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Long-ranged correlations in sheared fluids
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The presence of long-ranged correlations in a fluid undergoing uniform shear flow is investigated. An exact
relation between the density autocorrelation function and the density-mometum correlation function implies
that the former must decay more rapidly than, Iih contrast to predictions of simple mode-coupling theory.
Analytic and numerical evaluation of a nonperturbative mode-coupling model confirms a crossoverrfrom 1/
behavior at “small” r to a stronger asymptotic power-law decay. The characteristic length scafe is
~\/\gla, wherel\ is the sound damping constant aads the shear rate.
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[. INTRODUCTION and has been the subject of numerous theoretical investiga-
tions aimed at understanding transport and fluctuations in a
Long-range spatial correlationgalgebraic decay in model nonequilibrium stat¢7-11. All of these share in
simple classical fluidst equilibriumoccur only near a ther- common the assumption that at large length and time scales,
modynamic critical point, i.e., for finely tuned values of the the dynamics of fluctuations in a simple fluid are dominated
thermodynamic parameters. On the other hand, such lond the contribution of the hydrodynamic modes that decay
range correlations appear generically for a wide classoof much more slowly than do the neglected k_metl(; modes. The
equilibrium states[1]. The predictions of this phenomenon result is th_at the _decay of thermal fluctuations in the hydro-
have been made in a number of contexts, including selfdynamic fields, i.e., the density, momentum, and energy
organized criticality[2], linear respons¢3], kinetic theory f!elds, IS 90"e”_‘ed at large length and time SC‘?"es by equa-
[4], and stochastic hydrodynamids]. The simplest and tions formally identical to the phenomenological Navier-

most direct approach is that of linear response where th(§t0kes equations. Here, "large length and time scales
o . . means scales large compared to the mean free path and mean
nonequilibrium correlation functions are expanded about th

free time, which is th | domain of validity of hydrody-
equilibrium state to first order in a nonequilibrium control ee time, ch is the usual domain of validity of hydrody

. . . . namics. Correlations between the values of thermally gener-
parametextypically a spatial gradient The algebraic decay 4y fiuctuations in the fields at two different space-time

is then_seen to rgsult from spontaneou_s excitations of hydroﬁoints can be modeled by supplementing these equations
dynamic modes induced by the coupling of the control payith random forces, which represent the interaction of this
rameter to an associated flux. A more intuitive analysis ofestricted set of variables with the neglected degrees of free-
this effect follows from an extension of fluctuating hydrody- gom to give a Langevin model. In equilibrium, the result of
namics to nonequilibrium states. To linear order in the conthe Navier-Stokes-Langevin model is that the equal-time cor-

trol parameter the same algebraic decay is found, as €Xgjation functions for two hydrodynamic fieldg(r,t) and
pected. Such theoretical studies for the density y y oe(r.)

autocorrelation function in a fluid subject to a temperatureY(r't) are simply proportional to thé-functions in the spa-

gradient have received detailed experimental confirmation iﬁ'al arguments

recent year$6]. The shortest length scale is set by the inter-

molecular force range, while the experimental verification is ey SN - =) iy

on macroscopic system size scales. Since the decay is alge- Colrr) =X oY (r, ) —ASr=r"), @

braic there would appear to be no other length scale in-

volved. However, we argue here that there is an additionalvhere 5x=x—(x), and the amplitudé\ is a corresponding

macroscopic scale set by the parameters of the nonequiliBhermodynamic response function. This result simply con-

rium state such that the true asymptotic decay is faster thafirms that fluctuations at different points in space are uncor-

that predicted by simple perturbative studies near equilibrelated when speaking of hydrodynamic length scéies,

rium. The analysis here is limited to a single nonequilibriumneglecting correlations on the scale of the force rantie

state, that of uniform shear flow, but the qualitative featuregontrast, these correlation functions for the nonequilibrium

are expected to extend to other nonequilibrium states as weltate have a new long-range component, which to first order
Uniform shear flom(USH is characterized by a constant in the shear rate is of the form

