigated.

sample.

In the following, comparisons will be made for systems at
three densities: a low density fluid, =n(¢®=0.1, a mod- o _
erately dense fluidy =0.25, and a dense fluid: =0.5. Inall _1he nextquestion is whether stopping at second moments
cases, a value ai=0.5 or polydispersity 0%5=20.4% was IS sufficient to accurately approximate the full solution of the

used. All results are from a single random sampling of thisE"Sk0g equation. One measure of this is the calculation of
distribution. For the DSMC calculations, the large number oftN€ collisional contribution to the stress tensor. Figure 3
points used means that the distribution is well sampled. FopnoWs the diagonal components of this quantity as calculated
the MD, however, the relatively small number of atomsTom the GME and DSMC and measured in the MD simula-

might mean that the results reported below are influenced bjfons- At low density, the agreement between the GME and
the particular realization used. To control against this, | havd®SMC IS good, although not quite as good as for the mo-
checked a number of data points using multiple independerP€Nts themselves. This shows that although higher-order

samplings from the distribution and confirmed that the variamoments will give some small contribution, the GME ap-
tion induced by different samplings is negligible, at least forP€ars, in this case at least, to be a good approximation to the
the properties discussed below. solution of the Enskog equation. However, comparison to the

MD shows the shortcomings of the Enskog equation itself.

E. Accuracy of the second moment approximation

D. Accuracy of the second moments

2'I'I'I' TTTT N TTTTTTT
Figure 1 shows the kinetic part of the stress tensor, or [L "*=0'19 | n*=6‘25_ | n*=°'5°_
equivalently the second moments, as obtained from the
SME, the GME, and the DSMC. Comparison with the nu- L5- x ]
merical solution of the Enskog equation, i.e., the DSMC re-
sults, shows that the GME gives a virtually exact estimate of
the second moments at all densities and degrees of inelastic- Pil‘] 1r 7z
ity. It is interesting to note that the difference betweenythie . vy
and zz moments, which is zero in the Boltzmann linggee
Appendix D), is never very great and actually changes sign ’ xy
at high density. The SME is in close agreement with the
GME. The only significant difference is in thgy and zz
moments where the SME tends to underestimate the differ-
ence between them. Figure 2 compares the GME calculation

to the MD results for the same systems. The calculations are FIG. 2. Same as Fig. 1, but showing results from the GME
in excellent agreement with the simulations at low density(solid lineg and MD simulationgsymbolg.

Xy

OO

A A A
0.25 (()iS 0.75 0 0.250.50.75 0 02505075 1
0

061101-10



RHEOLOGY OF DENSE POLYDISPERSE GRANULAR. PHYSICAL REVIEW E 70, 061101(2004)
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0.5 B
4 L

06Q"""' N N 0 , | , | . | , ] .

0 0.25 %5 0751 0 02505075 1 0 02505075 1 0 0.2 04 0.6 0.8 1
o %

FIG. 3. The diagonal components of the collisional contribution ~ FIG. 5. Same as Fig. 4 but showing the reduced presgure
to the stress tensor as a functionaf normalized to their equilib-  =p/nksT.
rium (ap=1) values. The lines are GME, the filled symbols DSMC,

and the open symbols MD. constant. The calculations are again all in reasonably good

agreement with the MD. Figure 6 shows the dimensionless
At low density, agreement is good but even at moderate dershear viscosity

sity, considerable differences between MD and the Enskog

approximation are apparent, although the latter remains a «_ Pxy (o) (49)
reasonable semiquantitative approximation. At the highest 7T="3 kg T(m)
density, the differences become qualitative in nature. In the _ ) )
MD, the xx component changes nonmonotonically with ~ and the viscometric functions
whereas the Enskog theory predicts a monotonic increase P =Py (o)
with increasing inelasticity. Enskog predicts little change in ,/,*lz XX—ZWL,
theyy component, whereas in fact it drops rapidly. Only the a®  (m
zzcomponent is represented at all reasonably.
«_Py =P, (o)
lﬁz a2 <m> ’ (50)

F. Viscoelastic properties

which measure the normal stresses. The Enskog theory gives

tion of «y according to the DSMC, GME, and MD. All of avery reasonat*)lg estimate fpr all of the wspoelas’gc proper-
les. Although ¢, is systematically underestimateg, and

these are in good agreement at all densities and values e shear viscosity are well approximated at all densities. In
inelasticity. This agreement is also fortunate since it mean y app . ) '
all cases, the errors grow with density and decreasing

that any differences between Enskog and MD are not attrib-

utable to a misestimated shear rate. o
Figure 5 shows the pressuteace of the stress tengomn G. Temperature distribution

contrast to elastic hard spheres, for which the pressure in- So far, the comparisons have shown the Enskog theory

creases with increasing shear rid], the pressure is nearly and the MD to be in good agreement for bulk properties up

Figure 4 shows the dimensionless shear gatas a func-

" n+=0.10 "om=025] [ ps=0.501

' Al 1F ’

o6 T 17T " o]

4og v 11 1 L .

