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Imploding shock wave in a fluid of hard-core particles
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We report the study of a fluid of hard-disk particles in a contracting cavity. Under supersonic contraction
speed, a shock wave converges to the center of the cavity where it implodes, creating a central peak in
temperature. The dynamics of the fluid is studied by solving the Euler and Navier-Stokes equations, as well as
by molecular dynamics simulations and the Enskog direct simulation Monte Carlo method. The value of the
maximum temperature reached at the center of the cavity is systematically investigated with the different
methods which give consistent results. Moreover, we develop a scaling theory for the maximum temperature
based on the self-similar solutions of Euler’'s equations and mean-free-path considerations. This scaling theory
provides a comprehensive scheme for the interpretation of the numerical results. In addition, the effects of the
imploding shock wave on an passively driven isomerization readienB are also studied.
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I. INTRODUCTION ploding shock wave being qualitatively similar in two and

In recent years, there has been much interest in the d);hree dimensions. Our principal conclusion is that the hydro-
namics of collapse of a periodically driven bubble in a liquid dynamic description of the fluid is in good agreement with
[1,2]. Much effort has been devoted to determine the highthe molecular dynamics simulations, thus providing support
temperature reached at the center of the bubble at the instafior the use of hydrodynamics to understand the behavior of
of collapse. The mechanisms studied range from a unifornfiuids even under the extreme conditions arising from bubble
heating due to adiabatic compression to the implosion of &avitation.
shock wave if the bubble interface reaches gaseous super- In typical cavitation conditions, the bubble is periodically
sonic speed. This last mechanism has been investigated alniven by the acoustic field and its radius obeys nonlinear
the basis of Euler’s equations which predicts an infinite tem-equations of the Rayleigh-Plesset tyj2e8]. The time depen-
perature at the instant and location the shock wave focuses dénce of the radius is highly anharmonic, especially, around
the center of the bubblE8]. This infinite temperature is an the time of collapse. The time dependence is determined by
artifact of Euler’s equations which neglect the effects of dis-the coupling between the gas dynamics inside the bubble and
sipation due to collisions between the particles in the gasghe motion of the surrounding liquid. Studies have shown
The simulation of the bubble collapse with the Navier-Stokeghat spherical bubbles remain stable over a large domain of
equations has shown that the maximum temperature is finitehysical parameterg2,9]. Beside the question of stability,
[2,4,5. Recent molecular dynamics simulations have beemuch effort has been devoted to understanding the condi-
carried out which also provide the maximum temperatureions under which a shock may be generated of2dt0,11.
[1,6,7. However, no systematic comparison between thdn the present paper, our goal is to study a situation with the
continuum and molecular dynamics descriptions exists antbrmation of a shock wave and to understand the saturation
little is known analytically about the value of this maximum of the temperature due to dissipative effects by using mo-
temperature and its possible effects on chemical reactions.lecular dynamics simulations in particular. For this purpose,

The purpose of the present paper is to study the maximumve may consider a simplified dynamics with a uniformly
temperature reached during the implosion of a shock waveontracting cavity, ignoring the effects of wall acceleration.
and the induced chemical reaction by molecular dynamic§hanks to this simplifying assumption, we can perform a
simulations of hard disks in elastic collision in a contractingdetailed quantitative comparison between the hydrodynamic
circular piston. We systematically compare the descriptiongquations and molecular dynamics simulations, and validate
based on Euler’s equations and the Navier-Stokes equatioiiseoretical results about the maximum temperature at col-
with molecular dynamics simulations. Molecular dynamics islapse.
very appropriate for the study of an imploding shock wave The paper is organized as follows. In Sec. Il, we describe
on the scale of the mean free path. In strong planar shockthe system we consider and its basic properties such as its
the width of the front is indeed known to be of the order of equations of states and its transport properties. In Sec. lll, the
the mean free path. In an imploding shock wave, we shouldheory of self-similar solutions of Euler’s equations is pre-
thus expect a smoothing of the discontinuities predicted byented, which leads to a theoretical estimation of the maxi-
Euler’s equations on the scale of the mean free path. For oumum central temperature. In Sec. 1V, we present the descrip-
aims, we have therefore carried out a study of the implodindion of the phenomenon in terms of the Navier-Stokes
shock wave with molecular dynamics simulations. We con-equations. Numerical results of the molecular dynamics
sider a hard-disk system which is less time consuming thasimulations are given and discussed in Sec. V. In Sec. VI, we
hard-sphere systems, albeit the scaling properties of an inshow how an isomerization chemical reaction is induced by
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FIG. 1. Time evolution of a fluid ofN
=10 135 hard disks of unit mass and diameter in
a cavity contracting at the speed5. We observe
the formation of a circular shock wave converg-
ing to the center of the cavity. Behind the shock,
the heat induces an isomerizatifr- B with the
activation energye,=50. The solvent and reac-
200 . . . 200 . . . tant particlesA are depicted as dots and the prod-
(©) (d) t=16 uct particlesB appearing behind the shock as
disks. Initially, the fluid is at rest with density
ny=0.1 and temperatur€=21. The unit of posi-
tions x andy is the diameter of the hard disks.
The other units are set by taking hard disks of
unit mass andg=1.
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heating due to the imploding shock wave. Conclusions arélamiltonian of the system of hard disks is given by the

drawn in Sec. VII. kinetic energy
N 1 "
H=2 Smv. (2)
Il. DESCRIPTION OF THE SYSTEM -1 2
A. System As a consequence, the disks are in free flight between the
The system is a fluid oN hard disks inside a circular collisions occurring at timeft,}:
cavity (or pistor) which contracts at a constant speed during F) =1t + vt )t —t,)
some time interval. The radius of the cavity decreases in time t<t<thg) Cohn (L) n n (3)
according to vi(t) = v (L),

R(t)=Ry—ct, for0st<t, (1) Wherevi(”(tn) is the velocity of disk Noi after thenth col-
lision. We shall denote byi(_)(tn) the velocity before this

where the final time; is shorter than the time required for collision. The disks are constrained to move in the domain
the fluid to reach the maximum possible close-packing den- '

sity for the hard disksR, is the initial radius of the cavity [Iri— r]-|| =a +a;, (4)
andc is the speed of the wall of the contracting cavity. Fig-
ure 1 depicts the time evolution of such a fluid in a contract- Il <R - a (5)
ing cavity and shows the formation of a concentric shock ' ’

wave converging to the center of the cavity and implodingfor i,j=1,2,... N at all times. These conditions imply that
around timet=15.5. Behind the shock front, the density and the velocities of both disksandj involved in a binary col-
the temperature jump to higher values than before the frontision change according to

The heat generated by the shock may induce chemical reac-

tions as shown in Fig. 1. When the shock wave collapses at vt =y - 2_mi_(6ij 'Vi(j_))eiji

the center around timte= 15.5, the temperature culminates at m +m

a peak value more than 100 times the initial temperature,

while the density is only multiplied by a factor of 4 or less. ) — ) Iy )
The_purpoge of the present paper is to describe quantitatively VitEvpoE 2mi m (& - Vi )€, (6)
the implosion of the shock wave and its effects.
where
. I’-(i) _ r(i)
B. Dynamics € =1 (7)
ij a +aj

