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Atomic-scale structure of hard-core fluids under shear flow
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The effect of velocity correlations on the equal-time density autocorrelation function, e.g., the pair distribu-
tion function (PDPF), of a hard-sphere fluid undergoing shear flow is investigated. The PDF at contact is
calculated within the Enskog approximation and is shown to be in good agreement with molecular dynamics
simulations for shear rates below the shear-induced ordering transition. These calculations are used to construct
a nonequilibrium generalized mean-spherical approximation for the PDF at finite separations, which is also
found to agree well with the simulation data.
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I. INTRODUCTION sumptions as underlie the Enskog theory of the one-body
distribution function. This allows one to calculate all static
In equilibrium, simple fluids exhibit spatial correlations correlation functions for two atoms in contact up to this level
which are characterized by the pair distribution functionof approximation. It was subsequently shown that this infor-
(PDB describing the probability of finding two atoms with a mation could be combined with a formalism borrowed from
given relative orientation and separation. Equilibrium liquid equilibrium liquid-state theory to create a successful model
state theory is primarily concerned with the calculation of theof the pair distribution function of a granular flujd] (i.e., a
PDF and a number of successful approaches have been d&iid of inelastic hard sphergsThe purpose of the present
veloped, including the Percus-Yevik approximation for hardpaper is to describe an extension of this model to inhomoge-
spheres, the mean-spherical approximation, and the more raeous systems and to examine its application to the particular
cent self-consistent integral equatididg. Knowledge of the case of a fluid of elastic hard spheres undergoing uniform
PDF is equivalent to knowledge of the density-density staticshear flow(USF and to present detailed comparisons of the
correlation function[1] and once this is known, all other theory to the result of molecular dynamics simulations. Uni-
interesting static correlation functions, e.g., density-energyorm shear flow, in which the velocity in one Cartesian di-
and energy-energy static correlation, functions, are immedirection varies linearly with position along another axis, is a
ately known because the velocity dependence of the twoparticularly interesting example since the density-density
body distribution function in equilibrium is ftrivial. It is a correlation function can be studied experimentally by means
characteristic of nonequilibrium fluids that this property noof light scatterind 8]. Furthermore, the hard-sphere model is
longer holdd2-5], and the presence of velocity correlations generally accepted as a reasonable analogy to certain types
is the reason that the determination of static correlations if colloidal suspensions, see, for example, Ref.and ref-
nonequilibrium fluids, over all densities and length scales, ierences therein, for which it is possible to achieve conditions
a difficult problem. of strong sheafe.g., shear rates comparable to the inverse
The velocity correlations that occur in nonequilibrium flu- mean free time of the colloidal particlem the laboratory,
ids, as well as in fluctuations about the equilibrium state, argvhich are otherwise inaccessible in simple fluids.
generated by collisions that have the effect of altering the The second section of this paper reviews the theory be-
two-body probability distribution so that even if the veloci- hind the calculation of static correlations at contact and
ties of the atoms prior to a collision are assumed to be indeevaluates the density-density correlation function at contact
pendent variables, the velocities after a collision are not infor the special case of USF. This makes use of recent work
dependent. The question of whether the velocities of twamn solution of the Enskog equation for high shear rates
atoms prior to a collision are really independent variables haf10,11] to extend an earlier calculatid2] resulting in an
been much studied in statistical mechanics over the last 36xplicit expression for the PDF at contact in a sheared fluid.
years and phenomena such as long-time tails and longrhe third section deals with models for the PDF at finite
ranged correlations are proof that this assumption is nogeparations. It reviews two well known theories that are po-
strictly adhered t¢6,7], although in many cases it remains a tentially applicable to atomic length scales: the kinetic model
good approximation. While the calculation of the precolli- studied by Hess and co-workef42] and the Langevin
sional correlations is a very difficult problem, it has recentlymodel of Ronis[13]. The former involves an undetermined
been noted 2] that, for fluids interacting via a hard-core parameter which, if the theory is to apply to atomic length
potential, it is possible to calculate the postcollisional correscales, can now be fixed by requiring agreement with the
lations in an arbitrary nonequilibrium state for the specialcalculations for two atoms in contact. The latter, while not
case of the two atoms being in contact using the same a$avolving anya priori unknown parameters is, nevertheless,
phenomenological and a diffusion constant appearing in its
formulation has in fact been treated as a free parameter when
*Electronic address: jlutsko@ulb.ac.be comparing to experimeri8]. Again, it is noted that the pa-
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rameter can be fixed unambiguously by requiring agreemen£|qij(t_)|, where q;;(t_)=q;(t-)—0g;(t-) and provided
with the calculated value at contact. It is also shown thabij(t—)'pij(t—)<0- Immediately after the elastic collision,
these two theories are in fact very closely related not withthe momenta become

standing their different motivations. Finally, in this section

the nonequilibrium version of the generalized mean spherical pi(ty)= Pi(L)—aij(L)[aij(L) i (to)], (1)
approximation(GMSA) is introduced as a means of model-
ing the PDF at finite separations based on the atomic-length
scale information coming from the calculations of Sec. Il
and, qualitatively, the large-separatidne., small wave-
vectop information provided by mode-coupling theories,
based on either kinetic theofit2,14,15 or fluctuating hy- L - ; .
drodynamic[13,16,17,18 of which the Ronis theory is an The statistical t_jes_cnp_tlon of the system |s. chara(_:terlzed
example. This is not unlike the original motivation of Weis- by the N-body distribution, pn(x1.X, . . . Xy;t) which
man in introducing the equilibrium GMSA as a means of91Ves the probability of finding the system at a given phase
improving on the Percus-Yevik approximation by incorporat-po'nt: where atom 1'has' phaspf(ql,pl) etc., atthe Speci-
ing accurate knowledge about the PDF at contact, from thfied timet. Its evolution is specified by the pseudo-Liouville
Carnahan-Starling equation of state and the pressure equgduation

tion, to construct a model of the PDF for an equilibrium N
hard-core fluid accurate over a wide range of densftl€s. d E
Recent work by Yustes and San{@&0)-22, as well as Car- E+ < Pir
raro and Ciccarielld23], has shown first that the Percus-

Yevik approximation may be viewed as, in some sense, the XpN(X1, X2, - - XN ) =0, 2
simplest approximation that provides certain analytic proper-

ties that any distribution function must satisfy and secondwhere the collision operator is given 4]

that the GMSA of Weisman may be viewed as a framework

for systematically extending this model so as to incorporate T_(ij)= 8(ij _U)[f)ij —1]10(—q;j - pij). (3)
additional constraints. It is with this motivation that the ex-

tension of the GMSA to nonequilibrium systems was PTO"here the effect of the momentum transfer operﬁtpon an

osed[3] as a means of modeling the density-density corre-_, - L )
Ie:ltion E‘u]nction i e the PDE. at ;’" length scgles. y arbitrary function is to replace the relative momentpmby

In Sec. IV, these calculations are compared with the reits postcollisional valug;; —2q;;(q;; - p;;) [see Eq(1)]. The
sults of molecular dynamicéViD) simulations over a wide final term of Eq.(2) describes any external one-body forces
range of shear rates and densities. As noted previgagly acting on the atoms. Integrating E®) over N—n of the
there seems to be a strong correlation between the rapid dgoordinates yields theth equation of the Bogoliubov-Born-
crease, with increasing shear rate, of the PDF in certain dicreen-Kirkwood-Yvon(BBGKY) hierarchy, which relates
rections and the onset of shear-induced ordering of the fluidhe n-body distribution to the r{+1)-body distribution. In
Below this transition, it is shown that the Enskog calcula-Particular, the result of choosing=N-1 is
tions of the PDF at contact are quite accurate at small shear
rates and low densities and becomes increasingly inaccurate { d

p;(ty)=p;(t-)+Cyj (t-)[Gij(t-)-pij(t-)],

so that the relative momentum is reversed along the line of
contact and the total momentum is unaffected.

