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The stability of idealized computer shear flow at long wavelengths is studied in detail. A hydrodynamic
analysis at the level of the Navier-Stokes equation for small shear rates is given to identify the origin and
universality of an instability at any finite shear rate for sufficiently long wavelength perturbations. The analysis
is extended to larger shear rates using a low density model kinetic equation. Direct Monte Carlo simulation of
this equation is compared with a hydrodynamic description including non-Newtonian rheological effects. The
hydrodynamic description of the instability is in good agreement with the direct Monte Carlo simulation for
t<50ty, wheret, is the mean free time. Longer time simulations up to 290ffe used to identify the
asymptotic state as a spatially nonuniform quasistationary state. Finally, preliminary results from molecular
dynamics simulation showing the instability are presented and discy&Hib63-651X%98)06101-7

PACS numbe(s): 47.20.Ft, 47.15.Fe, 05.20.Dd, 05.6Qv

[. INTRODUCTION tive here is to show that uniform shear flow also is unstable
at sufficiently long wavelengths, for any finite value of the
Uniform shear flow is a prototype nonequilibrium state shear rat¢9,10]. This instability has not been seen in earlier
admitting detailed study at both the macroscopic and microeomputer simulations due to the small system sizes consid-
scopic levels via theory and computer simulation. This is arered, with consequent restrictions to shorter wavelengths.
idealized version of shear flow between parallel plates inThe instability is identified theoretically from a hydrody-
which the velocity profile is exactly linear in a coordinate namic analysis both near and far from equilibrium. This
orthogonal to the flow directiotas in Couette flovand with  analysis is confirmed quantitatively at short times by Monte
a spatially uniform temperature and press(irecontrast to  Carlo simulations of an associated low density kinetic equa-
Couette flow. There is a single scalar control parameter, thetion. The asymptotic evolution of this instability is also ex-
shear ratea, which measures how far the system is drivenplored via Monte Carlo simulation showing transition to a
from equilibrium. This flow is generated by periodic bound- nonsteady, spatially inhomogeneous state superimposed
ary conditions in the local Lagrangian frarfleees-Edwards upon the uniform shear flow.
boundary conditionsthat can be implemented at the levels = The boundary conditions generate viscous heating so that
of hydrodynamics, kinetic theory, and Newtonian mechanicainiform shear flow is not stationary. This viscous heating
[1-3]. Although these boundary conditions are nonlocal andcan be controlled by the introduction of a nonconservative
therefore not reproducible in real experiments, they are ideexternal force that acts as a uniform thermostat. The simplest
ally suited for computer simulation of this special nonequi-choice is a Stokes law drag force on each particle propor-
librium state and for more penetrating theoretical analysis. Irtional to its velocity relative to the local macroscopic flow.
this way, a quantitative study of rheological properties usu-The proportionality “constant” is then adjusted to compen-
ally associated with complex molecular systems has beesate for the heating. There are several possibilities in the
performed for simple atomic fluidgt]. The most complete detailed implementation of the thermostat, leading to the
studies have been via molecular dynamics simulation ofame properties for the stationary state but different hydro-
Newtonian dynamics at high densities and, more recently, bgynamics for small perturbations from that state. The theory
Monte Carlo simulation of the Boltzmann equation at lowand Monte Carlo simulations are carried out for both global
densities[5,6]. Molecular dynamics simulations have re- and local thermostats. A characterization of the class of ther-
vealed a transition from fluid symmetry to an ordered state amostats and qualitative differences in their effects is given in
sufficiently high shear ratdg], which has been attributed to the Appendix. The thermostats compensate for all viscous
a short wavelength hydrodynamic instabili]. The objec- heating in the reference state and differ only in the extent to
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which they suppress viscous heating due to perturbationsass, energy, and momentum densities, together with ap-

from that state. In all cases the associated linear hydrodyproximate constitutive equations for the associated fluxes.