L 50 i

04| 4 F . 60 -

* % n B 7

n.yr TI* 17 YR 7]
[m] *

O3 poueton| 5 | v ]

: 1 Fw I

oF * - - -

v, v 1F %]

Y] B R Lo 1]

0 0.25 (()iS 0751 0 025050751 0 0.25050.75 1

0

FIG. 4. The reduced shear raié as a function ofag as deter- FIG. 6. The reduced shear viscosity and viscometric functions,
mined from the GME(lines), DSMC (filled symboly, and MD as defined in Eq949) and(50) as functions ofag. The lines are
(open symbols from the GME and the symbols from MD.
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1.3 T of the interactions of the grains in the collision term. It is

hard to imagine that the second point is in error, so it seems
most likely that the Enskog theory is overestimating the col-

lision rate for large grains. Some support for this hypothesis
comes from the fact that setting the pdf to its Boltzmann

limit (i.e., unity) increases the temperature of the largest

grains by about a third of the difference between the Boltz-
mann and Enskog results for =0.25. This suggests that

12

1.1

* 1
T@|
0.9

08
- even at low density, the Enskog theory is based on a poor

TN T estimate of the collision rates and so the assumption of mo-
0608 11214 0608 11214 0608 11214 lecular chaos, Eq6), is in error. This error is not apparent

. when considering the bulk properties because the distribution

FIG. 7. The reduced temperature distributibiio)=T(0)/T as  of grain sizes is such that the largest grains make a relatively
a function of grain sizeg. The line is from the GME, the filled  gmga)| contribution to most properties: the largest contribu-
symbols from DSMC, the dashed line is the SME, and the dotteq; g come from grains near the middle of the distribution

line 'S frqm the Boltzmann equationalso in the GME where the Enskog theory is relatively accurate.
approximation.

to n"<0.25. Even above this density, the physically interest-

ing quantities—the pressure, shear viscosity, and viscometric IV. CONCLUSIONS

functions—are well approximated. This picture changes

when attention focuses on variations of properties with grain In this paper, the moment approximation to the solution of
species. Figure 7 shows a comparison of the predicted tenthe Boltzmann-Enskog kinetic theory has been generalized
perature distribution as a function of grain size according teso as to represent an expansion about an arbitrary Gaussian
the SME, GME, and DSMC for the particular valae=0.4  state. This framework encompasses both the generalized
as well as the zero-density, Boltzmann limit, prediction. TheMaxwellian approximation as well as the simple moment
SME and GME are again very good approximations to theexpansion about local equilibrium as special cases. It shows
numerical results, with the former being slightly more accu-in particular how corrections to the generalized Maxwellian
rate for the smaller grains and the latter more accurate for thgpproximation might be calculated.

larger grains for which the SME deviates from the Boltz- ~ A generating function technique was also presented as a
mann result too slowly. The surprising result is shown in Fig.gimpjified means of calculating collision integrals for the
8, which compares the distributions obtained from the GME,5ticyjar case of uniform shear flow. Although the present

and MD simulations. Although reasonable, the Enskog r€talculations were only performed to second order, the gener-

sults are in poor agreement with the MD for the Iarg(aStating function technique would make higher-order calcula-

grains, especially at thiewer densities and most especially tions much more feasible than more straightforward meth-

for n"=0.25. Even more surprisingly, the MD results at lower . : .
densities are in good agreement with the GME approximapds' The technique is based on the observation that the

tion to theBoltzmannequation. The two differences between postcollisional velocities of hard spheres are linear functions
the Boltzmann and Enskog tlheories are tf@tthe Enskog of the precollisional velocities so that precollisional Gauss-
theory has a higher collision frequency due to the prefactofaS rémain Gaussian and integrals over such functions are
of the pair distribution function which occurs in the collision relatively straightforward to perform. This technique is par-

term and(b) the Enskog theory accounts for the nonlocality ticularly valuable in anisotropic states, such as USF, where
the usual approach to evaluating collision integrals becomes

very messy. The method should be applicable to many other
types of kinetic theory calculations.
These general methods were applied to the particular case
Z of arbitrary mixtures of granular fluids. It was shown, by
comparison to DSMC simulations, that both the SME and
the GME are very good approximations to the exact solu-
tions to the Enskog equation for a model polydisperse granu-
lar fluid. The GME tends to be slightly more accurate than
the SME and has the additional advantage that the approxi-
L o o mate distribution is positive definite.
0608 11214 0608 1 1214 0608 I 1214 Comparison to MD simulations showed that the Enskog
equation gives a good estimate of bulk properties such as the
FIG. 8. The reduced temperature distributiBiic)=T(c)/T as  temperature, pressure, shear viscosity, and viscometric func-
a function of grain sizeg. The full line is from the GME, the open tions(i.e., normal stressg®ver a wide range of coefficients
symbols are from MD, and the dashed line is from the Boltzmannof restitution and densities. Shear thinning is particularly
equation(also in the GME approximation well predicted. However, a more detailed examination shows