P _ N
a_qf;,- T,<u>+i§1&—mF<xi>

J J
as the density and/or the shear rate increases. The theories ot T Prgg " a_pl":(xl) p1(X13t)
for the PDF at finite separations are also compared to MD
and it is found that all three theories are in qualitative agree- ——(N- 1)J dQ18(qgo— o)

ment with the GMSA providing the best quantitative agree-

ment with simulation. The paper ends with a discussion of

the prospects to extend these results to other systems. A pre- X[01,~ 110 (— 12 P pa(X1.X251).  (4)
liminary description of some of these results has appeared
previously[3]. If the two-body distribution on the right is approximated by

p2(X1,X23t)~p1(X1;t) p1(X2:t)9(01,02;t), the result is the
well-known Enskog equation for the one-body distribution of

Il. THEORY OF CORRELATIONS AT CONTACT a system of hard sphergisere,g(q;,,;t) is the probability
o ] to find two atoms at positiong; and g, and is normally
A. Hard-sphere statistical mechanics approximated by the equivalent local equilibrium funciion

Consider a system o elastic hard spheres of diameter ~ In fact, examination of Eq(4) shows that the necessary ap-
in a cubic volumeV= L2 described by a Cartesian coordinate Proximation is actually
system with axefx,f/ andz. The boundary conditions will be '
discussed below. The dynamics of the atoms consist of free 3(d12— 0)O (=12 P12 p2(X1,X2;3t)
streaming, subject to the boundary conditions, interrupted by e (Aro— ) O (= o X<t X t
elastic collisions. Two atoms having coordinatgsp; and (G127 ) O (= taz Pro) pa(Xa D) o (X2 )
g;.p; at time ty will collide at time t_, provided thato Xgo(d1,92;t), 5)
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which is a somewhat weaker approximation than the asgoing uniform shear flow and are the standard means by
sumption that the two-body distribution always factorizes:which such a flow is simulated.

rather, one need only assume that it factorizes for the case It is known [10] that this combination of dynamics and
that the two atoms are in contact and approaching one aroundary conditions allows for an exact solution of the mac-
other, which is to say, just prior to a collision. This is a roscopic conservation laws in which the local density is con-

precise statement, for hard spheres, of Boltzmann’s “asstant, the local flow velocity is given by(r)=ary§< and the

sumption of molecular chaos.” Immediately after a collision, |ocal temperature, defined as the excess kinetic energy rela-
the direction of the relative momentum is reversed and thgjye to the flow field, is spatially uniform in the comoving

momenta of the two atoms are obviously correlated. In factfrgme and increases as

it has been showf¥] that the approximation given in E¢p)

implies the form of the entire two-body distribution at con- d

tact, given by 5Nkgr T=—aPy+F, (10

(A1~ 0)pa(X1,X231) whereP;; is the macroscopic pressure tensor, which is also
_ . . . . spatially uniform, and the last term on the right represents
=08(012— o) p1(X1;t) p1(X2;t)Go(d1,02;t) the effect of the external forces. Typically, an external force,

T S(C— . B —1 or thermostat, is included such that the right hand side of this
(G2~ 0)O (G2 Pl P12~ 1] equation vanishes, thus giving a constant temperature and
X p1(X1;)p1(X2;t)g0(01,q2;t). (6) allowing for the possibility of a stationary state. Here, it is

assumed that for shear rates below the ordering transition, all
The distribution is seen to have two parts: the first term onhermostats are equivalef26,27.
the right describing uncorrelated atoms, and the second term The one-body distribution function of a sheared and ther-
describing velocity correlations which arise because of colmostated fluid of hard spheres has been studied in consider-
lisions. In equilibrium, the second term vanishes but for nongple detail[10,11, and may be approximated as
equilibrium systems, it is generally present and can give rise
to substantial structural effects as will be discussed below. 312 1 .
This relation is critical in that it can be used to calculate, to f(q,p)=p(§) [de(A)]‘”%xp{ - Eﬁpi, PiAj; )

the same level of approximation as is inherent in the Enskog (12)
equation, any static two-body correlation function at contact.
Finally, the nonequilibrium pair distribution function is Aij= 8 +A;, (12)

defined, as in equilibrium, by
where the(constant matrix of coefficients is defined implic-
9(q1,02;t) =V J dpydp,pa(Xg Xoit). (7) iy as the solution of

a( 5Xi5jy+ 5yi5jx+ 5XiAjy+ 5xiny) = CI(JO)+ C(l) A|m ,

From the definition of the local density field, 1j.Im
(13

N
n<r>=i§1 s(r—ap), 8 with

it follows that the PDF is related to the density autocorrela- Ci(jO):pr dgs(q—1)q;q;
tion function via the usual relationship,

Iyet\ — o 2 ’. 1 1
(DN ) =na(r—1)+g(re'it), (9 x|\/__wzew2/4+§(wz+2)¢(w)],
where the brackets indicate an average over (tme- 7
dependenttwo-body distribution function. 1 8
w2
Cfﬁ,%fgpr dqﬁ(q—l)HJ——e W’4+6¢(w)]qiqjq|qm

B. Uniform shear flow T

tions are usefl25]. In thex andz directions, periodic bound-
aries are applied whereas in tlgedirection, an atom with
coordinates  q;=(X;,Y;.Z) and momentum  p;
=(pxi Pyi,Pz) Wil have images with q=(x;+aLt,y; Ajjim = (61djdm= Simd;jdi + 61 0idm+ Sjmdid)),
+L,z) andp=(pyi+aL,pyi,p,), wheret is the time and
the parametea, having the units of inverse time, is the shear

To induce shear flow, modified periodic boundary condi- {
+ , (14)

2 vy ¢(w>]A~|
\/— ijlm

o

w
rate. These are just periodic boundaries applied to the coor- Pw)=w erf( E) _1}'
dinates g/ =q;—aty,x and p/ =p;—ay;x, which are the
atomic coordinates in the local rest frame of a system under- w=adyqy,
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together with the condition that TA) =0. This approxima- ¢ 9

tion gives a semiquantitative description of effects of strongy; 9(Caz;t) + 12 &- Wg(%z;t) (18)
shear such as shear thinning and normal stresses as well as 12

being positive definite at all shear rates. The PDF at contact

within this approximation is found to be = _f dpldpz?_(lz)pz(xl,xz;t)—nf dp,dp,

S(r 1 , _ _
(r1z=7)0(r1.r2) xJ d3[T_(13)+ T (23)]ps(Xy Xa:1). (19

=8(r 12— 0) xo , (19

1 " 1 arinriy
—en —; /—/—— L . s .
202 N1+ Al 126 19m The kinetic models studied by HegE2] consist in replacing
the complicated right-hand side of this equation by a simpler

which follows directly from Eqgs(13) and (6). Here and be- diffusion or relaxation model constrained only by the re-
low, xq is taken to be the equilibrium value of the PDF at duirement that it force a relaxation towards the equilibrium
contact as calculated in the Carnahan-Starling approximastate- This is intended to simplify the complex three-body

tion. From this, the projections of the PDF at contact onto thd€M While capturing the fundamental physical property that,
spherical harmonics may be calculated as in the absence of shear, it is the collisions, represented by

this term, which tend to drive the PDF to the equilibrium
state. The simplest model then takes the form,