namics is unstable. The role of the thermostat is studied ifror the analysis here we use the densify,t), temperature,

the Appendix, where it is shown that the qualitative featuresr(r,t), and flow velocity,U(r,t), as dependent variables

of the instability are not sensitive to the choice of thermostatrather than the density, energy density, and momentum. The
In the next section, the usual Navier-Stokes hydrody-general form of these conservation lawg 12]

namic equations are considered. These equations are re-

stricted to small gradients of the hydrodynamic fields relative Din+nV-U=0, (2.9)

to equilibrium, and consequently the shear rate must be small _ _

in this analysis. Otherwise, the density and interatomic force PiT T (y=1)a "V-U+(mnG)"*(V-q+Pj;0;U;—w)

law can be considered arbitrary within the fluid phase. The — _ 2.2
stationary solution for uniform shear flow is identified, and ’ '
the linear hydrodynamic equations for small perturbations of DU +p tap+p~ta,P;; =0, (2.3

this solution are studied. The five hydrodynamic modes are
determined in detail for the special case of spatial perturbawvhereD,=¢,+U-V is the material derivative. The param-
tions orthogonal to the flow. A critical wave vectég(a), is  eters occurring in these equations are the mass density,
determined such that for wave vectdrsk (a) the pertur-  =mn, the specific heat at constant volun@,, the pressure
bations grow as a function of time. The critical wave vectorp, the ratio of specific heats at constant pressure and volume,
vanishes as the shear rategoes to zero, but for any finite y=C,/C,, and the coefficient of expansion,
value of the shear rate there are sufficiently small wave vec;, — _ n_l(an/[ﬂ')p_ These parameters are the same func-
tors (long wavelengths such that the perturbation is un- tions of the local density and temperature as in equilibrium.
stable. _ o _ Finally, the irreversible heat and momentum fluxes are de-
These hydrodynam|c_ predictions are tested by comparisOfoted byq and P;; , respectively, anav=w(n,T) is the rate
to Monte Carlo simulations at the more fundamental kineticat which work is done by the external force representing the
theory level. A model kinetic equation has been analyzed fofhermostat. Its detailed form will not be required in this sec-
states near uniform shear flow, without restriction on the;gp.
shear rat¢10]. The hydrodynamic equations for small devia-  The apove equations are incomplete until constitutive
tions from uniform shear flow determine the crmcall wave gquations for the fluxes are specified in terms of the hydro-
vector,kc(a), for values of the shear ratebeyond the limi-  gynamic fields. However, the special solution of uniform
tations of the Navier-Stokes equations where efficient Montghear flow exists independent of this choice. It is defined by
Carlo simulations are possible. The theoretical prediction of, spatially constant temperature, density, heat flux, and mo-
the growth of initial perturbations is compared with a direct entum flux, and a flow velocity whose only nonvanishing
Monte Carlo simulation of a solution to the kinetic equatio”-component id) ,=ay. The shear rata provides the single
The results confirm both the hydrodynamic analysis and th@ontrol parameter measuring the deviation from equilibrium.
prediction of an instability for times up to abouttgdwhere  The poundary conditions are simple periodic conditions in
ty is the mean free time, after which the initial growth hasine |ocal Lagrangian coordinate franté=r—Ug(r)t. Sub-
exceeded the limitations of the linear stability analysis. Thegtittion of these assumptions foe=ng, T=T,, andU= U

simulation results are continued up to 260@ explore the jntg the above conservation laws shows tt@at) and (2.3)
ultimate stabilization by nonlinear effects. The asymptoticyre satisfied, while Eq2.2) reduces to

state for the hydrodynamic fields appears to be a system size

dependent standing wave with a period of about5Fur- HhTs= —(mnSCU'S)‘l[aPSYXy—w(nS,TS)]. (2.9

ther details and discussion are given in Sec. Ill. _ ) N
The results of the theory and simulations are summarizedhis expresses the temperature evolution as a competition

and discussed in Sec. IV. Some preliminary attempts to se@etween the viscous heating effee Ps ,, and the cooling

the instability at high densities using molecular dynamics fody the thermostat-w(ns,Ts). A steady state is obtained by

the hard sphere fluid are discussed. The system dimension ff0osing the thermostat to cancel the viscous heating,

the direction of the spatial perturbation is increased by an

order of magnitude relative to previous simulations. A long aPsxy=W(Ns, Ts). (2.9

wavelength perturbation is found to grow on a very longrhe yarious thermostats described in the Appendix all satisfy

simulation time, with no indication of approach to the steadyEq_ (2.5) but differ for states away from the steady state.