13T

TrTT T T LN L
n=0.10 ] n*=025] | n*=0.50 |
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that part of this agreemerparticularly in the case of the 9 J G d _ 4 r1’2 _1/
viscometric functionkis due to a cancellation of errors while a = PR &C = T oq P ZCk
the description of the variation of temperature with grain size EE L G %
is in fact rather poor. The fact that this agreement is so poor aui \ 4

: e rai : —\ory2—l ) — (A3)
even at relatively low densities raises the question of whether W gq)oC

the approximate kinetic theory is fundamentally lacking in

some way. Possible explanations of the errors are that the

local equilibrium pair distribution function is simply inaccu- 0 that

rate, that the assumption of molecular chaos is violated, or 1o

that the systems are not actually in a state of USF due, e.g., 9 + J _d ((9F F ’21“1’2—1) d
at dGC;

. . v -
to some sort of segregation process. The exploration of thesegt 3G at'
possibilities will be the subject of a later work.
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APPENDIX A: MOMENT EQUATIONS at’ at dC;
In this appendix, the left-hand side of the moment equa- g (oTi? .,
tions is developed, first for a general Gaussian state and then Frlm Cntu )| -+ aq Iy Ci
specialized to uniform shear flow. The kinetic equations take a '
the form 1,2_L 12
—\2rt +—In det(T’
Vel aq at’ ()
P s DV Gt =S Iff Al 1 J
tv = r(q]_,U]_,t) ‘][ r S] ( ) ;—F 2C +u |—In det(F)llz
Jt aq s Im | t9Q|'
o = de(2l") 123, J[f,,fd. A5
and the distribution is expanded as e(2r) % [Fr ] (AS)

The next step is to multiply through bbhn(é) and to

XV2 - ["r\1/2_-D/2 NS LTS N
(@ Vi{ng ) = nydedI™) ™ exp(= Vi - 17 - V) integrate ovelC. These evaluations are performed using the
(E 1s Ar H (\erl,z V)) (A2) basic identities, which follow directly from the definition of

—n the Hermite polynomials,
n

- . o CiH, (C)=Hy (C) + S, 6 ,H_(C),

where V'=v-U'(qg). This is slightly more general than the n n n ot n-l

form given in the text as we allow here for an arbitrary,

species-dependent, linear contribution to the Gaussian. In the 9 . .

following, all dependence on space and time will not be in- EH'n(C) =8 o xH (O, (AB)
dicated explicitly, although all quantities do in fact have such x

dependence. Furthermore, since we are only interested in the

left-hand side of the equation, which only involves a smgleWhere the operatuﬁ, indicates a sum over all inequivalent

species, the species label will also be suppressed until tHermutations of the indicated set of indices. Repeated appli-

end of the calculation. cation of these gives
The first step is to switch variables frofg,v,t} to {q’
12 ,_ - - R R R
=G.Ci=\2I (v, ~u) =t} using CCH| (C) = Hy (C) + 8H, (O)+ S, [84 & _Hi_(C)
Jd d JaC; 4 + 6xinH|n_ly(C) + 5yinH|n_1x(C)]-
—_— = — + — —
at ot at dGC;
-0 (M e 1204 ) 2 C——H (C)=8 6, Hy (C)+S 8.8 JH (C
_ﬁ"' at’ F C - \ZFIJ It (3’Ci' JC, ( ) 1,9 Xyl ( ) I |><| _Y 'n—2( )
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(A7)

Hi O+ S (O + 8, 8 Hi (C>)
dCy

CCy—H, (C) S 8 (
+52| HI 2y(C)'{' Yip- 1HIn 2z(C)

Combined with the orthonormality of the Hermite polynomi-
als, and integrating by parts where needed, one then has thaf’ de CLyH (C) f(C)

nt f dc H,n(é)?(é) =A == Sy0xy(Agy + SlnglnzAln—l)
S.nrsinx(Hln_lzy@ +8H(©)
1 f dc CXH|n(C)T(C) =A4 * S 8A NGRS 2|-|,n73(c§) + Syz5zin71"'lnfzy(é))-

(A8)
JdCC H, (C) f(C)