The N hard disks have massém}ly, and radii{a}\,.
Their positions and velocities arf i}y, and {v;}lt,. The is the unit vector joining the centers of the disks and
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Vi(j_) = Vi(—) — Vj(_) (8) 80 T .
70 | 1
is the relative velocity. The positions are unchanged at the 6o L 1
instant of the coIIisionri:ri(+):ri(_). Total energy and mo- s
mentum are conserved during binary collisions. e ]
When a disk collides with the wall of the contracting cav- g a0r 1
=9

30 F
20 F
10 |+

ity, it undergoes a specular collision so that its velocity
changes according to

viP =D = 2(¢ - v e - 2ce, (9) ]
0 1
wherec is the speed of the wall and 6 02 04 06 08 1 12
density
r®
€= ” '(+)” (10) FIG. 2. Pressure versus densityn for a system of 128 hard
ri_

is the unit vector in the direction of the position of disk
from the center of the cavity, which is also, in the cylindrical
geometry, the normal to the wall at the point of collision.

Total energy and momentum are not conserved during thg

collision of a particle with the moving wall.
The dynamics(3)—(10) is simulated by an event-driven

disks of unit mass and diameter at the temperakgie=1 calcu-
lated numerically by Eqs(16)<(18) (dots and solid ling The
dashed line is the Henderson's empirical equation of gtgand
(20) valid in the fluid phase. The unit of pressurekisT/(2a)? and
the unit of density is 1(2a)? where 2 is the diameter of the hard
isks.

algorithm based on the redetermination of the next collisiorstate. The equation of state for the energy is simply

after each collision. This algorithm is at the basis of the

molecular dynamics simulations of the system.

C. Initial conditions

We consider a fluid of identical particles

m=m, a=a, foralli=1,2,...N, (11)

of unit massm=1 and unit diameter&=1.

D
e=—kgT, withD=2. (15)

2m
(In the numerical calculations, we take units where Boltz-
mann constant is equal to unitygg=1.) On the other hand,
the equation of state for the pressure is given by

p=nksT+R, (16)

The initial state of the system is a thermal equilibrium atWhere the rest is calculated with the virial theorem by a time

temperaturd, and densityny when the cavity has the radius
R(t=0)=R,. The initial density is therefore

N N
noz_

Vo = Eg (12

The state of thermal equilibrium is obtained during a tran-
sient period of equilibration under the molecular dynamics

itself while keeping constant the radius of the cavity.

D. Thermodynamics and the equations of state

Here, we use the intensive thermodynamic quantities

mass densityp=mn, the specific energe=E/M, and the
specific entropys=S/M whereM is the total mass. We sup-
pose that the fluid is locally at equilibrium and that the fol-
lowing local Gibbs relation is satisfied:

1 1
ds= Zde+ 2d=, (13)

T T p
wherep is the local pressure anidthe local temperature. We
introduce the specific enthalpy as

h=e+ 2.

p

A fluid of identical particles at equilibrium at the tempera-
ture T and densityn is characterized by two equations of

(14)

averaging under equilibrium conditions as

1 N
R=1Ilim{ == > F(ra) -rap

(17
V—o0 ZVDa#bzl

€q

1
= lim =3 Ap(™ 10t~ t,),

18
V,t—o 2tVD n ( )

whereD is the dimensionF(r,,) is the force acting on the
particlea due to particled, rp=r,—rp, t, is the time of the
collision between disks and j, Api(”)zm[vi(+)(tn)—vi(_)(tn)]
—Ap}“), andrfj“):ri(tn)—rj(tn). In this way, we have been
able to calculate numerically the pressure depicted in Fig. 2.

Since the energy is purely kinetic, the dynamics at differ-
ent temperatures is the same after a rescaling of time. Hence,
the pressure has the form

p(T,n) =nksTf(y),

For a hard-disk fluid, we use Henderson’'s empirical equation
of state[12]

with y = mran. (19

y’
p(T,n) _ 1+ 8
nkeT ~ (1-y)*

The pressure equation of state can be reexpressed as

f(y) = (20
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Tl
f(y)= _prfk;) =1+2manY(n) = 1+2Y(y), (21)
in terms of the Enskog factor
7
1y
Y(y) = . 22
W=y (22)

Figure 2 compares the numerical calculation of the pressu
with Egs. (16)«18) with the analytical expressiof19) and
(20). The agreement is excellent at low density in the whole

fluid phase before the fluid-solid transition.

The system undergoes a fluid-solid transition in the coex-

istence interval of densitg; <n<ng with

0.87+0.01
fluid-solid transition: nf= ———5—,
f (za)Z
= 0.90+0.01 (23
S (202

PHYSICAL REVIEW EO, 026306(2004)

p=p-y”expC(y), (30

with the constant of pressupe =exgm(s—s:)/kg].

The sound velocity is given by

=[P
Cs= ((?p)s’ (3Y)

where the derivative is taken at fixed entropy, sound being

rsupposed an adiabatic process in first approximation. Ac-

cordingly, we obtain

5 ap) kBT( ) df)
=| =) == f+f2+y—|, 32
Cs (ap S m ydy (32
with
df 1%
—=2 5 (33
dy (1-y)

For our hard-disk fluid at density,=0.1 and temperature
To=1, the sound velocity is;;=1.66.

independently of the temperature. The pressure diverges at

the close-packing density:

1 1.1547

=== (24
a?22\3  (2a)? (24

close-packing density: ng, =

where the hard disks form a perfect triangular lattice.
The specific enthalpyl4) is thus given by

_keT S
h="2"[1+1(y)]= mn{f(y) + 1]. (25)

E. Transport properties of the hard-disk fluid

Beside the equilibrium equations of state, the fluid is also
characterized by its transport properties which are the shear
n and bulk ¢ viscosities and the heat conductivigy The
transport coefficients are given in the Enskog approximation
by [13]

The specific entropy of the fluid can be calculated by

integrating Gibbs’ relatiori13) with both equations of states

to get
p

s=—1n +s., (26)

f
yf(y)exp J (Ty)dy

with a constant of entropg.. For the equation of stai@0),
we obtain the specific entropy

k 1- 23/8
s=—21n |0(2 Y) +s., (27)
m 2(1 +y—)exp 2
\* "8 )"Paa-y)
which can be rewritten in the form
Kg p
==In————+s, 28
T yrepCly) 28
with the exponenty=2 and the function
2
1Y
expC(y) = ° exp ? _o14 4y +O(y?)
(1-y)®2B 77 8(1~-y) '
(29)