uniform shear flow. A quantitative comparison with theory at  ‘Next consider the equations for small deviations of the

the required larger densities and shear rates is now possiblg,qrodynamic variables from the uniform shear flow state,

using a recently developed kinetic model for the hard sphergaisining only terms linear in these deviations. To proceed it

Enskog equation for applicatiofL1], although the details g necessary to specify the constitutive equations for the heat

have not been worked out at this point. and momentum fluxes. In this section, attention is limited to

small spatial gradients, including the shear rate, so that Fou-
Il NAVIER-STOKES ANALYSIS rier's law and Newton’s viscosity law apply,

On sufficiently large space and time scales the dynamics q=—«VT, (2.6
of a fluid is well described by hydrodynamic equations ob-
tained from the exact conservation laws for the average Pij=—n(3;U;+d,U;— z 5;;V-U)—7n'6;V-U. (2.7
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Herex(n,T) is the thermal conductivityp(n, T) is the shear W= —a?(7s,on+ 75 1T). (2.149
viscosity, andz'(n,T) is the bulk viscosity. It follows im-
mediately that This does not imply a constant local temperature, however,
except for spatially homogeneous deviations from uniform
0s=0, Psjj=—7sa(dixJjy+ iy bjx), (28 shear flow, although it does lead to a constant average tem-

perature or kinetic energy for the whole system.

These differential equations have constant coefficients,
which suggests an equivalent algebraic form using Fourier
6Pjj=—1s(d;6Uj+9;6U;— 5 6;V-6U)— 7.6,V -oU and Laplace transformation. Consider first the Fourier trans-

form. The boundary conditions are periodic in the local La-
~a(ixSjy+ Sy 0jx) (15,000 + 75,70T). (210 grangian frame given by =r;—Ug;(r)t=A;;(t)r;, where
An abbreviated notation has been introduced where the sub\ij(t)=&jj —adixSjyt, so it is appropriate to define the
scripts on a quantity indicates it is evaluatedrat Ts. Also,  transform with respect to the variahté,
ps,nE&p(nsst)/&ns: ps,TEap(ns:Ts)/ﬁTsa 7s,n
=dn(ng,Tg)/dng, mps1=dn(ng,Tg)/dTg, etc. With these
results, the closed set of linear hydrodynamic equations for

8q=— xSV oT, (2.9

5§a(k,t)=f dr'eik'f’aya(r,t)=f dre’k O sy (r,1),

perturbations of uniform shear flow at small shear rates are (2.19
iven b
g y where 8y, (r,t) denotes the set of perturbations, considered
(0i+Ug-V)on+ngV-6U=0, (2.11)  as a functiorr’ in the first equality. The periodic boundary
conditions requirds;=2n;7/L;, wheren; are integers ant;
(0+Ug- V) ST+ (ys— 1) ag V- SU+(mnC, o) * are the linear dimensions of the system. However, since the

) time derivative in the hydrodynamic equations is taken at
X[ = xsV=6T—2n5a(dx6Uy+ dy6U,) ] constantr, the representation following the second equality
—(mnC. ) a2 Sn+ ST)+ow], (2.1 is useful withk;(t)=k;A;i(t). The Fourier transformed hy-
(MNCy.9) T (7 7570T) 1 (212 drodynamic equations are
(9y+Ug- V) 8U;+ 828U+ ps 1(Ps ndiON+ Ps 16, 6T) - -
b Ty s e s T 285 o+ (A(2) — k(1) B(a) + k2(1)D) 58y =0.
+pg 19,0P;;=0. (2.13 (2.1