M|mEJ'drlZYrm(F12)5(r12_U)g(r11r2)- (16)

J
59(‘112?0‘“112' a- Wg(%zﬂ)
Note that from this point, the dependence of all quantities on 12

time is being suppressed since we work in a steady state. =—179g(g12;t)—go(q12) 1, (20

wherel is a relaxation time. Fourier transforming gives
IIl. THE NONEQUILIBRIUM PAIR DISTRIBUTION

FUNCTION 9

~ J ~
The Enskog approximation gives information about quan- g9Kizi ) —kep & Eg(klz’t)
tities at contact. In order to understand the PDF for finite ~ ~
separations, several different approaches have been sug- =—I'[h(ki2;t) —hg(ki2)]. (21)
gested. Two well-known proposals, the kinetic model of
Hess[12] and the fluctuation model of Ronf43], involve ~ The solution to Eq(20), under the assumption of stationar-
phenomenological parameters which can be fixed by requirly, IS
ing that they reproduce one of the momeMsg, as calcu-
lated from Eq.(16). These theories share the property that in _ | —y
equilibrium, they reduce to the equilibrium PDF so that it is 9(02) = fo dye "ol quAarll, 22
reasonable to attempt to reproduce local information such as
the moments at contact. This contrasts with calculations ofvhere
the density autocorrelation function based on kinetic theory
[14,15 or, equivalently, long-wavelength Langevin models di(@y)=(dix—ay01z .01z ,012,)- (23
[18] which can only give information at asymptotically large
separations for which the information at contact is not rel-In Fourier space, this becomes the solution to &4),
evant.

- Sk~ | dye Gk —ari)],
A. Kinetic model 0

The second equation of the BBGKY hierarchy is with

J J J J
—pa(X1 X i)+ D | Pl =+ &+ — - F(X)) kia( —ayl) = (Kip K1y +ayl'kip Kiz,). (24
ot iS12 aq; M ap/

As alluded to above, the relaxation time appearing in this

X pa(Xq X2 i)+ T_(12) pa(X1,X2;1) model can be fixed by requiring that the model reproduce
one of the momentM,,, .

= _Nf d3[T_(13+T_(23 Jpa(X1, X2, %3:t),  (17) B. Langevin model for density fluctuations

The Langevin model of Ronig13] consists of a
and integrating over the momenta gives an equation for theonvective-diffusion equation for the decay of density fluc-
pdf tuations which, in Fourier space, appears as
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0,%5n(k,t)—k~é’T~(9%5n(k,t)+D(k)k25n(k,t)=f(k,t), h(rur)=—1, In-ryl<o. @9
(25) The OZ equation can be solved for both the structure func-
tion and the direct correlation functidbCF), provided that
where D(k) is a wave-vector-dependent diffusion constantthis is supplemented by a closure relation between the two.
and f(k,t) is a fluctuating force representing the neglected In equilibrium, the relation between the PDF and the di-
degrees of freedom. The fluctuating force is approximated akect correlation function may be written as
6 function correlated in both wave vector and time, with
amplitude D (k)Sy(k)k? where Sy(k) is the equilibrium c(ry,ra)=Ing(ry,ra) —h(ry,ra) +o(ry,ro) +B(ry,ry)
static structure factor. The PDF is obtained by solving for the (30)
density fluctuation as a functional of the force and evaluation
of the equal-time density-density correlation function withwhere y(r,,r,) is the pair potential and(ry,r,) is the
the result bridge function which is not generally known in closed form.
~ o The integral equation approach to liquid state structure can
h(ki2) = J; dyD(k(—ay)ho(k(—ay)k’(—ay) be written in terms of various approximations to the bridge
function. SettingB=0 yields the hyper-netted chain equa-
Y, o , tion and further approximating g=In[1+h]~h, or B=h
><exp( - fo dy'D(k(—ay" )k(—ay")|, —In(g), yields the Percus-Yevik approximation. A number
of other approximations exist, including schemes such as that
(26)  of Rogers and Young29] and of Zerah and Hansdi30],

o . ) which involve a parametrization of the right hand side of Eq.
so that it is seen that the particular choice for the autocorrerzg)  For hard-core potentials, the Percus-Yevik approxima-
lation of the force leads to the correct result in equilibrium.ion reduces to the statemeotr,r,)=0 for |ry—ry|>0c
The similarity between this and the Hess’ model is appareniq the GMSA replaces the right-hand side by a Yukawa
gnd in fact the same.result is obtained if the relaxation timgn«tion with parameters adjusted to give a known equation
in the latter, Eq(21), is taken to be wave-vector dependent ot giate. In this case, these have been shown to be the first

. _ 2 .
with I'(k) =D(k)k®. To close the model, Ronis uséxk) 1o steps in a systematic expansion of the tail of the DCF
=Do/Sy(k) with Do & constant that he takes to be the equi~ith |ittle underlying physical approximatiofi20—23. It

librium self-diffusion constant, although in the present cir-, 5 hecomes natural to carry over this model to the nonequi-
cumstances it will be fixed by the requirement that the modejipjym state so that the closure condition is expressed in

give the correct value dfl», (the dominant nonequilibrium  (erms of a similar parametrization of the tail of the DCF
momenj. Finally, the nonequilibrium correction can be writ- giving the form

ten more explicitly by means of an integration by parts,

which gives C(Fl,rz)=§i: AKi(ry,r2), [ri=ro/>o, (31
h(k12) —ho(k12)
= kky(—ay) for some set of basis functiod&;(r,r,)}. As it stands, Eq.
=af dy——————hok(—ay)) (31) is quite general and the physical approximation will be
0 k(—ay) : \ ) :
to truncate and parametrize this expansion as discussed be-
low.
Y
Xex;{ - fo dy'D(k(—ay’)k*(—ay') |, The problem of solving the OZ equation is now formally

equivalent to that of the case of molecular fluids and similar
(270 techniques can be us¢dl]. To begin, one expands the an-
gular dependence of the DCF, the PDF, and the boundary
where hy(k)=(d/dk)ho(k). The same result has recently conditions in terms of spherical harmonics so that
been derived28] using a random phase approximation in the
context of a Langevin model for the atomic coordinates. h(rl,rz;t)ZE hlm(r12;t)YIm(F12)u (32
Im