average density and temperature, and an average velocity

flow field given byJ(F) =&.r, where the shear rate tensor is

o . . .. . - 1
traceless ﬁ’_— ayxin a Cartesian frame of referencerhis Cay(F.r)—AS(r—r")+aB—=——. 2
nonequilibrium state has a single scalar control paranseter [r—r’]
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The amplitudeB is again a thermodynamic response func-ity in the direction of flow shifted as,—v,—alL and posi-
tion. The physical difference between equilibrium and non-tion shifted asx—x—alt. Taken together, these constitute
equilibrium is due to the way in which small hydrodynamic periodic boundaries in the local rest frame. The temperature
fluctuations decay. At equilibrium a fluctuation decays lo-will generally increase due to viscous heating, but we will
cally due to viscous and thermal damping, whereas in shedollow standard practice and assume the presence of a ther-
flow it is convected as well and spreads out over a lengtimostat that counteracts the viscous heating so that the tem-
scale that varies as the speed of convection times the timgerature is also constant in time leading to a steady state
scale for viscous and thermal dampifig8]. [13]. The dynamics thus described possess several important

With the exception of Refl10], the form(2) was gener- symmetries that will be used below. First, they are invariant
ally obtained using a perturbative treatment in Fourier reprewith respect to parity of the positions and momenta so that
sentation assuming that the shear magvith dimensions of the equations of motion and boundary conditions are the
frequency is smaller than all other hydrodynamic frequen- =
ciesck and\gk?, wherec is a propagation velocity, is a ~
transport coefficient, and is the wave vector. For fixed =—gq, andp,=—p;. Second, they are invariant under mir-
shear rate, this therefore sets an upper bound on the rangerf reflection about the axis (but not thex or y axes since
separations in real space for which the results apply. In thishe boundary condition couples thevelocity and they co-
context, the true asymptotic behavior of the correlation funcordinate. Third, since USF is a steady state, statistical prop-
tions remains unclear. The analysis of Rdf0] has the po- erties are invariant with respect to a change in the origin
tential to resolve this question since it is nonperturbative androm which time is measuredime translational invariange
retains the two dominant effects of large shear rate: seculdfourth, USF is translationally invariant in the local rest
effects~at associated with convection, and shear rates comframe as well as in a mixed frame consisting of the labora-
parable to the hydrodynamic dampiag=\ok?. The result- tory positions and the velocities measured relative to the flow
ing correlation functions are found to have the form [10].

The microscopic local density and momentum fields are
defined, respectively, as

same if written in terms of the variablesdi

ny(F,F’)—>A5(F—F’)+aB|» 9/|F((F—F')/|). (3)

r—r N

o - n(CT(ET0)= 2 8(r—di(t),

The functionF(r/l) depends on a new nonequilibrium cor- =1

relation lengthl = {\g/a . Forr<I the result(2) is recov- N

ered. However, the asymptotic form foe-I was not ex- - - B -, - -

plored in any detail in Ref.10]. wp(r,l“(t,l"o))—;l pi (1) 8(r—ai(1), (4)
Here, we attempt to clarify the asymptotic behavior of the

static correlation functions in a sheared fluid in two Ways-where5<’=|5-—m-§~ a is the momentum defined relative to

First, it is shown that the continuity equation and stationarity,,« jocal flow field ar;d‘(t'l“o) is the point in phase space

place exact constraints on the decay of the density autoCofhich the system would reach after evolving from the initial

relation function such that it must be faster thart for large point I, for a timet. Note that these fields are related by the
r. This result is independent of any model for evaluating themicroscopic continuity equation

correlation function. Next, we reconsidg(r/1) in Eq. (3)
from the results of Ref[10] and show that the actual

N

asymptotic behavior is ~3 The crossover between the al//n(F;F(t;Fo)):Z pi(t): —=— 8(r—qi(t))

r~! behavior at short length scales and the stronget® =1 da(t)

decay at large separations is illustrated by numerical evalua- B r (5Tt

tion of the general result. V[T (o))
+&-T(FT(5T)]. (5)

II. EXACT BOUNDS ON THE RATE OF DECAY

. ) . The correlations functions are defined as
Considem atoms with positions and momenta denoted by

ﬁi and 5i , respectively, and denoted collectively &5 Cab(Fa r':t,t’)