In this section we choose a local thermostat for whighin ~ The three matriceé\(a), B(a), andD are
the temperature equation compensates for the excess viscous

heating due to perturbations of the temperature and density, Anp=2a0,36p4, (2.17
|
0 0 neky neky nek,
0 0 cik,—2anscok, ciky—2anck, cik,
Baﬁ(a) =| ps 1( Rxps,n_ Rya77s,n) Ps_l(kxps,T_ Rya77s,T) 0 0 0 )
Ps 1( Ryps,n_ R><a 7ls,n) Ps_l(kyps,T_ R><a 775,T) 0 0 0
Ps leps,n Ps l,kzps,T 0 0 0
(2.18
0 0 0 0 0
0 psCokg 0 0 0
D, p= P;l 0 0 O-SR)2(+ s UstRy USRXRZ , (2.19
0 0 USRyRX USR§+ s UsRsz
0 0 USRZRX UstRy O-SR§+ s

wherek=Kk(t) is the unit vector along(t), c,=(ys—1)as*, c,=(mnC, o) %, andos=37+ 7.
To simplify the analysis attention is restricted here and below to spatial perturbations only along the velocity gradient
direction, i.e.,k=k§/. In this case the linear hydrodynamic equations have time-independent coefficientqt) =k],

30y o+ Fap(k,2)8y5=0, F.uk,a)=(A(a)—ikB(a)+k?D),z (2.20

and the matrice8(a) andD simplify to
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0 0 0 ng 0
0 0 —2anpsc, c; O
Baﬁ(a)z _Pglans,n _Pglans,T 0 0 , (2.21)
Ps_lps,n ps_lsz 0 0 0
0 0 0 0 O
0 O 0 0 0
0 Cykg 0 0 0
Da=| O O ps'ms 0 0 2.22
0 0 0  p'(5mstny) O
0 0 0 0 ps 175
Equation(2.20 can be solved by Laplace transformation,
ai/a(k,z):f dte 128y ,(k,t), (2.23
0
with the result
8Ya(k,2) =[21+F(K,2)1,55Y (K, t=0). (2.24

The eigenvalues (" (k,a) of the matrixF (k,a) define the five simple hydrodynamic poleszat — o'V (k,a). The resulting

five exponentials in time represent the hydrodynamic modes for relaxation of the perturbations around uniform shear flow. At
a=0 (perturbations of equilibriumthey are the two sound modes, a heat mode, and a twofold degenerate shear mode. For
finite shear rate, the modes are more complicated and have qualitative differences. To illustrate, consider first tlke-c@se of

at fixed, finitea,

b, k?
— 1 (1+iv3)by(a)k?®+ % (1—iv3)bz(a)k¥3+b,k?
oV(ka)—| —1(1-iv3)bya)k¥3+ L (1+iv3)bs(a)k*3+bk? |- (2.25
b,(a)k¥3+bz(a)k*3+b,k?
( 775/ps) k?
|
The coefficients in these expressions are real, care must be used in representifig, (k,t) as an expansion
b, — _ / in the hydrodynamic modes with constant coefficients, since
1= (75,7Psn~ 7s.nPs1)/MPs 1, at small wave vectors there is a crossover to a mode expan-
sion whose coefficients have algebraic time dependence.
by(a)=(2a? 1p%C, 9™ i :
2 NsPs,T/PsCus) ™ The two propagating modes in E(R.25 are unstable,
5 . since b,(a)>0. The above Navier-Stokes analysis applies
ba(a) =[2a"nsns 1(psCy,s) ™+ NsPsn for small but finite shear rate, and smialilong wavelength
_ 1 The expansion irk verifies that the asymptotic long wave-
+H(vs— 1 ag s 1li3psha(a), length modes are always unstable. At larger valuek tife
L o modes are again stable, as follows from an exact evaluation
by=3[—b1+ks(psCp.8) " +ps (275t 09)]. of the eigenvalues. There is a critical wave vectq(a),

(2.26 such that folk>k;(a) the modes are stable whereas they are

e 5 unstable otherwise. These qualitative results apply without
There are two diffusive modes; k®, but the other modes are regtriction to the atomic force law, density, or temperature.