C. Nonequilibrium GMSA with similar expansions for the other quantities. Using Ray-

As in equilibrium, define the direct correlation function as leigh’s expansion of a plane wave in terms of radial and

usual through the Ornstein-Zernik®2) equation angular functions and the addition theorem for spherical har-
monics, it is easy to shoy81] that the Fourier transform of
h(rler):C(rlar2)+J drsc(rq,ra)p(ra)h(rs,ry), such an expansion has the form
8 Rlky ki) =(2m)°8(ks +ka) 25 him(k 1) Vim(Ky),
whereh(rq,r,)=g(r4,r,)—1 is the structure function. The (33
PDF must satisfy the boundary condition that the probability
for two atoms to interpenetrate is zero so that with the coefficients defined in terms of Hankel transforms
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Em(k;t):4wi'J r2dr j,(kr)hym(r). (34)
0
The Fourier transform of the OZ equation then becomes

him(K) = Cm(K) + N6y (K) Ry (K) f dKY ) e (K) Yy — K) Y (K)

1’

omKEn— > AL mm )G (K) Ay (K), (35)
Vam [ =1"[<l<l/+1" m' =1
where
A(I,I’,I”,m,m’)z(—l)"*zm\/(ZI,+21|)i2;,,+1)C(I’,I”,I|000)C(I’,I”,I|m’,m—m’,m) (36)

and the last line is a well-known result that follows from the where the relationship holds for any choice of the coeffi-
Wigner-Eckart theorerfB2]. Equation(35) together with Eq.  cientsA,,, ,—an expression of the degeneracy of the original
(31) and the exact condition, Eq29), serve to define the transformation. In the present application, sirgg(0) is

integral equation. known, from Eq. (29), we will always haveA,,,=0
In the theory of molecular liquids31], auxiliary functions  whereas for the DCF, no such statement can be made.
are usually defined as Further discussion of the details of the solution of these
dmi sin(kr)— equations is given in the_Appendix and only_some of the
f k2dk———f,(k), | even conclusions of that analysis are stated here. First, because of
, (2m)2Jo kr the symmetry of the boundary conditions, only coefficients
fim(r)= — ‘ corresponding to even values bfand m will be nonzero.
A f kzdkmf_l (k), | odd, Second, one expects that, because of the symmetry of the
(2m)3Jo kr flow, the dominant nonequilibrium contributions come from
(37 |=2 andm= +2 (sinceY,,+ Y,_,xxy) and indeed this can

be verified for the PDF at contact by calculations using Eq.
t(15). In the case that we keep only these contributions to the
OZ equation, as well as the=m=0 component necessary to
describe the equilibrium contribution, the problem can be
cal work but more important is that the auxiliary functions ransformed into the solution of two one-dimensional OZ

tend to be of shorter range than the original functions. To Segquations with the Yukawa closure and an analytic solution is

this, we need the relation between the auxiliary functions an§°SSiPle as described in the Appendix. This approximation
original functions in real space should be understood in the spirit of a truncation of a mo-

ment solution rather than an expansion in the shear rate and

where f,,(k) could be eitherh,,(k) or c¢,,(k). For even

values ofl, the only ones of concern below, this means tha
the Hankel transform of the original functions is the Fourier-
transform of the auxiliary function. This is useful for numeri-

o 1 in fact, all of the expressions presented below depaoat
f|’m(f)=f|m(f)—f r2dr'—P/(r/r")fin(r’), (38) linearly on the shear rate. The result is that
r '2
rre
where P (u) is the derivative of thdth Legendre polyno- h(r)=hoo(r)Yoo(r) +2hzz; (1) ReY (1)
mial with respect to its argument. Direct calculation shows —2h22j(r)ImY22(f)

that if f,(r)=r"" then f|(r)=0 provided that 2n<l

+ 3. This transformation therefore removes a subset of long- 1 5 ag Ap
ranged decays and is consequently degenerate. The inverse = Jan hoor)+ \/ g ~Relhzor)(ri—r)
transformation is ™
g 1l /5 .-
flm(r)_( 1) 1:Im(r) ( 1) — Z"n(hzz(r))rxry, (40)

r, 1
xf r 2dr’2—P,’(r’/r)f,’m(r’)
rer’

0 where the angular average of the PDF is given by

[(1=1)/2] \/E
+ 21 Ajmar -G, (39 hoor)= < =[n:hi(ring)+n_h_(r;n )], (41)
n=
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with n.=n[1+|c|\1/4mIm(B,, )] and where the constant, Egs. (40)—(42). These parameters are constrained by two
By, 1, is related toA,, ; occuring in Eq(39). As discussed in  boundary conditions consisting of the values Mf, and
detail in the Appendix, the functions..(r;n) may be ex- My,. In the first application to shear floj], the model was
pressed in terms of the solution of the OZ equationHor  simplified by settingkq,=K,=0. The justification for this
mogeneoussystem|[e.g., the Percus-Yevik solution if the was simplicity, since there is then only the nonuniqueness
right-hand side of Eq(31) is set to zero or the known ana- parameterB,,,, and it was shown that a value could be
lytic solution of the N-Yukawa closures3] if the basis func-  found which simultaneously satisfied both boundary condi-
tions are Yukawa ternmjsfor density n... The anisotropic tions reasonably well. However, recent estimdt®4] indi-

component is given by cate that,,(r) decays faster thanrf for larger leading to
the condition that the inverse-cube terms in E&R) vanish
. B2z1 in the limit r —o giving the constraint
hao(r)=0(r—1)| ha(r it)+r—3
3(r, B22,1:3f1 r'2dr hjy(r';Bys ), (46)
_EJ r2dr'h(r';Bazy) |, (42)

rsJz
This still leaves two parameters undetermined. One of these

4 will be eliminated by taking the length scale of thgy(r)

Im(hoy(r;Bs; ))=5r—=[nshi(r;ny)—n_h_(r;n_)], function to be fixed at its equilibrium value and to only allow

2|ajn the amplitude to be adjusted so as to reprodMgg. This

still leaves one undetermined parameter that can be taken to
be z,,. In an application of this approach to granular fluids,

Aside from the truncation of the OZ hierarchy, these resultt similar indeterminacy was solved by insisting that the com-

are independent of any assumption about the closure cond?—reSSibi”ty eqqat?on continues to hold in the nqnquilibrium
tion given in Eq.(31). state. Here, this is not useful becausg(r) has little influ-

In equilibrium, the GMSA is based on the choice of a €N¢€ 9Moo Which would be the object fixed by such a rela-
Yukawa function for the tail of the DCF. This is motivated by ion- (In fact, this could be used as an alternate means of
the expectation that the tail is short ranged and, then, becau¥ing Zo-) With no other exact or well-approximated prop-
a Yukawa closure is analytically tractable. As discussed' [© fit, it seems appropriate to try to minimize the pertur-
above, recent work has shown that the Yukawa term may bgatlon of the tail of the DCF. The tail of the full DCF is
thought of as the first term in a systematic expansion thufound to be
removing some of the arbitrarity of this choice. In the same

Re(hz(r)=1m(hA1))Re M)/ Im(M ).