={q;,pi}., . The atoms interact via a central two-body po-

tential ¢(r) and are confined to a volumé such that the Ef dlop(T o) 8ua(r:T(1:T)) Sty (r;T(t;Ty)),
average density is. The potential is assumed to be repulsive

at short distances and to divergeras 0 and to have a finite (6)

force range. Uniform shear flow results from the application

of Lees-Edwards boundary conditioffs?] consisting of pe- where subscripts andb label the specific field considered,
riodic boundaries in all directions except that of the gradientp(I'y) is the distribution of phase variables at initial tirhe
(here, they direction. If a particle exits the volume in the =0, anddy,= ,—(#,). For a steady state the time depen-
positivey direction(say, aty=L/2) at timet, it is reentered dence occurs through-t’ due to time translational invari-
at the opposite side of the volumeg= —L/2) with its veloc- ance. Because of the modified spatial translational invari-
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ance, it is also possible to show that the correlation functionhe quantity on the left is
depend only on the relative separation. Consequently, the

correlation functions can be written as 2 >, A
f cpn(r>-rd°r=<gj pij'qij>. (13

Cap(rr'it,t)=Cop(r—r";t—t").
which vanishes in equilibrium but can be finite for USF due
ChoosingF’=5 andt’=t, Eq. (6) gives the relationship o velocity correlations. This in turn implies that the first-
order correction to the shear rate decays faster theh'1/
- These results can be given a somewhat more general in-
acnn(r)zo terpretation. Any function of a vector can be expanded in
terms of the spherical harmonics in order to separate the
==V (Gn(N)—Cpp(r)+&1Cpy(r)), (7)  dependence of the function on the direction and magnitude
of its argument. The density-density correlation function be-
where for notational simplicit)Cnn(F)ECnn(F;O). This re- comes
sult has been derived previously in a different confé. It

s L
simplifies further using the translational, parity, and reflec- . LM -
tion invariance noted above to give the final form of interest Cnn(r)_zo M;L Crn (NYim(r), (14)
here
- . R R with
0=—V-(2Gy(r)+&-rCppn(r)). (8)
This is an exact result that follows directly from stationarity Cw(f)Zf drYEu(r)Can(r). (15

and conservation of mass. Integratit®) over a spherical
volume bounded by shells at=0" andr=R, and making Because of the parity symmetry of USF, it is easy to show

use of Gauss’ theorem gives the re|ati0nship(§%t1(|?) to that Only coefficients with even values &f are nonzero,

Cor(F) while the inversion symmetry about ttzeaxis implies that
nmea only even values oM contribute. Then, noting that
-2 [ CyulRD) Fdi= [ -2 iC,(RDdE. @ N
" " Fry=—1\ 75(YaA 1) = Y341)), (16)

The notationdr indicates a surface integral over the unit
sphere and use has been made of the fact that the correlati&- (9) becomes
functions evaluated at the origin vanish since the potential o
V\{I|| not allow atoms to occupy thg same spatial posnﬂt#r_e f Cpn(RY)-Tdr=—2a /1—R ImC2(r). (17
singular contribution taC,,,< 5(r) is excluded from the in- S
tegration volumé

Equation(9) is the main result of this section. To put this
in context, consider an expansion (D;n(F) to first order in
the shear rate with the form

The conclusions drawn about the first-order correction
cW(r) are seen to be exact statements also aboGEf(T),
valid to all orders in the shear rate: namely, thatﬂﬁﬁ(r)
must decay faster thanrlin any number of dimensions and

= (0) PPN Y 2 faster than ¥P*! in D dimensions if the spatial integral of
Con(1)=Can (1) +7-&-TCrii(1) +0(2. (10 the radial part of the density-momentum correlation function
Inserting this into Eq(9) gives is finite. This corresponds precisely to the quantity for which

the first-order result§2) predicted a I/ decay. Conse-

- A a AT 1) 5 quently, that result cannot be correct for sufficiently large
—2f Con(RT)-Tdr—a ERCfm(R)Jro(a ), (12)