The adiabatic is thus given by

1
n= nobp(— +1+ 0.8729)pY> , (34)
bpY
= npbp(1.2460pY), (35
= kob (i+§+08718) Y) (36)
KZKOP oy T T ORI

with
bp = 2ma’n=2y (37)

and

1.022 [mkgT
== == 38
7o 4a . ( )
1.029 [I&T
Kog= —— | ——. (39)
a mar

These transport properties arise because the fluid is com-
posed of particles which have the mean free path

1

{=—7— (40)
4+2anY(n)

in a dilute-to-dense hard-disk fluid at equilibrium, where
Y(n) is Enskog’s factor of the Enskog kinetic theory of dense
fluids [14]. The mean free path is the characteristic spatial
scale of dissipative and kinetic effects in the fluid.
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Ill. SELF-SIMILAR SOLUTIONS OF EULER’S

ar
EQUATIONS u=— V&, (48)
A. Euler’s equations
On large scales, a supersonic flow is well described by _ aAr?
Euler’s equations because dissipation only manifests itself on p= Wt- t*)zG(f)Z(f)’ (49)

small scales of the order of the mean free path. In this non-

dissipative approximation, the processes are adiabatic—i.@yjth unknown dimensionless functio®(é) for the density,

isentropic—andis/dt=0. _ V(&) for the velocity,Z(€) for the ratio of pressure to density,
We assume that the flow keeps a rotational symmetry ag,q po @ reference density. We notice that the funct)

observgd n molgcular S|mulat|ons,. Theref_ore, the velocity, Eq. (49) describes the behavior of the temperature mac-
macrofield is radiali=ue, and Euler’s equations become

rofield.
p + Jr(pu) + ;. PU=T 0, (41) C. Reduction to ordinary differential equations
The self-similar solutions have the mathematical advan-
1 tage to be expressed in terms of functions depending on the
dill + Ugpu + ;ﬁfp‘ 0, (42) single variable&. Therefore, the three partial differential
equations reduce to the following three ordinary differential
3+ Uds=0, (43) equations in the case of self-similar solutions:
whereD is the dimension of space, and the entropy is related dv _dinG B
to the pressure and the mass density by din & (V-1 dln & +DV=0, (50)
kg P
s=—Inh—————+s (44)
m  p”expC(p) (V-1 dv +Zd|nG+£ dz +g —V(l—V>:O,

The fluid is not polytropic becauge+ 0. ding yding yding vy «

Equations(41)«(43) form a system of three partial differ- (51
ential equations for the three unknown macrofields which are
the mass density, the velocityu, and the pressune. Equa- 1
tion (43) implies that the specific entropyis locally con- —=V
stant so that the state equati@) relates the pressure to the 1- y)d InG dinz _ C,(G)d_G 2% -p
mass density. diné din¢ din¢g 1-v

(52

B. Self-similar solutions

where C'(G)=dC/dG. This system of ordinary differential
equations can be written in an explicit form. In the case
whereD=2 andy=2 which concerns us, we obtain

We are looking for self-similar solutions of Egs.
(41)—44). For polytropic gases, such self-similar solutions
have been previously studi¢#l5,16. However, the problem
has to be reformulated because we have here a nonpolytropic ,
fluid, which is a case not treated in Ref$5,18. VIV - 1)<l —v) N [1 N (2 N 5>v}z

The implosion of the shock wave occurs whenO at o\ a a G
some timet=t.. Thereafter, it reflects on itself and moves din ¢ B 5 ! ’
outward at timeg >t.. Here, we restrict our attention to the (V-1-(1 *56 /4
periodt<t.. We introduce the scaling variable

(53
r
=—, 45
g A(t* - t)a ( )
with an exponentr to be determined. The converging shock dz 7 | 2 +ol2 +£’ vel1 +g’
corresponds to the valug=1; i.e., the front of the shock gng" 1-v| « G G
wave follows the trajectory
' shock= At = 1)*. (46) 1 1 ok
) . ] . VV-D)(—=-V|+[1-—+|2+—=|V|Z
We further notice that the time of implosioret. corre- % o a G
sponds toé=o, , c’ '
The macrofields are assumed to be of the form (V-1)°-{1 G z
p=poG(&), (47) (54)
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dinG

1
vu—vm——v)
diné 7= a 61)
1

1 c.’
_ 1——+<2+—Jv
1-V a G

1 1 c’ which intersects the singularity surfa¢g0) along lines in
V(v - 1)< a V) * {1 a * ( )V}Z the three-dimensional phase space. The initial conditions are
c’ , separated from the ling=Z=0 of final conditions by both
(V-1)2- (1 +—)Z surfaceq60) and (61). For an arbitrary value o#, the tra-
2G jectory will meet the singularity surface and will not be able
(55) to reach the line of final conditions. Nevertheless, there ex-
_ ists a critical value ot to be found numerically such that the
with C'=C’(G). trajectory crosses both surfaces on a line at their intersection
The solution we are looking for starts from some initial where Eqs(53)«(55) are not singular. This critical value of

conditionsV(1), Z(1), andG(1) determined by the disconti- 4 determines the exponent of the self-similar solution we are
nuity of the macrofields along the shock itsef1 or In¢ looking for.

=0. The solution ends &=~ or In é=« at the originvV=Z
=0 in the plane(V,Z). If we linearize Egs(53) and (54)
around the origin, we obtain arount=0 andZ=0:

X4 2V +

D. Matching equations

The initial conditions[V(1),Z(1),G(1)] are determined
dv. =~ Vv [1 1)z (56) by the matching equations which rule the flow at the discon-
’ tinuity of the shock wavg15]. In a frame moving with the

din ¢ a \a
shock, the matching equations to be satisfied at the disconti-
4z > nuity are
e —Z. (57
din g @ p1Uy = palz, (62)
The solutions of these linearized equations are
P+ pali = Py + poli, (63)
Ky Kz
V= @, Z= @, (58)
h, + u_f =h,+ u_% (64)
with some constantk,, andK. Equation(58) describes the 177727 oo

divergence of the velocity, pressure, and temperature mac-

rofields at the implosion. We notice that the divergence of thevhere the subscript 1 denotes the quantities before the shock
temperatureZ goes like the square of the divergence of theand the subscript 2 those after the shock. In a fixed frame, the
velocity, as expected by a simple kinematic argument. On thgelocities are

other hand, Eq(55) for the density reduces &=0 andZ

=0 to v1=0, vy=Uy,—Uy, (65)
dinG 1 1 for the converging shock at negative tintes0, because the
Mngz(z‘;%“«l“)z*o’ (59 fiuid is initially at rest.

Assumingp,> p;, EQs.(62)—64) are solved to obtain the
so that we can conclude that the densityemains finite at  results that
g:oo_
The system of ordinary differential equatio(t3)—(55) is 2
defined in the phase space of the three variableZ,G). p2:pl[1 +@] (66)
Between the initial conditionfV(1),Z(1),G(1)] and the fi-
nal conditiong V() =0,Z()=0,G(x)], the trajectory meets

2
a surface of singularity where Eq&3)—«55) diverge. This __ P4 67
. . . A P2 , (67)
singularity surface is located where the denominator van- 1+f(y2)
ishes: 2
V- 1)>
z= Y= (60) y
C’ -1
1 + — U= f( ) ’ (68)
2G 1+ %

On the other hand, this singularity is compensated by the
vanishing of the numerator on the null surface: and
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TABLE I. Values of the parameters of the self-similar solutions of Euler’s equations for the fluid of hard
disks of massn=1 and diameter =1, versus the initial mass denisipg=mn.