spirit, we therefore conclude, as the principal hypothesis of exp(— Zoo(r — 1)) 1225,— 32,0 — 3
the extension of the GMSA to nonequilibrium systems, that Codr)=Kpo r 1272
the tail of the auxiliary DCF function can be expanded as 22
3 o
' ' ~ -——| ¢ 2dx for r>o, 4
Or1p=0)¢ (112 =3 vin(r1)Yin(isd) (43 5 catxiax for 1= “n
with which is clearly short ranged if the last term on the right

vanishes as it in fact does in the present approximation as a
result of the condition given in Eq46). For large separa-
tions, the tail is therefore the same as that of the auxiliary
function, a Yukawa term and this cannot be changed by any
For the spherically symmetric component m=0 this is  condition onzy,. At short range, the Yukawa term is modi-
just the Yukawa closure as in equilibrium. Because of thefied and one possibility that suggests itself is to demand that
nonunigueness of the relation between the DCF and the auxt contact, the tail assume its equilibrium value, namely,
iliary DCF, see the discussion after E§9), this corresponds  zero. This implies thatrz,,= 3+ 3 /21=3.8, which is the

1
Ul,m(r)erlmqu_Zlmr)- (44)

to a closure of the actual DCF of the form value used below.
[(1-1)/2]
O(Mo— ) Cm(r1,r)=vim(r1)+ 2 Al @D, IV. MOLECULAR DYNAMICS SIMULATIONS
n=1 '
(45) In order to evaluate the model for the structure proposed

above, | have performed molecular dynamics simulations of
Since the DCF is of no significance in the present contextsheared hard spheres in three dimensions. The shearing state
the values ofA,, , are left indeterminate at this stage. is imposed by means of Lees-Edwards boundary conditions
As formulated, the truncated analytic model has five pa-consisting of periodic boundaries in all directions except that
rameters corresponding to the amplitudes and length scaled the gradientthere, they direction. If a particle exits the
of the two Yukawa terms and the const@ib ; appearing in ~ volume in the positivey direction (say, aty=L/2), it is
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FIG. 1. ReMg) as a function of the reduced shear rat&,for FIG. 2. Same as Fig. 1 but showimd,,.

densities of 0.X(circles, 0.25 (squares 0.5 (diamond$, and 0.75
(triangles. The lines are the predicted values calculated from Eg.

(15). Note the nonmonotonic behavior at the highest density. A. The pair distribution at contact

Figures 1-3 show the projectioi,,, of the PDF at con-

tact onto the spherical harmonics for#m0, 22, and 44 as a
reentered at the opposite side of the volume: (L/2) with  function of shear rate which accounts for angular dependen-
its velocity in the direction of flow shifted as,—uv,—alL cies of the form ]_,E]Xay, and E&—E{i, respectively. The
and its position in thex direction shifted toc—alLt wheret is spherical average of the PDdr,, shows little variation with
the total time transpired in the simulation. Taken togethershear rate fom*=0.1 and 0.25 and only begins to show
these constitute periodic boundaries in the local rest framesignificant variation above* =0.5 forn* =0.5 while at the
The heating is controlled by periodically rescaling the ve-highest density, significant variation is observed for all shear
locities. Specifically, to maintain an average temperaligie  rates and, unlike at lower density, the curve is not monotonic.
the velocities are rescaled to give an instantaneous tempergr all cases, the Enskog prediction is a slight decrease with
ture of 0.9, whenever the instantaneous temperature exincreasing shear rate which is confirmed in the low-density
ceeds 1.05y. The simulations reported here were performeddata. The system at intermediate density is consistent with
using 500 atoms except where noted below. In all cases, #tie model for small shear rates but shows iacreaseat
cubic simulation cell was used. The equilibration procedureiigher shear rates as does the high-density system at all shear
consisted of first creating an equilibrium liquid at the desiredrates, in qualitative disagreement with the model. The major
density_ After 16 collisions, the shear rate was then instan_nonequilibrium contribution to the structure resides in the
taneously set to the desired value and the system allowed #81(922) components which show qualitatively similar be-

relax under the Lees-Edwards boundary conditions for anbiavior: agreement with the model at low density and all
other 10 collisions. Finally, the simulation was extended for Shear rates and for low shear rates at moderate density with

another 10 collisions during which statistical averages were Significant disagreement at moderate density and high shear

accumulated under the ergodic hypothesis. In order to estlates and at all shear rates at high density. The next largest

mate the accuracy of the quantities obtained, Erpenbeck’s

pooling method 35] was used whereby averages were accu- 1 —a T ; T
mulated over periods of 20collisions and stored. The re-
ported values were subsequently computed by averaging
these partial averages and the standard error of these parti
averages, i.e., the standard deviation divided by the squar
root of the number of observations, used as an estimate 0y .
their accuracy. Except as noted below, the error bars in alE 05 .
figures are smaller than the symbols used to display the dataz
Finally, all simulations were performed for reduced densities ST
of n*=ng3=0.1,0.25,0.5, and 0.75. Based on the difference %2 S eeeme AT . = 7
of the equilibrium PDF at contact from its low-density value, 3 -

namely, yo=1, these densities correspond to low density
(x0=1.14), moderately dense y¢=1.4), dense xq
=2.15), and very densey(=3) fluids, respectively. Shear
rates are reported in units of the Boltzmann collision time
a*=al(4n* JwkgT). FIG. 3. Same as Fig. 1 but showindg,,.

0.75 N
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FIG. 4. The value of%(gg,2+ 0102 as defined in Eq(48). The FIG. 6. The same as Fig. 5, but foa*=0.6 and n*
labeling is the same as in Fig. 1. =0.5,0.75.

nonequilibrium contribution, Rejy,), is seen to be nearly an becomes vanishingly small, indicating that no collisions take
order of magnitude smaller than Igy,) and it is also poorly  place in that direction. The figure also shows the predicted
described by the model. values based on the generalized assumption of molecular
These results show that the largest nonequilibrium contrichaos, Eq(16), averagednumerically over the same solid
butions to the PDF occur in the four directions Llﬁ, angle. It is evident that the model works quite well at the
+1/y/2,0). To give a direct overview of the accuracy of the lowest densities, is reasonable at the intermediate density,
models, the average of the pdf at contact over a number gfnd is only qualitatively correct at the highest density. In
angular bins, defined as order to visualize the full directional variation of the PDF at
e e contact, Fig. 5 shows the spatial variation of the PDF aver-
T X b A aged over the same sized solid angle for the whole range of
Ymn= f_lﬂmgx d COSQL% dég(@), (49 values of¢ from — 7 to = for fixed shear rates of 1.0 for
n*=0.1,0.25 and Fig. 6 shows the same &t=0.6 and
was monitored during the simulations fé= 7 and Oy n* =0.5,0.75.(The reason for choosing a lower shear for the
=/10. Figure 4 shows a comparison between theory antiigher densities will become apparent belokor all but the
simulation of3(gg 2+ 9102, €.9., of the pair distribution at highest densities, the spatial variation is consistent with the
contact averaged over the ared®.1<x<0.1 and 0.Zz<¢  model, Eq.(15), whereas forn*=0.75 the agreement is
<0.3m, for the various densities. This patch is centered orpoor. Indeed, the simulation data in the latter case are erratic
the direction (1{2,1//2,0) for which the deviations from and appear to be a superposition of a periodic function with
equilibrium are largest. The most striking feature of thesespikes nearp=0 and ¢=, which corresponds to the di-
results is that the PDF drops with increasing shear until itections parallel and antiparallel to the flgise., +x). Fig-
ure 7 shows the same quantity fof =0.5 anda* =1.0 and