== GAL S, inX(Ayln +6 1yA|n—2)’ Using these, the kinetic equation becomes
|
g P ri/2 ri/2
-1.9 _ ar -1 9 o raAr _ il - 12, " r-12 _ r1/2_j_ r-1/2
N t'n A +n, aql; r‘ruIAIn SI ( r I aql/ ij F in ﬁQI F )(Akl 1+ 5k|n 1 | 2)

r ri/2
+128, Firlj’z{(ﬁ—ul+u au; )Ar +——(F )] ‘ir& ( W pr-1/2pr- lIZ)Ar +”r_1# 9 (Vo A )
n n n-1 n-1 \/2 J n-3 \*'Zaq

at &ql 2(? q ql’ Jig-2 " ling
arrl/z aI‘I‘l/Z ﬁrrllz
—iS ( 'nl Fr 1/2)Fr 1/2 —iS ( 'nl Fr 1/2>Fp—1/2+< 'nl - 1/2>Fr 1/2 Ar
\’E Ih 5Q| I —1mk \’E Ih O,’ql li-1 aqr fin-1 n-oK
=, *de(I"™) 12 f dCH, (CY X J[f,,fJ. (A9)
S

The zeroth-order equation gives

10 49
n, —,n,+nr —nu =0
at aqf

so that the general equation becomes

P r1/2 ri/2
j In -
_/Ar _/Alr _SI ( 'n Fr 1/2 I n’ Iw;jkl/2_ Frlj/Z_er 1/2) (Arkl i + 5ki i A:' i )
Jt n O"ql n Jt J | n ﬁq n-1 n-1 'n-2

ri/2
au au 1,90 1 i
25, Fﬂ-’{(—l u{—l)N LN (A 9}——@1 (—'"‘ I 2 1’2>A“
n n- ql n— n

ot gl 2 2o\ ag e e e
1 1 (91—‘r1/2 1 (ﬂ—‘rl/z
+n __(Fr 12 ;m ) - =8, [( "nl Fr 1/2)Fr 1/2 mk] - =S {( "nl Fr 1/2)F|ri—1/2
\’2 n \“’2 n aq n 1 \/2 n aql n-1
ﬁl—‘irljlz . .
" (—&q"l, r}ii’f)r' m]A’ Jo= ;e )12 J dCH, (C) 2 JIfr. 1] (AL0)
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Specializing to USF gives

J r1/2
inl
_Alfn _ Sln< n 1—~r 1/2 _ ajlrr1/21—~r 1/2)

)

r
X (Akln—l * é\kinfl In—2

= n; 'de(2") /2 f dC'H, (CN X J[f, 1
S

=n?t f dVH, (€)X J[f,.fd]. (A11)

For the second-order GME, this gives

ri/2 PENEL

12l r-1/2 _ 1) r=1/2 4 ri/2pr- 1/2 ri/2p-r-1/2
ot N PT: Uy el ey T

=n* J dVH, (€)X J[f. ). (A12)

Multiplying through byrr 1/ r 1/2

i, gives

and summing ovei; and

F
at

“+ay IFklI akl|rrk;|1

f dV'E TG Tl H,(C) Z I ]
S

=on7t J AV Vi 2 I B, (A13)
S
For the second-order SME, one has
Jd  dInT, | nT,
W i, t ot Alll 2kAk|1+a1lkAk|2 (Slzil &,
va = LAy v S I
a-|1|2_ r kBTr kq Vky . r .

APPENDIX B: THE GENERATING FUNCTION

PHYSICAL REVIEW E 70, 061101(2004)

T.(12) == 012~ 07 r,)O(= V12~ A1V 8udbio- 1],
(B2)

and in this appendix, | continue the generalization of Appen-
dix A and allow for an arbitrary flow state so th¥j=v;
—{"i(gj). Using

E)12\71 = \71 (1+ap,, ) (012 012012, (B3)

the generating function is
n
ZErlﬁZ_ - Do-r 1o f dVldVqu<H Oryr Ch)
Xexp(—Vy - 71 Vy =V, - T2 V) O (= 015 8) (012 - §)

><|:e><£’</§ V- (L+a r) (012 QA - Chz)

— exp(A - \71)] . (B4)
It is enough to restrict attention to the function
Z'1r2(x) = — 2 detl"1172) 125770 f dV,dV,0 (- 5, - §)
X(v12- G)exp(- 912,

X(U12- 61)/{ 012
(B5)

912:_\71'1‘;'1'\71_\72'1?‘}2'\_/)2+/§'\71_

in terms of which the full generating function is

n
oD Tde 1912 f dq<n orlrzdi)
j=1

X [?S( ﬂr”) —EfS(O)] . (B6)
12 mrl

The velocity integrals are performed by switching to rela-
tive and center-of-mag€M) coordinates

1
Zip =+

<y
<
=
<

To evaluate the various kinetic integrals, we need the gen-

erating function
n —
Zgp=-m" f dvldvzdaz(H d1z)eXF(A VpT-(12)
=1

XeXF(— \71 . frrl . \7]_ - \72 . ﬁrz ) \72)

n
= 7T_D J d\71d\72dd2(H qlzi)exq_ \71 . Frl . \71
i=1

~V, 172 V) T,(12)exp(A - Vy), (B1)

where the negative adjoint of the collision operator is

\7: + 2 \72, (B?)
ml mfz mf1+mf2
so that
- .M
Vy=V+ —225
1
Y I
V,=V- nr;rzv. (B8)