Po @ V(1) Z(1) G(1) G() Kv Kz

0.0 0.80011 0.66667 0.44444 3.00000 4.55271 0.51173 0.46186
0.01 0.79984 0.65630 0.45114 2.90952 4.36333 0.50278 0.46970
0.05 0.79856 0.61672 0.47275 2.60905 3.74678 0.46849 0.49724
0.1 0.79634 0.57073 0.48999 2.32954 3.19073 0.42834 0.52456
0.2 0.78942 0.48741 0.49968 1.95088 2.46971 0.35515 0.56042
0.3 0.77975 0.41276 0.48478 1.70289 2.02502 0.28998 0.57309
0.4 0.76872 0.34492 0.45190 1.52654 1.72831 0.23230 0.56124
0.5 0.75778 0.28290 0.40574 1.39451 1.52073 0.18199 0.52451
0.6 0.74795 0.22617 0.35003 1.29227 1.37065 0.13887 0.46580
0.7 0.73976 0.17450 0.28811 1.21139 1.25937 0.10246 0.39067

i i 1 i -
aF shock expansions in powers af Y« For instance fop,=0.1, we

U1 = = Fshock= -t (69 find numerically thate=0.796 and
The density before the shock is here the initial density of the G(& =3.19- 0. 81 (76)
fluid at rest,p;=pg. After the shock, the density is given by 51’“ '
Eqg. (66) at £=1 so that
0.43 0.14
p2= pOG(l) = plG(l)a (70) V(g) = + e + ey (77)
. 3 3
where the equation
2 0.52 0. 06
G(l) =1+ 77_a2—: (71) Z(f) §2/a - §3/a T (78)
f(_PoG(l))
m for £— oo,

There remains to determine the consté@ntThe shock

has to be numerically solved by the Newton-Raphson
starts at the initial timé=0 when

method to determine the initial vali&1). Immediately after

the shock, the velocity is given by I shock= I piston= Ro- (79)
arshocvv(l) (72) Since the position of the shock is given by E46), we find
27t that
and the pressure by Ry = Atd. (80)
aré ook On the other hand, the fluid velocity at the piston must be
P2= Yt - )2 poG(1)Z(1). (73) equal to the speedc-of the piston. Since the fluid velocity is

known to be Eq(48), we get the other result that
Inserting in Eqs(67) and (68), we obtain the further initial

values u=- at—ROV(l) =-c, (81)
V(=1 "G’ (74 \which shows that the time of implosion is
Ro
G(1)-1 te=aV(1)—. (82)
Z(1)= IEE (75 c

Inserting this result in Eq:80), we obtain the constant as

E. Numerical construction of the self-similar solutions Ro { c

The exponentr and the self-similar solutions can then be - t_ =R aV(D)R,
obtained numerically for each initial densipg. The values
are given in Table I, where we observe thais less than
unity.

Figure 3 depicts the functiong(¢), Z(¢), and G(¢) for According to Eq.(58), the macrofields behave att.
several values op,. We observe that we have asymptotic near the center of the cavity as

]a C*RS . (83

F. Maximum temperature
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FIG. 3. Self-similar solutionsv(§), Z(¢), and G(¢) of Egs.
(53)—(55) for a fluid of hard disks of unit mass and diameter of
initial density pg=ng in a contracting cavity. These quantities are
dimensionless.

p = poG(), (84)

u= akyArtth, (85)
200G (0)K

p ~ Cypof(w)zAz/arz—Z/a’ (86)

for r— 0. Therefore, we obtain the temperature as

PHYSICAL REVIEW EO, 026306(2004)

q

with the constanA given by Eq.(83), whereupon the diver-
gence of the temperature field according to Euler’s equations
W(D)?*f(ma’ngG(=))

is
(2la)-2
B, oo
r
for r— 0, with f(y)=1+2yY(y).
However, this divergence is smoothed out on the scale of

the mean free path which is given in Enskog’s theory for a
hard-disk fluid by

mazKZ
2
T
— 0 G(o0
mPo ()

p

- A2/a/r2—2/a’
nf(y)

kgT

(87)

Kz

kgT=mc

£(n) (D=2), (89

4\2anY(rran)
with a density n taking a value in the interval
Ny<n<nyG(e) between the initial density before the shock
and the density after the shock. The densiig thus propor-
tional tony and we consider here the valne= nyG(«) which
has been reached at the moment of the implosion.

Finally, the maximum temperature at the center of the

cavity is given by
{ }(zm)—z

(90)

Kz
WD) ma’neG(«)]

Ro
€[NgG()]

kBTmax =m CZ

In D=2, we get
KZ
W(D)* [ ma’ngG(=)]
><{4\f'§an0G(oo)Y[ ma2nyG () JRoH 22,
(91

We notice that the exponentas well asv(1), G(«), andK
depend on the initial density, in nonpolytropic fluids.

The expressio®1) shows thati) the maximum tempera-
ture is independent of the initial temperaturg as long as
mc2>kgT,, (i) the maximum temperature is proportional to
the massn of the particles(iii ) the maximum temperature is
proportional to the square of the speedf the wall of the
contracting cavity(iv) the maximum temperature scales as

(21a)=2 \jith respect to the initial radiuR, of the contracting
cavity, and(v) in the dilute-gas limitng— 0, the maximum
temperature scales with the initial density as n>'*™
whereap=0.8 is the dilute-gas value of the exponent.

As shown in the Appendix, similar results hold =3
because Eq90) also applies to a system D=3 with the
corresponding mean free path.

If the fluid is a mixture of particles of different masses
{m}>_,, the Eulerian description predicts that the molar frac-
tions x;=n;/(=7_;n;) remain constant in time on a time scale
shorter than the time scale of diffusion. As a consequence,
the maximum temperature should be proportional to the av-
erage massn,, =2, Xom; instead of the mas® in Eq. (90),
wherex;y are the initial molar fractions.

kBTmax = mC2

026306-8
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FIG. 4. Profiles of velocity, temperature, and density at successive tifioes fluid at initial densitypg=0.1 and temperaturg,=1 in

a contracting cavity of wall velocitg=5, according to Euler’s equations which ignore dissipation. The units are set by taking hard disks of
unit mass and diameter atkg=1.