I1l. APPROXIMATE EVALUATION OF Cnn(F)
showing that if the density-momentum correlation function ) ) )
decays for large separations, as it must, then the first-order 1he algebraic decays of both static and dynamic correla-
correction to the density-density correlation function mustlion functions observed in simple fluids can be derived by
decay faster than B/ This result is independent of the di- Méans of fluctuating hydrodynamics. In this model, the exact

mensionality of the system. Furthermore, multiplying E3). conservation laws for the local density, momentum, and en-

by RP~* and integrating gives, i dimensions, ergy density fields, 4,p andu), respectively,
> - A ~ ~ - J N
fcpn(r)-rdDr:f r-&rrCpn(r)dPr ZPTV-p=0,
0
:a24—wferC(l’(r)dr+o(a3) (12) 2 5+¥.P=0
15), " ' LA
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d . - I=+\g/a, where\, is the equilibrium sound-damping con-
ZutV-a=0, (18)  stant. The first term in Eq20) is the equilibrium contribu-

tion which, in the small wave vector approximation used
here, is a constant. The second term represents the nonequi-
librium correction which is derived assuming that the shear
rate and rate of dissipation are significantly less than the
Sound frequencya,\ok?<cok, where ¢, is the speed of
ound. However, no restriction on the value aff\ k? is
posed. The inverse transform of EQO) is the real space
result quoted in Eq(3) above.
@ |n order to evaluate the behavior in real space, it is useful

to introduce the expansion @f,,(k) in spherical harmonics,

are approximated by taking the pressure terRand heat

flux vectorﬁ to be a sum of two terms: the usual Navier-
Stokes functionals of the local fields, and a random compo;
nent that isés-function correlated in space and time. The
amplitudes of these correlations are related to the forms q
the deterministic parts of the flux¢$4]. Rewriting these in
terms of deviations from the macroscopic state then gives
description of fluctuations about this state. The details for
USF have been discussed in detail elsewt&fd and only

the results are quoted for the purposes here. Defining the % L
Fourier transform of the density-density correlation function Con(k)=2, E LMK) Y w(K), (22)
as =0 M=
- - - .. - and to recall the relation between the coefficie(its) to
Cnn(k)=f drexp(ik-r)Cpn(r), (19 those in Eq(22),
the result obtained for it is ® )
C = [ ki kTR0 (23
= .0 1% /0 T
Con(kia)=ksTopgxr(1+y Rpa(K)), (20
This gives directly
K y 2 -
Rk = f ex‘( f ds'k(=s )> ChN'(r) = (KaTopdxr) VAT ~28(1/11) 8080
(21)

1
—3ALM
Here 7 is the isothermal compressibility=c,/cy is the WZiLI Apn (ri), (24

ratio of specific heats at constant pressure and volume, and
E(t)=(kx,ky—th,kz). The characteristic length scale is with

N < (=, Kkky(— S) .
A p=r) = [ dKi (ke V(b [ “as b p( |Casie s)) ( )fdku( Y (k)

* kkxky(_spz) _ S L2 _ ! A2
XJO dsmexp( fodSk( Sp )) (25

The small shear rate lim{®) is obtained by noting thdf is  a small r result and does not represent the true long-range

inversely proportional to the shear rate and expanding tdehavior of the correlation function.

leading order img, The actual asymptotic behavior for large=r/l is ob-
tained in the Appendix where it is found that

| =3AM e/ 2\ 23 5
Ky 1 27

N
All other components decay even more rapidly. In particular,
a |. T |2 the true asymptotic behavior of If3(x) is found to be
N 16L2(0m2— Om-2) 1 \/—] (26) ymp I (%)

- [ kit

|mA§2(p _) 756 1/6\/—77_1"( ) 17/3+O(p_19/3)

The context here shows that this result applys only in the
limit r/1—0, which is to say that, for fixed shear rate, this is ~13. 1R (28)
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This is consistent with the exact res(l7) that this compo- means of multidimensional Monte Carlo integration using
nent must decay more slowly than* in three dimensions. the VEGAS algorithm[15—17. Rather than directly evaluat-

In order to probe the asymptotic behavior in more detail,ing Eq.(25), it was found to be more efficient to separate out
we have performed a numerical evaluation of E2f6) by  the short-ranged fd/behavior by rewriting this as

i |2m @ - c (= [Kkky(—5)  KE(—s)kyk
A (p)==185(8ma— 6m-2) E%%-JdkjL(kp)YfM(k)xJO ds( kxs(y_s) 0 Xy