In terms of the CM variables, the argument of the exponen-
tial is expanded by first using
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_\71'Fr1'\71_\72 'Frz '\72

2
=V 1+ V=g {("“_> i

2
_ (h) | .
I’nr2

_ 2\7 . mf’rl _ %f’rz 1 (B9)
m, m,
and the remaining terms become

Hryry - >

A-v-x(A-qv-q

&'\71_)((612'6112)&'61:/{'\7"' m
"1

—xwA -G, (810

where errZE[Grl(dl)_arz(dl_arerQ)] - (in USF, Wr_g‘r2
:orlrza-é’-q). The first step is to complete the squarevin

V(i vzv(“—r"—f) iV
mr
1 2

= (V+A) - (IM1+172) . (V+A) +A- (TT1+T72) . A

(B11)
with
,&: ;. (/’Lrlrzf;rl _ ,U«rlrzf’rz) . (Frl + Frz)—l
m'l mrz
s = Foet
- EA S(TM1+T72) (B12)
giving

g12= = (V+A) - (11417 . (V+ A) + A (T4 T72) . A

2 2
i (Mrlrz) F’l— (Mrlr2> Frz G+ /Lrlrzﬂ .
M M, M

(B13)

~x(A - §)7 - §-xw A -4,

This can be simplified by expanding the second term and

using

(Mr—lrzf‘?l - %f}z> ol - (Frl + Frz)‘l . (Ef}l
m, m, my

1

2 2
e 0 IS B N 1PN I P I
m, m, m;
2 1 2
=—5-T'. (Fr1+Fr2)‘1.fr1.J

(B14)

so that

PHYSICAL REVIEW E70, 061101(2004

012= = (V+A) - (F11+ 17 . (V+ A) =5 - T2 (I3
4 frz)—l . f’rl - A’ . (f’rl + f’rz)—l . (%f’rl

1

JEeg) g IR e et § e B2 R
m, 4 m

2 1

-

~X(A Qv G- xw,, A -G (B15)

172

Furthermore,

A (et (mf’rl - %ﬁz) 3
ml'

1 2

M - I - -
:(rrr1_lr2)/\-5—A-(Fr1+rr2)_l'rr2'l7 (B16)
"1

SO
O12= = (V+A) - ([T1+ 179 - (V+ A) -5 - T2 (171
+F'2)‘1.fr1.5+1§ . (ﬁ1+ﬁz)‘1.ﬁ2.lj’+%/§.(ﬁl

#1727 A= x(A - 8)5 - § - xw A -§. (B17)

Next, we complete the square inusing
— T2 (4T LT g+ A (T4 T2 7L T2
~x(A -85 -4
=g (M4 1.5
+[A (141722 2 - x(A - §)§] -0
== +B)- ("1 + 2§
+B) +B- (I" 1+ 72~ 1. B, (B18)

where
sl e e e e o
B:_EA.([‘V1+FF2) Lo (Il + re-n)
1 o e . o=
+ XA Qg - (Frrt+ Y20

1- o 1 - .. = -
=- EA S RERE EX(A -Q)q- I+ T2 (B19)

giving
0=~ (V+A) - (114172 - (V+A) - (5 +B) - ([T
# T2 (G4 B) 4B - (1t Y21 B+ % A (i

#1727 A= xw A -§. (B20)

Then, using
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f exg— (V+A) - (I"1+172) . (V + A)]dV
= de(T"1 + 7212 f exp(- V2)dV
— WD/Zde‘(f’rl_'_ frz)-1/2 (B21)
gives
Z'1"2(x) = - 2 det["1[72) 270/ 2de( 71 + [72) 12
xfdﬁ@(—m]-ﬁﬂi-d—wrlrz)
X(G-§-B-g+ W, Jexd—a- (T4 Tr2-1)71. ]
xex{é (@ e dE i

+172) 71 A - xw A -q]. (B22)

Next, expanding

Jdﬁ@(—ﬁ-d+l§ q
:de(l\?i)-l’?f dirO(-0' -M™2.§+B

= de(M) 27(D - 1)/2|M~*2. f

—00

1 . . i -
—_ Ede(M)—lIZﬂ_D/Z|M—1/2 . q“:l( 12

| -1/2

where

—X

FaX) =-—

N -

(U’ +x)exp(— u"?)du’

(B27)

so that

Fo(x) =erf(x) - 1,

(B'Q‘errz)/\

PHYSICAL REVIEW E 70, 061101(2004)

B- (ﬁrl + frz—l)—l B+ %K ) (frl " frz)—l A
1- o -
= ZA -G'"2(x) - A (B23)
with
Grra(x) = [t + 271+ 172 - w172 9§ + G772 - )
+ XZXI?]_I' qu
lerz = q . (l:)r]_—l + Frz_l) . a (824)
gives
'Zrlrz(x) ==2 de(ﬁrlfrz)lmw—D/Zde‘(f’rl + f’rz)_l/z

fdu@(

X (-9~ é-a+w,lr2>exp[— G- ([t Tyt ]