G. Macrofield profiles versus time

D-1 D-1
. . . gutudu+op =|i+2 | du+ +1 9
Euler’s equations allow us to determine the macrofields mp( WU+ UG U+ 6p) (5 D 77) r( T u) ( i
velocity, temperature, and density for a fluid initially at the 5
- —(9r7]><r9ru +

densitypy=0.1 in a contracting cavity of wall velocity=>5.
For this purpose, the self-similar solutiorig6)—<78) are
used. The result is depicted in Fig. 4. In the Eulerian descrip- (93)
tion, the velocity and temperature blow up to infinity at the

center of the cavity at the instant of the implosion. In con-

trast, the density saturates at a finite value. The shock front -1 1

propagates according to E@46) with the exponenta p(de+ ude) +Pp<¢9ru T U) = m&(rDﬂKﬁrT)
=0.796. The macrofields are discontinuous at the shock

D-1 2 D-1\2
R e

IV. DESCRIPTION BY THE NAVIER-STOKES (94)
EQUATIONS

u) + 20, no,u,

Euler's equations do not take into account the dissipativdor the mass density, the fluid velocityu, and the tempera-
effects which tend to smooth the front of the shock wave andure T. For a fluid of hard disks, the specific energyis
lead to a saturation of the temperature at implosion. In orderelated to the temperature by the equation of statél5),
to investigate these effects, we have solved the Naviemwhile the pressurg is given by the other equation of state
Stokes equations in a radial geometry. It is known that th&20). The shear and bulk viscositi¢s and () as well as the
Navier-Stokes equations are able to describe the profile of heat conductivity are given by Eqs(34)—36).
shock wave in the limit of a weak sho¢k5]. As we shall see We have integrated the Navier-Stokes equations for a con-
in the following, the Navier-Stokes equations allow us totracting cavity with a wall moving at speed The first pos-
obtain values for the maximum temperature which are irsible comparison is with the motion of the shock which can
excellent agreement with the molecular dynamics simulabe localized as the point of maximum pressure gradient. Fig-
tions. ure 5 shows the position of the imploding shock versus time

The radially symmetric Navier-Stokes equations are and we observe good agreement with the scafé#ty pre-

dicted by the similarity solution to the Euler equations. Here,

_ the fitted power isys=0.78 in excellent agreement with the
pu=0, (92 -

r predictiona=0.796.

ap + o (pu) +
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FIG. 5. Propagation of the shock wave in the radial coordinate FIG. 7. Central temperatur®/c? versus timect, both rescaled
versus time, according to the Navier-Stokes equatidoss, for a by the speed velocity of the circular wall of the contracting cavity
fluid of inital densityny=0.1 and temperatuig,=1. The wall of the  starting fromR,=180.1, according to the Navier-Stokes equations
circular cavity contracts at the speed5 from the initial radius  for a fluid of initial densityn,=0.1 and temperatur€,=1, and for
Ro=224. The implosion happens at the titae=19.5. The solid line  different speeds=0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The sound
is a fit with the exponentys=0.78. The units are set by taking hard velocity of the initial fluid iscey=1.66, which marks the transition
disks of unit mass and diameter akg=1. The small discontinui- between the subsonic and supersonic regimes. The units are the
ties are artifacts of the algorithm used to track the position of thesame as in Figs. 5 and 6.
shock, which is not well defined in the beginning and during reflec-

tion at the center. tion included in the Navier-Stokes description continues to

. 6 deoi h field . _heat up the fluid behind the shock due to the viscosities and
Figure 6 depicts the temperature macrofield versus img,e heat conductivity, although these dissipative effects are
and shows the steep increase of temperature at the center ak .-\ on into account in Euler’s equations.

the moment of t,he lmpI(_)5|on. However, contrary o the Pre-n Fig. 7, we have plotted the rescaled central temperature
diction of Euler's equations the temperature is not infinite; .2 arsus the rescaled time for cavities contracting at

but reaches a maximum, as predicted by our equaBon _ igterent speeds. We observe how the temperature increases
Comparing the Navier-Stokes results in Fig. 6 with the EU+5 a maximum in each case. As— . the rescaled curves
lerian pred|ct!on of Fig. @’ we observe' that the shock has tend to superpose as expected because we approach the limit
a nonzero width according to the Navier-Stokes equation§yhere the shock is well described by Euler's equations. In
Moreover, t_he temperature profiles at successive times do nWarticular, the superposition of the curves is evidence that the
superpose in the Navier-Stokes description although they d aximum temperature scales @sas predicted by Eq(90).

so in the Eulerian description. The reason is that the dissipewe also observe that for a subsonic spes®.5 the curve

differs from the other curves. Figure 8 confirms that the

160 . . . .
’ shock is sharper and sharpercisicreases because its width

140

120: —: &2—aft=5 40 T T T T T T

—_
<
<

temperature
=3
(=4

=

_ o—or=13 =
40 Jv—vrt=14 = _

: {le—er=15 5

20F J|le—at=16 E

0 40 80 120 160

FIG. 6. Time evolution of the temperature macrofield according
to the Navier-Stokes equations for a fluid of inital dengigr0.1
and temperaturdy=1 in a circular cavity contracting at speed
=5 from the initial radiusR;=180.1. The implosion happens at the
time t-=15.5. We observe that, thereafter, the shock wave propa- FIG. 8. Half-width of the shock wave versus the rescaled titne
gates outward and bounces back on the wall of the cavity whicHor different contraction speeds=0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
continues to contract. The units are set by taking hard disks of uniaccording to the Navier-Stokes equations with the same conditions
mass and diameter arg=1. and units as in Fig. 7.
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the velocity and density macrofields are already very well
described by Euler’'s equations. However, upon closer in-
spection, differences are noticeable. The molecular dynamics
simulations show that the shock wave has a width. Moreover,
the temperature at the center of the cavity at the instant of
implosiont. = 15.5 reaches a finite maximum value at about
T=150. Besides, the temperature continues to increase be-
hind the shock. This is evidenced by the upward shift of the
temperature profiles in Fig.(9), though it is not the case in
Fig. 4(b). All these features are due to the dissipation which
is not taken into account in the Eulerian description. The
160 - - - - comparison of the temperature profiles in Figb)9with

140 those of Fig. 6 given by the integration of the Navier-Stokes
120 equations shows the excellent agreement. This agreement is
100} an evidence that the three aforementioned features can be
explained by the Navier-Stokes equations and are therefore
the consequences of the dissipation due to the viscosities and

(a)

radial velocity
R e S 000~ VA LIt

(b)

AAALAAAAARA

i ettt et
R T T S 000 IV otd—

density

O g o g T o T T P g o o
[N N NI N TR R (R ]

o i
[ TTRRE :\OOO\]O\(JIJALA)[\)»—-

HH

(=)

the heat conductivity.