Xexp( - f:ds’kz(—s’)). (29

The number of samples used in performing the integrals walngitudinal-velocity autocorrelation functions share the
adjusted so that the internal estimate of the error in the evallsame spatial dependence given by E2f). Therefore the
ations was always less than 5% of the calculated values. Faalculations given here apply to them as well. Interestingly,
smallp, the errors were substantially less while the limit wasthe most long-ranged correlation function, based on calcula-
occasionally reached aswas increased. Figure 1 shows the tions analogous to that illustrated in the Appendix, is for one
spherically averaged valua®’(p) as a function ofp to-  of the transverse-velocity autocorrelations which, in the no-
gether with the asymptotic power law 6f11/3, and the two  tation of Ref.[10], has the form

are seen to be consistent. Figure 2 shows the numerical cal- . R

culation A%(p) in comparison with the small- and large- Caa(r) =KgTo[ 1+ Auy(r/1")] (30
limits, [Egs. (26) and (28)], respectively. Again, crossover

between the limiting forms is clearly identified. with I”= y2wo/a, wherey, is the shear viscosity and

6

1 5
AOO e 2/3 I‘(_) *5/3_’_ =713 ) 1
IV. DISCUSSION 2dp)— g6l | & 1p™ >+ 0(p™ ") (3D)

The prediction of I/ decays in the density autocorrelation  To put these results in perspective, we can calculate the
function in shear flow is in violation of an exact bound com- crossover length scale for several relevant systems using the
ing from elementary considerations of statistical mechanic&nskog(hard-spheremodel for the transport coefficients. In
and the properties of the USF steady state. Detailed analysiiis case, for all densities and choices of transport coeffi-
of a less restrictive solution of the Navier-Stokes-Langevingients, one has that07/|§”p~o(1), wherel ¢, is the mean
model confirms that the d/behavior is actually valid only fee path andr is the mean free time, giving~lmfp/\/a—r.
for r<y\o/a and that this crosses over to a stronger powerfor water at standard temperature and pressure, the mean
law decay at large distances. It turns out for this model thatree time is of the order of 10%s and the mean free path is
the density-energy correlation function as well as energy angp, the order of 107 cm so that ~10™ 1 cm/v/a, where the

NVf——F— T —— T W——F—— T

10—

)

m@a® )
=1
T
In(tma®

10—

) A T E U B UR RS RS SR ) A T E I B BRI BT
03 K - 1 23 K - 0 1
In(p) In(p)

FIG. 1. In@%) as a function of In¢l) as determined by the FIG. 2. In(ImA22) as a function of In{l) as determined by the
numerical calculatior(circles and the asymptotic result given in numerical calculatioricircles and the asymptotic results given in
Eq. (27) (line). Eq. (28) (full line) and Eq.(26) (dotted ling.
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shear rate is expressed in Hz. The crossover length is therg- characteristic frequenay;V InT. Setting this equal to a
fore macroscopic for shear rates that are experimentally fearydrodynamic damping gives the length scale
sible (say, shear rates less than 1 KH2n the other hand i = /\o/(v7VInT). It is expected that the asymptotic decay
colloidal SUSDGHSIOHS typical parameters[mil 71025 for r>| wil be different from that of perturbative mode-

and | ¢,~10"° cm givingl~10"* cm/y/a or within an or-  coupling theory currently in the literature for reasons similar
der of magitude of the mean free path. In computer simulato those given here for USF.

tions, the accessible values of the shear rate typically are in
the range 0.0&ar<10, so that the relevant length scale is
again 0.XI/l,¢,<10. Since the Navier-Stokes model is
only valid for spatial scales much larger than the mean free J. F. Lutsko acknowledges support from the Univérsite
path, this means that the short-rangedde¢havior would be  Libre de Bruxelles. The research of J. Dufty was supported
relevant for water, but only the weaker asymptotic behavioiin part by U. S. Department of Energy Grant No. DE-FG03-
is relevant for the other two systems. 98DP00218.