nonanalytic abouk=0 and represent more complex spatial Figure 1 shows.(a) as a function ofa for the special case
dependence. This behavior can be traced to the fact that thg narg spheres at three densitie$,=no3=0.0, 0.2, and
matrix A(a) —ikB(a) is not normal and cannot be diagonal- 0.4 (k anda measured in units of the inverse mean free path
ized. Thus, at fixe@d# 0 there is a crossover in the transfor- gnd mean free time for the hard sphere Boltzmann equation
mation ofF ,5(k,a) from a normal diagonal form to a Jordan The thermodynamic properties are calculated using the
form at smallk. This is reflected in the eigenvalues if they Percus-Yevick approximation, while the transport coeffi-
are expanded ik at fixeda, as above. For similar reasons, cients are calculated from the Enskog kinetic theory.
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former is the same for all thermostats and is fixed by the
reference state. The latter can be chosen within some physi-
cal constraints and the effects of different choices are dis-
cussed in the Appendix. One extreme is E2.14), where
changes in the thermostat due to perturbations are adjusted to
cancel all viscous heating due to local density and tempera-
ture perturbations. An opposite extreme is one for which
there is no change in the thermostat, allowing maximum ef-
fects of the perturbations on viscous heating. The linear hy-
drodynamic equations for this case are described briefly in
the Appendix and again are found to be unstable. Figure 9
for the critical line of stability is qualitatively the same as
Fig. 1, although with some quantitative differences. As de-
scribed in the Appendix, there are some qualitative changes
in the nature of the modes as well.

Ill. MONTE CARLO SIMULATION

The hydrodynamic description can be derived from a
(solid curve, n* =0.2 (dashed curve andn* =0.4 (dashed-dotted More fundamental level of kinetic theory. In principle, this
curve with the local thermostat2.14) or, equivalently,(A3). The  also allows derivation of hydrodynamic equations without
wave numbek and the shear rata are measured in units of the the restriction of the Navier-Stokes approximation to small
inverse mean free path and mean free time, respectively, for thehear rates. A model kinetic theory for the practical calcula-
hard sphere Boltzmann equation. The regions akipetow) the  tion of such generalized hydrodynamic equations is given in
lines are stabléunstablg. Ref.[10]. The resulting equations are limited to long wave-
lengths, as in the Navier-Stokes case, but the reference state
of uniform shear flow can have a large shear rate. An analy-
and Az,, and is therefore present at order The density sis of the hydrodynamic modes shows that there is a critical
perturbation is constant to this order and we chafise 0 to  wave vector similar to that of Fig. 1. It is possible to test this
simplify the discussion. The relevant variables are then théydrodynamic description by a direct simulation of the more
temperature perturbatiodT, the longitudinal velocity per- fundamental solution to the kinetic equation. For practical
turbation 6U,, and the transverse velocity perturbationreasons the simulation is more efficient at larger wave vec-
8U,, which to this order obey the equations tors and shear rates than can be justified by Navier-Stokes
hydrodynamics, and this is the primary reason for consider-
ing the more complex generalized hydrodynamics.

FIG. 1. Critical lines for stability for hard spheres @t =0.0

The instability is due to three matrix elemenBs,, B,s,

ST+ (ys—Dag '9,0U,—2anypC, o) ~13,0U,=0,

(2.27) The kinetic equation is a single relaxation time
Bhatnagar-Gross-KroolBGK) equation[13] given by
9;0U+adU,— pg tans 1dyST=0,
J
gy —1 pext
f7t5Uy+P;lps,T07y5T=0- (2.28 g +v-V,+V,m = Ff(r,v,t)
The first equation has a coupling to the transverse velocity =—v[f(r,v,t)=f(r,v,t)]. 3.1

field due to the reference shear flow; the second equation ) )

provides a feedback to the temperature equation through tHdereF®is the external force representing the thermostat,
same shear flow. These couplings alone would lead simply tt§ the local equilibrium distribution, andis an average col-