The propagation of the shock can be observed for each
macrofield in Fig. 9. Using the loci of maximum gradient of
each macrofield to define the position of the shock, we can
determine its trajectory in Fig. 10 where we observe the near

0.6 - - - - coincidence of the shock position using the different mac-
osk rofields. Figure 10 shows the remarkable agreement of the
04 power law predicted by the Eulerian self-similar solutions
’ 1 (46) with the molecular dynamics. This result confirms that
(c) '@ o3¢ ] the propagation of the shock wave is already remarkably
ozl ] well described by Euler’s equations, which capture the phe-
nomenon in a very good first approximation. However, dis-
01 ] sipative effects are present which requires the Navier-Stokes
2 % 5 55 eque_ltions to be de§cribed. _
r Figure 11a) depicts the central temperature versus time
for ten individual runs of the molecular dynamics, as well as
FIG. 9. Molecular dynamics simulations of a fluid ®  thejr average. After the implosion of the shock wave, the
=10 135 hard disks of unit mass and diameter in a circular CaVity(emperature increases to its maximum. Important fluctuations
contracting at speed=>5 from an initial radiusR,=180.1. Initially  gffect the value of the central temperature which can be de-
the fluid is at rest with initial densitpy=0.1 and temperatur, fined by averaging over different realizations from random
=1:(a) profiles of the radial velocity at successive timegrsus the initial conditions. Figure 1tb) shows the very good agree-
radial coordinate, (b) the same for the temperature macrofield, andment of the central temperature with the result of the inte-
(c) the same for the density macrofield. The macrofields are ob- .. ; .
; T ; ) . . gration of Navier-Stokes equations.
tained by averaging in concentric annuli of widiin=5 using the We have also simulated the time evolution using the En-
10N=101 350 particles of 10 runs. The units are set by taking hard . . . .
disks of unit mass and diameter akgk 1. skog DSMC method(i.e., d|r.(-:-ct.S|muIat|0n Montg Carlo
method based on Enskog kinetic equatid]). This sto-
L chastic method is in superb agreement with the molecular
decreases and tends to a vglue which is of the order of th&ynamics. Figure 12 shows the trajectory of the shock ob-
mean free path. At subsonic speed, we no longer have @jneq using the DSMC method, which scales with the expo-
shock but instead a broad front. nent apsuc="0.77 in agreement with the predicted power
law a=0.796. The agreement is also excellent with the tra-
V. MOLECULAR DYNAMICS SIMULATIONS jectpry ca}lculgted by using the Navigr'-Stokes.eqqations and
depicted in Fig. 5 for the same conditions as in Fig. 12.

The dynamics in a contracting cavity has first been simu- Finally, the maximum temperature as a function of the
lated by molecular dynamics simulations by an event-driverinitial radius R, is depicted in Fig. 13 for the different cal-
algorithm. Figure 9 depicts the velocity, temperature, ancculations with the Navier-Stokes equations, the Enskog
density macrofields versus time as calculated by averaginSMC method, and the molecular dynamitd4D). Our scal-
the microscopic quantities over concentric annuli, as well asng law (90) predicts a powew=(2/a)-2=0.51-0.56 for
over ten runs of the full dynamics from different initial con- «=0.796—0.780 depending on whether the density to con-
ditions of a fluid at rest, at initial density=0.1 and tempera- sider is the density=0.1 before the shock or the density
ture T=1. Comparing these results of molecular dynamics=0.3 at the implosion. We observe in Fig. 13 reasonable
with the Eulerian description in Fig. 4, we first of all notice agreement of this prediction with the results of different cal-
the remarkable similarity. In particular, the time evolution of culations. The power obtained by fits has the valyg,
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FIG. 11. Time evolution of the central temperature in a fluid of

_ FIG. 10. Propagation of the shock front in a fluid 6f  N_14 135 hard disks of unit mass and diameter in a circular cavity
=10 135 hard disks of unit mass and diameter in a circular Cav'tycontracting at speed=5 from an initial radiusRy=180.1. Initially

contracting at speed=5 from an initial radiusRy=180.1. Initially 0 fiyiq is at rest with initial density,=0.1 and temperatur&,

the fluid is a_t rest ‘_N_ith initial density_|0:0.1 an_d temperaturﬁo_ =1. The central temperature is calculated by averaging the kinetic
=1 The radial position of the f_ront IS determlneq by Fhe _rad|a| energies of the hard disks in a circle of radial coordinater<5.
coordinate of the steepest gradient of the macrofields in Fi@9. o) \olecular dynamics simulations of the central temperature for
Rad_lal positiorr of the shock frorlt Versus timeb) Same as na) ten individual rungdots and their averagéopen circles connected
but in the log-log plot of the radial positionversus the time. —t by a lin. (b) Comparison between the MD average valgagen

count_ed with_respgct to the collapse tim_e'n order to d_isplay the circleg with the result of the integration of the Navier-Stokes equa-
Eulerian §caI|'ng with exponent=0.796(lines). The units are the tions (solid line). The units are the same as in Figs. 5-10.
same as in Fig. 9.

the shock-wave implosion in agreement with the theoretical
=0.59-0.60 which is slightly higher than the prediction. A prediction of Sec. Ill F.

reason could be that the scaling law results from an assump-
tion on the value of the density which changes during the VI. ISOMERIZATION CHEMICAL REACTION

process. .A complete theory .ShOU|d be bas_ed on the The reaction we consider is an isomerization between two
asymptotic resolution of the Navier-Stokes equations aroungpeciesAAB in the solveniS and without heat exchange so

Eulerian ﬁelf-similarhs_oll(utir?ns.hGiven the Iimitatri]onhs of ﬂ:ﬁ that there is no feedback of the reaction on the hydrodynam-
present theory, we think that the agreement with the prediGig This reaction is thus passively driven by the hydrody-

tionis reasonaply good: T namics. The advantage is that the reaction acts as a probe of
The conclusion here is that the dissipative effects are veng, . yqrq4ynamics. Moreover, it allows us to understand the

well described already by the Navier-Stokes equations Whic%ﬁects of the coupling between the hydrodynamics and a

allow us to calculate the maximum temperature at implosior} : . ;
_ ) eaction essentially preserving the energy and the total num-
in good agreement with the MD and Enskog DSMC resultsé)er of particles yp g 9y

The theory based on the Eulerian self-similar solutions an The reaction is supposed to occur with probabilits: B
mean-free-path considerations provides a COMPrenensive | jt te center-of-mass energy is higher than an activation

scr:?eme fir #derst?ndllng éhe ”“me”‘?a' rlef'ults. f 2 bi energy, which means that the reactive cross section is con-
_Remark. The molecuiar dynamics simuiations ot-a binarygia  ahoye the thresholg},. The reaction scheme is
mixture show that the molar fractions of species of different

masses remain unchanged during the short time interval of S+S— S+, (95
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FIG. 12. Simulations with the Enskog DSMC method of the

propagation of the shock wave in a fluid of initial densiiy=0.1
and temperaturd,=1 in a circular cavity contracting at speed
=5 from an initial radiusRy=224 in the same conditions as in Fig.
5. The implosion happens at tinbe=19.3 and the trajectory of the
shock front scales with the exponedtsyc=0.77. The units are
the same as in Fig. 5.