The analysis here has implicitly assumed stability of the
USF state. In fact, USF is unstable to sufficiently long wave-
length perturbationfl1,19. The critical wavelength for sta-
bility scales approximately as;/a for smalla, wherevt is
the thermal velocity. Therefore in order to see the crossover We begin by writing
phenomenon discussed here, there must be conditions such
that | <vr/a. This requiresao/v5<1, which can be ac- foc Ky R

k
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APPENDIX ASYMPTOTIC BEHAVIOR OF THE
CORRELATION FUNCTIONS

complished by small shear rates and high temperatures. The A, (k)= | dt = =2 3/2exp[—kzﬂ(t)],

predicted behavior should be accessible via molecular dy- (1+2ky t+k t%)

namics simulation for a sufficiently large system. (A1)
The qualitative feature of a nonequilibrium length scale

should be more general than the special case of USF, anthere B(t) =t +k, k t?+1 k2t3 is independent of the magni-

applicable to other nonequilibrium states as well. For extude of the wave vector The coefficients of the expansion in

ample, a steady state with uniform temperature gradient hagpherical harmonics in real space are then

. L+3
ALM(p)=JdRY* (R)dekkzj (kp)det ky -t exp[—kz/a(t)]zﬁ—p*f*f dky=,, (k)
nn LM 0 L 0 (1+2 R +k2 2)312 JLb2p 2L+3 LM
2
fxdt kyky + tk? ( p? )L”’ZM L+3 2L+3  p? ) 42)
X ~ , y )
0 (14 2kek t+kit?)¥2\ B(L) 2 2 4p(1)
whereM (a,b,z) is the confluent hypergeometric function. Now, changing variablés AX ~¥yT* gives
h b,z) is th fl h ic functi hangi iabl 13(k2) =3y ~1 gi
L+3
Y5 A o - 1+k.k (Rz)—z/zyp—zls
ALM(p):\/; r711/3f dky* (k)(kz)fllef dy - AN 4
nn SLb2p 2L+3 LM x 0 (1+2kxky(k)2()_2/3yp_2’3+(k)z()‘l/3y2p‘4/3)3/2
y3 |\t L3 2L+3 R
X N 1 l_ 1 (A3)
y(y) 2 2 4(y)
with
1 .. . .
NY) = 3+ ke (k) 72y =25+ () "y Zp %, (Ad)

For the 00 component, we us&(a,a,z)=exp@) to get

3

3
b(P) ll/3f dk( k2 l/6f dy(3y3)3/2€XF{ _ Ty

+O( 713/3) 22/33 4/35 F( ) ll/3+o(pfl3/3)' (A5)
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For the 22 component, it is more convienient to go back to the beginning and to integrate by parts

d C
— gy (1 2kkyt+ k2t?) " Y2 ex —k2B(1)]

A ()= [ akriyy(ho [ ki cke) [
L+5

:pfsf dRY’CM(R)f k2dkjy (K) — A——————— *5f dkyy M(R)f dt(1+ 2kt +k2t?) Y2
0 2L+21"'< ) 0

p2 (1/2)L+(5/2) L+5 2L+3 p2 A6
| B 2 2 ) (A6)
The first term vanishes fdr>1 so
|mA22(p)=—\/;ip_5J dkimy3 (k)f dt(1+ 2k.k t+k2t2)1’2( o )wzexp(—p—Z) (A7)
n 24 2 B(t) 4B(t) )"

and making the same change of variables as above gives

1 - A A * P - A
ImAZ(p)=—mzp 1 f dkimY3,(k) (k§)~*° fo y~3dy(L+ 2kdkeyp ™23k 2y + p (k) Y2

y3 )7/2 F{_ y3 )
X(v(y) &N~ ) A8)

Now, only the odd terms ilﬁXRy give nonvanishing contributions so we expand as

3\ 712 3
(1+ ZR ’k p—2/3(R2)—2/3y+ 4/3(k2) 1/3y2 1/2( y ) ex% _ y )
Y g 1Y) 4y(y)
27 — . . 3 27 A A
= Bk ()2 0y~ 38>y23’2exp( - ZyB) P2 By R ()72

3 . IR
><exp( - Zy3) p~?[8(k%)(—918y°+81y°®+2008 + (k,k,)?(28 044/°— 5022/°+ 243y°— 40 08§ ]+ O(r ")+ even.

(A9)
They integral of the first term vanishes and the next term gives
5
|mA§§(p)= =5 2/3\/— 22/3r( ) s f dkimY;i, (k) (k2) ~Yokk, (k%) ~2(3(k2) — 2(k,k,)?)
2/3 /3 -17/3
02%37T . A10
= 756° V302 (6) (A10)
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