+B-g-w)

W, )(G-§-B-g+w,  Jexp—i-M-0)

1. - -
xexpL—lA-G 12(x) - A xw,lrzA-q . (B25)
The velocity integral is performed using
G- (@ Mg B G+ Jexpl- u'?)
M2 é g-w,
(u’ - —r”)exp( u'?)du’
L0t
5.4
9
I
1 »
Fi(x) = =€ * + x[erf(x) - 1]. (B28)

N

Noting that |(1“rl Ly[ro-nl2.g/=X, r, and deft(Ir?
+Fr2_l) 1] 1/2— de(l“rl) 1/2de1(rr2) 1/2de(rr1+f7r2)1/2, one
has that

Zflfz(x) =F W—l 2 é q [{l[{ . 6r1r2(X) /i
1 | —1/2 A| 4

(B29)
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The final result is then summarized as ] P~
lim ————2Z"1"2(x)
Alo? Ail aA;
Erl152_ _det(rrlrrz) o D lf dq<H Trre 4, ) =X F Wryr, [t g [t q
BRI DA 2% )\ 2Xp /.
~ o, - 12 12 /iy 12 /i,
x| 2| (1 vary) 2 -700) | (B30 W\l (W,
. + Xr1r2F1 Xr } G 4 2( X)— = Xrlr F xr )
12 12
with
Weyr | o [ Wrara Fri-l. &) A
L s v A v (9,0,
~ 2Wrr, + A T, 1 L 12 12

Z"r2(x) = XrlrzFl > - EX(A . q)Xr1r2 . 1\2 Wy ¢

12 + (7 g) 6 1+ XZX?ﬁ (5) F1 X =

1- o N > rar

X exp(—A-Gr1’2(x)-A—xwr,A-q), 2 o

4 12 Wi r W r Wy We

+ 12 F:/L 12 + 12 Fl 12 qi ql
Xrlrz Xrlrz Xrlrz Xrlrz t

Xr1r2 = \/é] ) (f:rl_l + F"Z—l) -Q,
Substituting the explicit expression fé(x) gives

érlrz(x) - f’rl—l + Z(Frl + Frz)—l - 2x Frl_l . qq + szf rzqq’
im—— (7 - Fra(0)] = 21| 2
3AilaAi2 ,Xlrz

|
err2 = [Jrl(ql) - Grz(q]_ - UrerQ)] . 6] (B31) A—0

In this calculation, it has been implicitly assumed that S _ 1 }F” VE (V) 4 F
I"1,I"2 and n, ,n, are independent of position. However, (}Y) == 2X%r,| SFIY) +YFi(Y) + Faly)
this assumption is unnecessary and the same result applies <A S oA
for spatially dependent quantities provided the substitutions X[ a); G, + (- 9G]
1 2 " !
i1 gy, + xzxflrz[(§> Fi(y) +YFi(y) +Y?Fa(y)

1
- o +—-F a o Cc3
"2 — I"2(qy = o7 1,0, (B32) 2 1()/)] Bk 3

etc., are made and quantities involvigare brought under SO that, usind=;(x)=nF,_1(X) + 802[F1(X) ~XFo(x)], one has

the integrals. 5 . .
Z'1'2(x,y) = = XX Fa WL §); 8, + (07 )6 ]
APPENDIX C: EVALUATION OF THE COLLISION 1, , o
INTEGRALS XX LYFoy) + (2y"+ 2F1(y)14,6; (C4)

In this appendix, the generating function is used to evalu-
ate the coefficients of the moment expansions. and

2 dé Wflrz
aX.r,F1 X,
12

. rar rar -1 Hry
1. Evaluation of Ej}2 EiZ=- o " (1+a,) -

1
We need - - 1
X[(Frl_l ’ Q)ilQiz + (Frl_l ) Q)iqu] + Eo'rDl;zl(l + arlrz)z
o o P ~ ~
riro — rro\1/2y; rqr _ 7
E12= 2 detli72) im ——= (700200 ~Z5(0)] P (T
A—0 1 2 X m dq qilqizxrlr2 X Fo X
(C1 "1 12 rre
L . "y errz ?
which is evaluated using +Fy X 2 X +2]| (. (CH
T1f2 T1r2
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2. Evaluation of B{%'2 W
X I'lf o rlrz n L r1r2
This follows by taking the appropriate limit (Ei’llir;: lerz lerz lerz
WI’ r 2
x| 2| =—2%] +2 (C6)
Y,
rqr m’l . rqr M2
.= o . Iim o EfZ .
1l2 2kBTfll:)XH(mX/2kBTX)I with
KsT, kT
Mr v Wi r Blry Blrp
=— 925071 12 36 a 12 Yir.=1/2 +2 . Cc7
- 2O-rlrz(l + arlrz) m, lerzf dq q|1CI|2F1< Xrlr2> M2 m, m, €7
1 % m
ZO} rl(l ar ) ( - ) Y31r2k-;— qu ] qI2 3. Bvaluation of D'rl'rzleJz
My We need to evaluate