A+S—A+S E<E,0{E>E,Oprob.(1-P)},

(96)

A+S—B+S E>E,Oprob.P, (97)
B+S—B+S E<E,O{E>E,Oprob.(1-P)},

(98)

B+S—A+S E>E,Oprob.P, (99

A+A— A+A E<E,0{E>E,Oprob.(1-2P)},

(100
A+A—A+B, E>E,Oprob.P, (101
A+A—B+A, E>E,Oprob.P, (102

B+B—B+B, E<E,O{E>E,Oprob.(1-2P)},

(103
B+B—A+B, E>E,Oprob.P, (104)
B+B—B+A, E>E,Oproh.P, (1095

A+B— A+B, E<E,O{E>E,Oprob.(1-2P)},

(106)
A+B—A+A, E>E,Oprob.P, (107
A+B—B+B, E>E,Oprob.P, (109

where[ stands for “or” and for “and.”
We introduce the concentration difference

PHYSICAL REVIEW E 70, 026306(2004)
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FIG. 13. Compilation of our numerical data for the maximum
temperature at the center of the cavity at the instant of implosion

versus the initial radiu®, of the cavity. Initially, the fluid of hard
disks is at rest with the densityy=0.1 and the temperatuiig,=1.

The speed of the wall of the contracting cavitycis5. The crosses

are the data from the molecular dynamics simulatigd®), the
stars from the Enskog DSMC method, the open circles from the
Navier-Stokes equations, and the diamonds from the Navier-Stokes
equations but with an average of the temperature macrofield over
0<r<5. The reason is that we compare with the MD and DSMC
data where the temperature is calculated by averaging the kinetic
energies of the particles in<Or <5. The solid line is a fit to the
Navier-Stokes data. The dashed line is a fit to the Navier-Stokes
data averaged over<Or <5. The power-law exponents of the MD
and DSMC data areip=0.59+£0.07 and/pgyc=0.52+0.20. The
units are the same as in Figs. 5-12.

m
c=—(na—np), (109
p
for which the equation of evolution is
dC+UudC= - 2k+(p,T)§]c, (110

with p=m(ng+na+ng). The reaction ratk, can be calcu-
lated using Enskog kinetic theoiffL3,14 for the above re-
action as

E kg T E
=8PaVY —a -EglkgT B f( _a):|,
k,=8 a(n){\/me + 4/ am erfc VkBT

(111

whereP is the reaction probabilitya the disk radiuskg, the
activation energy, and(n) is Enskog’s factor given here
above by Eq(22). The validity of the kinetic resulil11) has
been checked in the absence of hydrodynamics by molecular
dynamics simulations with an immobile wall of speedO.
Figure 14 shows good agreement with theory.

The reaction has been simulated in a contracting cavity, as
depicted in Fig. 1. The initial condition contains only solvent
S particles and reactam particles, so that the products are
the B particles. We observe that tlieeparticles are produced
behind the shock after heating by the shock. There is no
significant reaction within the shock itself. Figure(dbde-
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FIG. 14. Reaction raté, versus the activation enerdy, for T T e
different mass densities and reactant fractionsg=(na+ng)/(ng 0.1 4=

+na+ng). The dots and crosses are the results of the molecular
dynamics simulations while the lines are given by E.1) result-

4
ing from Enskog’s theory. The simulations are carried out in a fluid @ :t_

: . . ! . ) <7001 F 1 |=iz{0
of hard disks of unit mass and diameter in elastic and reactive =izl
collisions in a circular cavity of constant radiis=180.1. The tem- i 13
perature isT=1 and the reaction probabilitp=0.1. The units are =12
set by taking hard disks of unit mass and diameter gyvll. 0.001 / 1=zl

/

(b) .

picts the concentrationg of products as a function of time 0 100 150 200
calculated using Euler’s self-similar solutions. We already
see that the products accumulate behind the shock due to th
heating, but the rate is lower than it should be because the __
heating is underestimated by Euler’s equations. Figu(e)15
depicts the result with the Navier-Stokes equations coupled

to Eqg. (110) and a better agreement is obtained with the

molecular dynamics simulatiorisee Fig. 1Ec)]. Indeed, we .

observe that the increase of the concentratigbehind the <7 001} 1

shock wave is somewhat larger in the molecular dynamics iz
simulations and the Navier-Stokes calculations than accord- =B
ing to the Eulerian description. Here, we see the effects of 0.001f {|==izie
the heating that we have already qbserved for the tempera © f N ——i=1

ture in Figs. 6 and @) due to the viscosities and the heat 0 150 200

conductivity. We notice that, at the end of the contraction, the

temperature has become so high with respect to the activa-

tion energy that an equilibrium has been reached between the FIG. 15. Time evolution of the concentrati@g of productB

A andB particles so that the concentration of tBeparticles  particles in a fluid ofN=101 35 hard disks of unit mass and diam-

reaches its equilibrium Va|UEB:;11 for CR:%- eter in a circular cavity contracting at speed5 from an initial
radius Ry=180.1. Initially the fluid is at rest with initial density
no=0.1 and temperatur‘éo 1 and it contains solverg particles in

VIl. CONCLUSIONS the concentratlorms—§ and reactanf particles in the initial con-

In the present paper, we have studied the formation of §emrat'(;rE‘CA01 2 OThZ ?;OdUCBtpar"Cles "’t‘)rle abgelm T:;e %Ct'tvat'on

shock wave and its implosion in a circular cavity contracting®"€"%” ! and the reaction probabilig=0.1.(a) Prediction
. . f EqQ. (1100 coupled to the Eulerian self-similar solutions

at a supersonic speed. As a vehicle of our study, we hav . . . .
considered a two-dimensional system of hard disks becau e6H78)' We notice the steep mc.rease@fdue to the discontinu-
it be efficiently simulated b | lar d ) . _ous shock front(b) Results of the integration of E¢110) coupled
It can be 3 _|C|en ?’ S”,n# a e_ h y gn?meflig‘{ yngrlmcslusmgto the Navier-Stokes equations. Here, we notice that the increase of
an event-driven agorlt. m W,'t abol= paruc es.(In Cg iS not so steep as i@ because of the effect of the width of the
D=3, a comparable simulation would requike=10° par-