2 - .. T - the same superposition of features is apparent. There are
a¥y o Ty
5 T T T
* . .0
4r . o
< . -
| ’ AN ," N
. 3 fl \\\ ¥ \\\
05- .I .. i <g> re ’,' \“ r'S I,I \;
2_ II ‘\ I’ -
1 \ I
Y 1] \ i
1 1 | ‘\ ” ‘\ "
07 05 0 05 1 =y NS i
o/n L “\ ) “ /)
: ) \8” 1 1 \3” 1
FIG. 5. The PDF at contact averaged over a solid angle definec 0_1 05 ' 0 05 1
by —0.1<x<0.1 andm/10< ¢/ r<(m+1)/10 for —10=sm=10. ’ o/n
The shear rate is fixed @*=1.0 and the information fon*
=0.1,0.25 is labeled as in Fig. 1. FIG. 7. The same as Fig. 5, but faf =1.0 andn* =0.5.
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three possible causes for deviations from the model: shear 0.4 - T . | . -
induced ordering, inaccuracy of the one-body distribution,
and breakdown of the assumption of molecular chaos. The
structural anomalies at high shear rate and high density sug 0-3-
gest the former.

It has been known for some time that hard spheres un-
dergo an ordering transition at high shear rdqt@8]. The 8
nature of the ordered phase remains uncertain and appears "
depend on the type of thermostat ug@d]. For the simple
rescaling thermostat used here, an ordering first into plane:
perpendicular to the direction of the gradighiere, they
direction and then into strings oriented along the direction
of flow, and in a hexagonal pattern in the plane perpendicular
to the flow, has been report€86]. As a quantitative measure

0.2+

of such an ordering, the average density in a tube, orientec ’ a®
along the direction of flow has been monitorgt]. This is
defined as FIG. 8. The tube densiti(c/2) as a function of the shear rate.

The labeling is the same as in Fig. 1 except that here the lines are
1 1 only a guide to the eye with the baselin¢g/2)=0 indicated by
t(u)= <N E ®(U2—qi2j ,y_qizj,z)> , (49) the thick line. Open symbols are from simulations of 108 atoms.

narull 7

increase leading to the conclusion that the increase is due to
which can be written in terms of the PDF as the development of long-range order. This is consistent with
our previously reported results indicating that shear-induced
ordering takes place at this poii#]. Finally, at high density,
J dr g(r)®(u?>—y2—27?) the tube density increases dramatically abate=0.2, indi-
cating an ordering transition at that point. This behavior, in
this case nearly independent of system size, supports the
— EJF iu4+ 1 f dr h(n)@®(r2—1) conclusion that the deviation of the data from the molecular
L 3L UL chaos hypothesis is due to shear-induced orderingnfor

1

wu?L

t(u)=

> 2 o =0.5 anda*>0.6 and for virtually all of the data for the
XO U~y —2z%) (50)  high-density system. It is also consistent with the structural

) ] ] data which show spikes in the PDF corresponding to an in-
and gives the average density, relative to the bulk, observeglease in collisions in the direction of the flow.

along a tube of length and radiusu centered on an atom. In We are then only left with the poor agreement of the
the limit of largeL, the last term on the right will only give ~model for theg,, to explain. It seems likely that this is sim-

a nonzero contribution if long-range correlations IT the d|-p|y due to the inadequacy of the information supplied for the
rection of the flow are presefas they would be for a “string  gne-pody distribution. Since the distribution is accurate only
phase’) so th_at any deviation fror_n the equilibrium V§.|ue up to second moments of the velocity, it is reasonable that
could be attributed to the formation of such correlations.ihe calculation is only accurate up to second order in the unit
However, for the small systems considered here, the last terpactors. Since these contributions are in any case small com-
will give a nonzero contribution in all circumstances and pared to the dominarg,, terms in the region of validity of

variations of the tube density with the shear rate could be dug,e model. this aspect of the problem has not been pursued
to variations in the PDF which nevertheless do not involves iher. ’

long-ranged correlations. Figure 8, therefore, shows the tube
density for a radius of half the hard-sphere diameter as a
function of shear rate for systems of both 108 atoms and 500
atoms (giving L=6 and 10, respectively For the lowest Here, attention is restricted to the domain of densities and
densities, the tube density actually decreases with increasir@iear rates below the ordering transition. In general, the
shear rate with the decrease being larger for the smaller sy§omponents),(r) were estimated during the simulations by
tem. Noting that the size of the effect is roughly in inverseevaluating

proportion to the length of the systems and independent of

the density, this would appear to be primarily a finite size (r)= 1 1

effect leading to the conclusion that in neither case is there ~ 9im Nsamplessamples 47rr2dr

evidence of shear-induced changes in the density in the infi-
nite system limit. Fom* =0.5, the tube density is roughly
constant until abova* = 0.6 at which point it begins to rise
steadily for both system sizes. Although the magnitude of the
increase is also a function of system size, the relative variawhere the inner sum is an estimate @f,(r) based on a

tion between the two systems is much less than the overasinapshot of the system and the outer sum indicates an aver-

B. The pair distribution function at finite separations

X2 O(r;—n)O(r+dr—r)Yr,(r;), (51)
i<j
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FIG. 9. The functions R@o(r))/v4m, upper curves, and FIG. 11. Same as Fig. 9, but fo* =0.5 anda* =0.6.
Im(g,(r)), lower curves, fom*=0.1 anda*=1.0 from simula-
tion(circles, the GMSA with the Yukawa closuréull lines), and

the GMSA with the tail of the DCF set to ze(dotted lines. largest discrepancy occurs for the lowest density. Based on

the observed fluctuations in the identical determination of
m(r) for this density in equilibrium, the statistical errors

n§r this system appear to account for no more that half the

Ideally, one would like to replace the outer sum by a con- eviation seen in Fig. 9. One noticeable characteristic of the

tinuous time average in the spirit of the ergodic theorem bu?imulatiop data fom*=0.1 is that Img,,) appears to be
the computational expense would be prohibitive. systematically below the GMSA model and indeed system-

Figures 9-11 show Rg(y(r)) and Im@x(r)) for n* atically below zero away from the core. This suggests that
—0.1, 0.25, and 0.5 ana@* = 1.0, 1.0, and 0.6, respectively, the deviation might be a sign of the slow, algebraic decay
as determined from the simulations. While the sphericallyPredicted by mode-coupling theof4] and which is not
symmetric component is little changed from equilibrium, theincorporated in the GMSA model.
main nonequilibrium component, ,,(r)), is comparable Figures 12 and 13 show the same simulation data as Fig.
in magnitude near the core to the equ”ibrium PDF but de-l1, together with the numerical evaluation of the models of
cays rapidly and is difficult to measure beyond about twoHesS[Eq. (20)] and RonifEq. (27)] performed by means of
hard-sphere diameters. Also shown in these figures are the Monte Carlo integration using theeGAs algorithm [37—
results of the GMSA model with both the Yukawa closure39]. Because it can be formulated in real space, the Hess
described above and the simpler closure in which the fulmodel requires one fewer integral than the Ronis model so
DCF is set equa| to zero outside the core. Both give a goo@hat the evaluations are quicker and more accurate. In both
description of the main features of the structure including the
location of the sign changes and the amplitude and wave- 535
length of the oscillations irg,, with the Yukawa closure
being obviously superior in all cases. It is interesting that the o _

age over many different snapshots. The results present
here are based on snapshots taken every 10000 collisio