frz = _ m mrz
l1l2)a)2 2kgT, kBT

lim

det(I T2 V2E 1>
i 7oTi2 2
FoI*—(m,/2kgT,)1 Jdo

0_ 1(1 )Mrlr rﬂrl mr2 lim qu X, F (err2>[(Fr1‘1.Q). q + (f’rl—l_Q)_ q ]
r I' 1 | I |
i M, 2KkgT; kBsz [ (my/2kgT,)1 J Flr 1in Xrer te 2
1 M r m. m . J A Wy ¢ Wy Wr r
_Zaar;(l"'arlrz)z( 12) k Tl k -|—2 X - lim “(?Fr qu c]ilqi2>(?lr2 (X12>F0(X12> +F1(X12)
LA Birg "By Io(my/2kgT1% % jiis E1P) Tif2 E1P)
W'1’2 ?
X2l —=| +2]|. (C8)
X’lfz
Then, using
J 1 2kgT, 2
lim X, == 5Yeh (— GG (C9)
X (my2kgT, )19 F}sz rEoo2oElomy L
gives
2
nf2 = gP-lq )'urlr2 My, M, 4kBTr1 < | daé & 6.0l - }y-l ZkBTrZ
iid1io iy mrl ZkBTrl kBTr2 mrl qQ|1q|2q|1QI2 2 M mrz
2
J Wy ¢ 1 M m m
X lim —erF1< 12)]__ (1 arr)2< 12) : : fdaaiQinQj[
|:1:XH(mX/2kBTX)IaXf1f2 12 Xflfz O, 12 m,, kBTrl kBTr2 1M1,
2 2
Ly (—ZkBTrZ) ] X ( lim I X3 (W—'“)Fo(wrlrz) + F1< W'“Z) [2(err2) +2] )
2 m’z I:X—‘(mX/ZkBTx)lﬂa Xflrz 'z Xrlrz Xrer Xflrz Xrlfz
(C10
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Using

(C11)
gives
Mror, kBTr
DIz, =~ 4o, (1 +ary) 12Y11r2< m 2)

£ "2

erz

da G;,6,0;,0;,| F1 Y,
12

errz errz D-1 2
- Fol | | +30r, (1+an,)
Yr1r2 lerz te
% Mo gr, 2 m, kBTr2 v

my, kBTr1 m, 2

N~ om oA A err2
X[ A9 0G0, | 5 )
r

12

(C12

4. Evaluation of ClrllrzJ s

This calculation is very similar to the preceding one. Not-

ing that in the previous calculation we had

I'nrl mr2 . Jd
T/ \kaT,. )i aTTe e
Biry Biry FX—>(mx/2kBTx)la jai

J1lo

~ mr kBTr2
= r qj 1qj 2 kBT mr , ’

whereas from the definition

2
m,
CiXz 5, = l( b ) lim u B2
) r
12d1l2 keT, L 2kgTyT ariijz 12

(C13)

(C149
the present calculation will require
M) i Lx o ——avig
kBTrl I:XH(”&/ZKBTX)WFE]Z "2 ryr iy
(C19

we can immediately write

PHYSICAL REVIEW E70, 061101(2004

2
Cch'z = M, \(*eTn D 41 m
w2z A kT, S\ my ) ez 20 kT

My 2y

-1
><O-r 1o (1+ Uror, ) 1r2
My,

xquF (Wr“) lim J
1 -
Yo,/ P . (my/2kgT)1 sk

12 il

XA b, + (T7-88,). (€10

Using

lim

- - r i’
P (my2ksT 19 Tidi,

S=-dim [y
1 o < 11 Jz
I (my/2kgT,)1

my |\
_<2kBT1) Pundiay (1D
gives
Clfz. = m, kBTrl Dtz —945P71
l1l211)2 KgT m ll2:J1)2 'z
r2 "1
Mrgr N A
><(]-'|'a'r1r2) m:: erlrzf dq(élljlqiijz
W 12
|Zle| qu)F Y,
'z
X[, 8, + 81,88, 5 " (C18