- O ) shock front. Moreovergg increases slightly faster behind the shock
ticles, which is very much more time consuminghe ad-  than in(a) because of the heating due to the viscosities and heat

vantage to work irD=2 is thus a gain in CPU time albeit the ¢onductivity. (c) Results of the molecular dynamics simulations.
properties of th& =2 andD =3 systems are very similar. For The macrofieldy is obtained by averaging in concentric annuli of
instance, the scaling exponent of the Eulerian self-similagyidth Ar=5 over the 181=101 350 hard disks in 10 runs from
solutions remain in the interval<Qa<<1 in bothD=2 and  random initial conditions. We notice the nice agreement wiith
D=3. Therefore, the results iD=2 can be extrapolated to The units are set by taking hard disks of unit mass and diameter and
D=3. We notice that long-time tail effects on the transportkz=1
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coefficients are important for long-time relaxations and carthe square of the wall speed In the supersonic regime, the
thus be neglected in the description of a finite-time blowupmaximum temperature can be analytically derived from the
phenomenon such as the shock-wave implosion. Eulerian self-similar solutions, which describe in detail how
The main purpose of the present paper has been to invethie energy is focused to the center of the contracting cavity.
tigate the maximum temperature reached at the implosion ofhe dependence of the maximum temperature on the wall
the shock wave in the center of the contracting cavity. Thespeed and on the mass of the particles can be predicted by a
Eulerian description predicts a singularity in the temperaturesimple dimensional analysis. However, the dependence on
macrofield resulting in an infinite maximum temperature atthe initial radiusR, of the contracting cavity is very non-
the implosion, which is unphysical. In reality, the fact that trivial because it involves the exponedatof the self-similar
the fluid is composed of particles and is, thus, affected bysolutions.
molecular fluctuations leads to dissipative effects, such as the The implosion of the shock wave is a very fast process on
shear and bulk viscosities as well as the heat conductivitya time scale over which the dissipative effects have no time
which precludes such a singularity in the temperature. It ido manifest themselves on spatial scales larger than the mean
for a similar reason that the shock wave has a smooth frorfree path. A consequence is that the large gradients of tem-
with a width of the order of the mean free path, instead ofperature in the process have negligible effects on a mixture
presenting a discontinuity as described by the nondissipativef particles of different masses on the time scale of the im-
Euler equations. Actually, the results of the integration of theplosion. The ratio of concentrations of species of different
Navier-Stokes equations, which incorporate the effects of thenasses thus remains essentially constant, as predicted by the
viscosities and heat conductivity, are in excellent agreementondissipative Eulerian description and confirmed by mo-
with the molecular dynamics simulations as well as the En{ecular dynamics simulations.
skog DSMC results. This agreement shows that the dissipa- Besides, we have also studied the effects of the shock
tion due to the shear and bulk viscosities and the heat corwave on a simple reaction which is passively driven by the
ductivity is responsible foi) the nonvanishing width of the hydrodynamics. It is an isoenergetic isomerizatida=B
shock front, (i) the heating proceeding behind the shockwith a given activation energy. This reaction is simple
front, and(iii) the finite maximum value of the central tem- enough that its reaction rate can be analytically derived from
perature at the instant of the shock-wave implosion. Enskog’s kinetic theory for a dense fluid. This reaction rate is
Nevertheless, these dissipative effects manifest themvery well verified by molecular dynamics simulations in a
selves on top of the profiles of the macrofields predicted byfluid at rest. In the contracting cavity, the reaction is ob-
the self-similar solutions of Euler’s equations, which are thusserved to be induced ky) the heating due to the passage of
smoothed out by the dissipative effects on the spatial scale dhe shock wave which provides the main contribution to the
the mean free path. The self-similar solutions obey a scalingroductB, and(ii) the heating by the viscosities and the heat
law with an exponentr depending on the system dimension, conductivity behind the shock which contribute to a small
on the equations of state of the fluid, and in the case of amount. The concentration profiles of the prodB@re very
nonpolytropic fluid such as the hard-disk fluid, on the densitywell described by the Navier-Stokes equations coupled to the
of the fluid before the shock front. This scaling exponentreaction equation for the concentration difference between
given by the theory of the self-similar solutions is remark-the reactive specie& andB.
ably well confirmed by the MD and Enskog DSMC simula-  Recently, it has been noted that the applicability of the
tions, as well as by the Navier-Stokes calculations. The ineoupled Navier-Stokes equation®2)—(94) and reaction
crease of temperature at the shock-wave implosion camquation(110) is limited to systems in which the time scale
therefore be very well described by the Eulerian self-similarof the chemical reactions is neither too slow nor too large
solutions on spatial scales larger than the mean free pathelative to the hydrodynamic time scalgls8]. The hydrody-
However, we have to suppose that the infinite singularity ofnamic time scales are those related to sound propogation and
the temperature predicted by Euler’s equations is smoothet dissipation. Near a shock, the hydrodynamic gradients be-
out on a dissipative length scale of the order of the mean freeome of order one over a distance of the mean free path so
path. These considerations have led us to derive an analyttbat the hydrodynamic time scales are comparable to the
expression for the maximum temperature in Sec. Il F formean free time. On the other hand, when the temperature is
D=2 and in the Appendix fob=3. This analytic expression comparable to, or larger than, the energy barrier for chemical
for the maximum temperature provides us with a comprehenreactions, the time scale of the chemical reactions becomes
sive scheme for understanding the results of the MD andhe mean free time multiplied by the reaction probability and
Enskog DSMC simulations, as well as of the Navier-Stokeghe latter is finite if the concentrations are not near their
calculations. A good agreement is found for the dependencequilibrium values. The conclusion is that if the concentra-
of the maximum temperature on the mass of the particles antibns are not near their equilibrium values and the tempera-
the speed of the wall of the contracting cavity, as well as orture is not small compared to the reaction energy barrier,
its initial radius in the supersonic regime. then(a) near a shock, the chemical time scale is likely to be
In the subsonic regime, a wave also propagates from theomparable to the hydrodynamic time scales, @mndaway
moving wall to the center but its width is much broader thanfrom a shock, the chemical time scales are likely to be much
in the supersonic regime so that it cannot be considered asshorter than the hydrodynamic time scales. C@gecorre-
shock wave. As the wall speeadincreases the width of the sponds to what are termed in R¢18] as “slow” or “mod-
wave front decreases and tends to a value of the order of therate” reactions, for which the phenomenological descrip-
mean free path, while the maximum temperature increases #&i®&n, or some small generalization thereof, is applicable.
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Case(b) corresponds to “fast” reactions for which the phe- 1+y+y? ) 47

nomenological description is likely to be invalid. However, (y) = NERSvER with y = 3 e (D=3). (A2)
for the system studied in the present paper, d@gemay

never occur as the chemical reaction exhausts itself durinfhe Enskog factor is obtained as

the period of shock focusing, when the system is still de-

scribed by caséa), thus explaining the good agreement be- Y(y) = fly) -1 (A3)
tween theory and simulation. Y= 4y
In conclusion, the main features of an imploding shock
wave can be described in terms of the Eulerian self-similafhe mean free path is thus estimated to be
solutions considering the dissipative effects of the viscosities
and the heat conductivity on the length scale of the mean free o(n) = 1 (D=3). (A4)

path. These considerations provide us with an analytic ex-
pression for the maximum temperature reached at the implo-
sion.

4\§7ra2nY< ?Tra?‘n)

The temperature profile at the instant of the implosion of
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APPENDIX: MAXIMUM TEMPERATURE - A (2la)-2
IN THREE DIMENSIONS X 4\27-ra2n0G(00)Y(?a3noG(oc))Ro ,
In a three-dimensional3D) hard-sphere fluid, the equa- (A5)
tion of state of the scaled-particle theory is given[tg]
_ with the 3D values of the quantities, V(1), G(«), andKj.
p(T.n) = nigTf(y), (AD) Therefore, the maximum temperature has properties similar
where as inD=2.
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