15— : — sk ]

g,
T
=

g,

r/c

FIG. 12. The functions Reo(r))/ V47 and In(g,(r)) for

2'5 . é . 35 n* =0.5 anda* =0.6 from simulation(squares and circles, respec-

RS RRf

/o tively), the Hess model with the smaller paramefetfl and dotted
lines, respectively and with the larger parametétashed and dot-
FIG. 10. Same as Fig. 9, but fo* =0.25 anda* =1.0. dashed lines, respectively
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25 - T - T - power-law decays arise naturally in the solution of the aniso-
tropic OZ equation, the inverse-cubic decaygiy(r) is in

4 contradiction to the 1} decay predicted by recent mode-
coupling calculationg34]. Furthermore, those calculations

i indicate a '3 decay ingy(r) for which there is no analog

in the OZ solution. Of course, such algebraic decays could
find their origin in the auxiliary functions and, indeed, might
be used as boundary conditions in place of the Yukawa clo-
sure of the GMSA. However, the mode-coupling results are
the result of a number of approximatiofismearized Navier-
Stokes-Langevin model solved perturbatiyend may not

be giving the true asymptotic behavior. Altogether, the ques-
tion of the actual form of these algebraic decays must be
3 considered to be unresolved at this point since the data pre-
sented here are adequately fitted without thHemxcept, pos-
sibly, forn* =0.1). More extensive simulations that can pro-
vide better statistics for the decay at separations significantly
above two or three hard-sphere diameters would be required
in order to resolve this issue. What can be said here is that
even if algebraic tails exist, they must be significantly
weaker than the dramatic nonequilibrium contributions seen
near the core.

cases, the parameters were adjusted so as to reproduce the! WO Other, closely related, theories for the PDF were also
calculated value of Ml ,,). Curiously, there are two values considered and shown to capture some of the qualitative be-

of the free parameter in the Hess model that satisfy this cord@vior of the PDF but both suffer from the unphysical pre-
straint. For the smaller of the two values, Bgyr)) is al- diction of nonzero probabilities inside the core. Before dis-
most unchanged from equilibrium and G‘L,Iiz(r)) is only missing this class of theory on this basis, it is interesting to

nonzero in a very small region near the core. Both Compoponsider whether the_ ”.‘a‘.” failing could be eliminated. In
nents are nonzero in a small region inside the core. Thgrder to show that this is indeed the case, consider the sec-

larger value of the parameter gives rise to a substantial dé)-nd equation of the BBGKY hierarchy for hard spheres

viation in Re€gq(r)), which is therefore not in good agree-
ment with the simulation data. In contrast, (lg,(r)) is in
qualitative agreement with the data outside the core. In thi’F J ( 9
+ pi -
=

gD

FIG. 13. The functions Reo(r))/ V47 and Im(g,y(r)) for
n* =0.5 anda* = 0.6 from simulation(squares and circles, respec-
tively), and the Ronis modeffull and dotted lines, respectively
The error bars are the standard errors reported byeas algo-
rithm used to evaluate the model.

case, both components take on substantial values inside t & a—q+qi-éf~ aqur i,~F(xi)
core. The Ronis model, shown in Fig. 13, is similar to the : :
large-parameter version of the Hess model. The spherically

symmetric component is modeled somewhat better but +?_(12)
Im(g,o(r)) is somewhat worse than with the Hess model.

The behavior inside the core is also worse, withd3g(r))

even taking on negative values. _ _Nf d3[?7(13)+?7(23)]p3(X1,X2,X3;t)- (52)

p2(Xy,X2;1)

V. DISCUSSION

The goal of the work presented here has been to descridgrst, observe that in the most general case the distribution
the density-density correlation function in a sheared hardmust have the form
sphere fluid over a range of densities, length scales, and
shear rates. It was shown that the Enskog approximation for _
the velocity correlations provides a basis for calculating the p2(X1,X2;1) = O(r 15— ) pa(X1,X23t) (53
the density-density correlation function at contact and that
the results hold up well when compared to simulation, even
for Conditions Of moderate density and h|gh Shear rates. |nsince the atoms cannot interpenetrate. SUbS“tUUng this into
deed, deviations from the Enskog predictions are primarilyEd- (52, one finds two terms proportional #(r;,—o): the
attributable to the high shear rate phase transition and, g8t coming from the action of the spatial gradients on the
noted previously[2], appear to signal its onset. For finite Step function in Eq(53) and the second from the collisional
separations, the nonequilibrium GMSA was shown to pro-operatorT _(12). These must cancel so that their coefficients
vide a framework within which the known information about must be equal and this just gives the relation between pre-
the correlation function at contact, coming from the Enskogcollisional and postcollisional distribution functions used to
approximation could be used to provide an accurate descriglerive Eq.(6). The remaining regular part of the kinetic
tion of the dominant effects at finite separations. Whileequation then reads
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P GMSA model, provides a good description of the density

+0;- & — autocorrelation function in a sheared fluid. The same tech-
9 niques also give a good description of the PDF in granular

fluids (modeled as inelastic hard sphergy giving evidence

that the approach is applicable to a variety of nonequilibrium

systems. In both cases, simply knowing the value of the PDF

at contact, from the Enskog approximation, and applying the

_ standard formalism of liquid-state theory are enough to give

=—=NO(qs— ‘T)f d3[T-(13 a description of features of the system arising solely from the
o o nonequilibrium state. Further work will include the extension
+T_(23)]p3(X1,X2,X3:1), (54)  of this model to the description of static correlation functions

involving temperature and velocity.
where an analogous decomposition of the three-body distri-

bution has been introduced. Integrating over all momenta

O(d,— o)

d
PR

Pi 0_q.

Pa(Xq,X31)

)
+—F(xi)
ap;

and discarding surface terms then yields ACKNOWLEDGMENT
d The author acknowledges support from the Univerksite
O (A2~ )| o+ 01 & — V(G2 bre de Bruxelles.
Q12
=~ 00w~ ")”f dpldeJ d3[T-(13) APPENDIX: SOLVING THE OZ MODEL FOR USF
+?_(23)];3(x1,x2 X3:1), (55) _ The OZ equations written in terms of the auxiliary func-
tions are
where y(q;,9,;t) is the nonequilibrium cavity function
and is related to the PDF byg(q;,d2;t)=0(qs> )
—0)Y(91,9,;t). This suggests that a more physical approxi- '
mation would be to make a relaxation approximatjiomthe him(K) =Cipn(k) +n—= \/— , //2 ) > /
same spirit as the approximation leading from Ed) to Eq. A= SISET me=
(20)] for the cavity function of the form xA(l,’ 'l”’m'm,)EI,’m/(k)FI,"m—m'(k)' (A1)
O( o) 7-y(d12;t) + 1o & ——Y(q12;t)
2™ D] y iz U d012 Vit and the boundary conditions, which follow directly from Eq.
(39), are