5. Evaluation of the pressure

Recall that the collisional part of the pressure is given by

2 N e xr ., de(7172)M2m, lim —Zr1r2

Ill
f12 A~>0aA

12
(C19
Starting with

lim

W, M 1l.4 1
i Zrlrz(x) X /( r1r2> ( Q12 _ _erlr2q>
50 A Xie, )\ 2%, 2 i

W ¢ N
+ xrlrﬁ( . 2) (=xw_r.Gi,) (C20
r

12

2

gives

0 ~ - o - o~ - o -
lim ——[Z'v72(x; T4, 72, A) = Z'32(0;174,172,A)
A—0Y tHy

a2 e )
2 Xrer Xr1r2 Xrlrz

(C21)

and
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Vv
1'2

E Ny Ny, oy 1r Xror 2(1 Qror, )

flrz

Wr1r2
></v’«rlr2 dq di ql2 1r Fo X
T1r2
+ 2Wr1r2F (errz)
l .
Xr1r2 xrlrz

APPENDIX D: SME IN THE BOLTZMANN LIMIT

(C22)

The Boltzmann limit of the coefficients needed for the

SME is
Mrir, 1 1
Mro— _ P, 4 _=
B'll'z2 (1 arlrz) m, \,;ler2|:2 2(1+a’1’2)
1

Mrlr 5 m,
“\ ersz ddy & 6,

Tr my
!’1'I'2‘M:_1_2 L
i1ipiqis Tr m, I1l2:4)2

2 1

rr2(1 ar 2)

Mr.r
w2

1 ~ n A A
lerz\/_TTfdQ(‘SlliiQizqié""slziiQilqié)a

o _ HFryr, 4 I(BTrz 1
Diipigiy =~ 4o L+ an) m. e\ m ) Vm
Ty o N
3 M m
><|::I-__(:I-+arr)< rlr2>#Yr2r:|
4 22\'m kgT,, 12
Ty Blry
« [ daa,8,8,0, 01
where
kBTrl I(B Iy
ler2 2m_ (D2)

Using the elementary integrals

sD
qu a,Gi,= = i,

SN
quq|q|ZQ|q| +2D( (1P |1| é\||5||’+5||5||)
(D3)
where the area of a spherehdimensions is
27TD/2
= D4
o I'(D/2) (D4)

gives

Brlrz —_ Brlr25

II2
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rqiro _ Trlm Ty r1r2 Crl (6 6 + 5 5 . )
ipiliy T, , M, iy © igly T il Gaiy)
D12, = D281, s + 8,181 + S sdin,)

igini]i) (P i)

Mrr, 1 1
—Y, 2-—(1+a,,)
i r1r2|: 2 rifo

Bfll’z—_o- rl(l ar )
1

> Hryrp v2 M i
m, "2k, T, | D’
ry Blr,

Cr1r2: — 20'?;1(1 +ar ; )EY /i_
12 12 mr:l N

S
D’

My KgT, 1
rifo — D-1 121 2 _
D't2= -4y (1+a,, ) 1r2( . ) \”,7—T|:l

Mrgry | My 5 S
arlrz)( mrl )kB_I_rerlr2 D2+ ZD! (D5)

so that

rqr r r
D12, A2, =2D""2A"2

19157
II2|1I2 Ill2

T, m,
cz, AL = 2 DfleArl +2 CATL

tyizdgiy i T, m,

Then, the moment equations become

(D6)

2aA}8, = nB" +nY, D'12AZ + nH AL,

2

a+aA}= an D'"2A2 + nHNAL, (D7)
2

where

Bi= 2 B2,

2

T
H1=D [QEDTHZ + Cf1’2:| )

2 2 mrl

Clearly, allAit are equal foi # x and the tracelessness means

that Al,=—(D- 1A}, Then
MRy 3 DR,
2aA}=nDB'",
> D'12Bl2+ {115

r
a?=n?D-2 ,

2

061101-21



JAMES F. LUTSKO

T=2xT, (D8)

which constituten+n+n+1=3n+1 equations for the un-
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.S [D \/ (1-ad(1l+a)
A= 5\ 5, B3 DN D v aD -]’

knowns{A1 A'L T, }" _. a. For a one-component fluid, one
v Trfry=1 where

has that

ke T
lerz_’ 2\ —,
m
B1——-(1- az)iaD_l\ / kiT,
D ™m

143 & oy kel

D't — (1+a) 5 o
2 D“+2D mm

1+3a 1

N
2 D+2 D m

H'1— (1 +a)(

(D9)

and Eqgs(D8) can be solved explicitly with the result that

(1-a)(D+2)
Ay=" e o
3-3a+2D

* * SD
aAXyz—n (1—a2)2\T7—T,

(D10)
a —a\/m—az
B
n" =no®. (D11)
Recall that in this approximation
P = nkgT(L+A") (D12)
so that
5 _nkBT<l+D+(D—1)a>
we 3+2D-3a /)’
Py =- nkBT{;
Xy (3-3a+2D)
D+2
X \/D<T)(l -a)D+1+aD- 1)]} ,
b Jas ( 1 )24D[D+1+a(D—1)]
7= Pyfasm 3-3a+2D (1+a)
(D13)
with
ey (D+2)I'(D/2)
Mo = 0.1 D\ml%T(W (D14)
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