—j dr A(Q—DLy(r;it) —yoe(r)]|=0.  (56)

h/(r)=—V4m 8000+ (1— 6
There is no reason at this point to keep the step-function in O(o=0him(r)= 109mo+ (1= d10)
this equation since any solution valid for all separations will (12)-
be valid outside the core. Then, this gives in Fourier space X E Bim.nl 2" (A2)

0~ . ~ ~ _
kit —k-&T — Y(kit) =AGK)[Y(ki) =Yo(k)]
(57) O (1 —0)Cim(1)=0{n(r),

and for steady-state shear flow the solution is
where the constant coefficients are functionals of the struc-
akyky(— at)~ ture function

T =To(k) + f:d

(12-1

Xexp(— fotdt'ﬂ(k(—at’)) - (58 X Bipor™

~ k—1
An extension of the Hess model would be to takék) 1J°° r

e . =——| dr’ 4n+3)P —h 1) A3
=3 mAmYim(K) for some set of constant,,, adjusted to Lo nzo( N+3)Pans r m(r;0). (A3)

give the correct moments at contact. A similar extension of

the Ronis model is also possible. An investigation of these

models will be left to a future study. Note that Eq(A3) is not a self-consistency condition: rather,
In conclusion, it has been shown that the Enskog approxiit will automatically be satisfied for any solution of Eqé.1)

mation for the pair correlations at contact, together with theand (A2) as can be verified using the relation
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(12)-1
1 Ing] = 1 YA PYANY] =r R
him(r;t) =hjn(r;t)— E (4n+3) hoo=Coot N/ E[Coohoo“‘(szh272+0272h22)]:
"\ . T o o
8 for A0 Pansa|  [hin(T50. - (A4) Ro=Chotn\ 7ot St (AB)
Instead, the significance of the constants is revealed by con- 1
sidering the equivalent relation for the DCF, h' 5 =) ,+n\/-—(Cohs_,+Ch_,hb0)
(172)-
Cim(r;t) =C{m(r;t) — 2 (4n+3) with the boundary conditions

O(a—r)hjyr)=—Jam,

r r'
XJ r’dr’PZnH(T)c(m(r’:t), (AS5) ,
0 O(o=1)hy.5(r)=—Bass2,

which implies that O(r—a)ch(r)=ved(r),

_ . (A9)
Or=bem(r:y O(r—)ch. o1 =030(r),
(1/2)-1

:@(r—1)u|”m(r;t)—®(r—1)r—2 nzo (4n+3) lim hig o+ €)= Moo,

e—0

1 r’
Xfor,dr’PZHJrl(T)[CI,m(r’;t)_v{m(r,;t)]’ (AG) Iimhéi2(0'+€):M2i2+82i2'0.
e—0

where First, note thah, _,,=(—1)"h},, etc., which follows from

the equivalent property of the spherical harmonics. Then, it
is useful to separate the equations into their real and imagi-
nary parts to get

(1/2)—-1
v (1) =v/(r)— E (4n+3)

' ™ r' ’ ’ ~ ~ [ 1 - - ~, =~ ~, =~

The reason for defining,(r) is precisely due to the nonu- _ _ 1 _ o

niqueness of this transformation, as discussed belov@y. M2, =Cop; +1 \/ 7(CooN2o; + CoorN00),  (AL0)

of the text. The point is that if we assumed a closure 7

of theI fL}” DCF of the form v, (r)= ¢ m(r) I

;Lz [(1-DR2lp  r=@0+D) then only¢|m(r) would con- Y 521 =Cho; + 111 /—(Eéoﬁézj+5ézjﬁéo),

ribute tov (1) and we Would find that |,,(r) = ¢im(r). We 4

would then complete the problem by adjustlng the constants

Bim.n SO that the boundary condition is satisfied, meaning where h22r_Re(T1§2), etc. Second, because of the linearity

in the 22 components of the last two equations and the

anen) boundary conditions_ on the core values of the components of

nzl Aim,nl the structure. function are constants, these equations are
solved by taking

[(1-1)72]

(1121

r' _ ~
2 (4n+3)f r dr P2n+l )U|m(r ) héZ,rZXh,ZZjv
(A11)
However, in the present application, we are not concerned X=Mzz; M2y,
about the full DCF and so thig,,, , are simply treated as free .
parameters. giving
If we retain only thel=0m=0 andl=2m==*=2, com- I

ponents, the model can be reduced to the solution of a one P [ = 2T T
dimensional OZ. The explicit form of the OZ equations in Moo= Coo™ N 477[c00h00+ 2(1+X5)Ca2iNz251;
this case are (A12)
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terms, then we can make use of the solution of Hoye and
Blum for a closure consisting of a sum of Yukawa terms
[33]. For completeness, we collect together the various trans-
formations to see that

~ ~ [1 - - ~ o~
héz; = Céz; +n E( C(’)Ohéz,r + CéZ,rh(r)o) '

provided Re(3,) =xIm(v3,), which we are free to impose.

Now, defineh(r;u) =hg(r)+uh,;(r), which satisfies , Jar
1 hoo )= 5 ~[n+H.(N+n_H_(n)],
h(k,u)="c(k,u)+n -\ /E[E(goﬁ’ 00t U(ChoNso, +Cha o)
Va
+2(1+X2)Eéz"ﬁ£2'] héZj(r):m[nJrHJr(r)_anf(r)]r (A16)
1 1

h2, (1) =Xhgy;(r).

The value of ImB,, 9 is, of course, fixed by requiring that

(A13)

~ [1. ~
=c(k,u)+n Ec(k,u)h(k,u),

where the last line follows if and only ifi= *+ \2(1+x?).

The boundary conditions are then "T hyi(o+€)=—Im(By ) +IM(Myy), (Al7)
e—0+
Ooe=nh(ru)=—Vam—uimBz,), (A rie the full PDF is
_ — 10 1(0) .
Or = a)e(r,u)=Zvgo (1) +uvz (r). h(r) =hog(r) Yoo(F) + 20, (FYREY 55(F)
Finally, introduce scaled quantities defined Wyr;u) R (1) IMY ()
=[V4m=|um(By)IH.(r)  and  c(r;u)=[4m 22 22
+[ufIm(B2,)1C(r), 1 5
" " ~2 -2

which give =TI o) + 8 22, (D) (F5—T3)

H.(k=C.(k)+n.C.(kH.(k), 5, -

- EhZZj(r)rxrya (A18)
O(e—rH.(r)=-1, (A15)
where
O(r—0)Cu(r)=[Vam=|u[Im(By )] v ™(r)
= |ul[VA7 £ [ulIm(Bz2)] " to57(r), 22(r>=f0 r'2dr Ug(r 0hsg(r'5t)

which can be recognized as the OZ equation f@passibly IM(B,y.9)
negativé density n.=n[1=*|u|\/(1/4m)Im(Bx )] and :@(r—l)[héz(r';t)ju%
some particular closure conditidso that this resembles the r
usual GMSA. For the simplest case, in which one takes
vs(r)=0, we haveH . (r)=h,(r;n.) and the solution is B Efrr'zdr’hgz(r"t) _ (A19)
trivial. If the tail functions,v ({?(r) andv,5°)(r) are Yukawa r3Ja
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