a renormalization of the sound velocity. However, the shealiSion rate. The exact stationary solution for uniform shear
flow also couples the transverse field to the longitudinal fieldlow in the presence of a thermostat has been studied in
for an additional feedback mechanism to the temperaturéetail[14]. A variant of the Chapman-Enskog method can be
equation through the pressure gradient. This second mechygsed to study nor_mal solutions for s_,tates near unlfo_rm shear
nism is responsible for the instability. For very long wave-flow, and to obtain the corresponding hydrodynamic equa-

lengths the above equations can be simplified to give tions for small perturbations relative to this state. The com-
plete details of this solution and the hydrodynamic modes as
(2.29

a function of the shear rate can be found10]. To solve the
kinetic equation(3.1) beyond the small-perturbation regime
which exhibits the unstable modes of Eg.25. we have used an adaptation of the Bird direct simulation
It is natural to inquire to what extent the instability is due method[15], originally devised to solve the Boltzmann equa-
to the presence of a thermostat and the ch¢&#4. The tion. Our Monte Carlo technique, first applied in REF], is
thermostat is essential for the existence of a stationary refecomposed of two parts at each discrete time step: free
ence state about which the linearization occurs. The form o$treaming and collision. The volume of the system is divided
the linear hydrodynamic equations depends on both the themto cells of dimension smaller than the mean free path, and
mostat evaluated at the reference state and possible perturbdparticles are introduced &t 0 with positions and veloci-
tions of the thermostat for deviations from that state. Theies sampled statistically from a specified initial distribution

d; 8T~ (2a%ngps 1/p5C, 595 5T,
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function. The distribution of particles is calculated @t
=At, with At much smaller than the mean free time, as _ 3l 4
follows. First the positions and velocities of the particles are 8, '
displaced by{Ar,=v,At, Av,=m'F;“At}. Next the ve-

locity of each particle u is replaced with probability
v(n,,T,)At by a random velocity sampled from the local
equilibrium distribution,f ({n,,T,,U,};v). Heren,, T,

andU,, are the density, temperature, and flow velocity in the

cell containing particleu. In this collision stage, strict con-
servation of momentum and energy may be violated due tc
statistical fluctuations. To compensate for this artificial ef-

fect, the velocities of the particles in each cell are conve- _  osf 3
niently displaced and rescaled. The whole process is ther 3% :
repeated for each subsequent time step. In this way, the on 0.4 1

particle distribution functionf(r,v,t) (coarse grained over
the cellg is determined, from which the hydrodynamic fields
can be computed directly as averages.

In our simulations we have considered a system of size
L=2mx/k, with k=0.1(vote) "%, along they direction at a
shear ratea=0.5tgl. Herety=1/v(ny) is the mean free time
with ven (Maxwell moleculesandv o= (2kgTs/m)*2is the
thermal velocity. In the remainder of this section, we take
to=1,v9=1, Ts=1, andn,=1. Since we are interested in e —
solutions to Eq.(3.1) with gradients along thg direction 0 20 40 60 80 100
only, the system is split into parallel layers of widi, so t
that only they coordinates of the particles need to be stored.
Lees-Edwards boundary conditions are used to drive the
shear flow[1]. These are simple periodic boundary condi-
tions on both the position and velocity variables in the local
Lagrangian frame ay= *=L/2. Both local and global ther-
mostats have been studied. The local thermostat is the sa
as that of Sec. Il except that the pressure tensor is no longer

limited to its Navier-Stokes form. In addition, two global -
thermostats are considered for more efficient implementatioﬁant test of the validity of the Monte Ca}rlo method. The
ubsequent differences between simulation and theory are

of the simulation. These are described in the Appendix. Thé S S
analysis there and the results of the simulation show that th ue to t_he fact that the latter is I|m|_ted to sm_all deviations
rom uniform shear flow. For longer times we find both large

instability is not sensitive to the choice of thermostat. Con- . o P
sequently, only the results using the global thermostats arEmplltudes fordy, and large deviations of the distribution

presented here. Starting from a distribution corresponding t unction from that of the unperturbed state.
uniform shear flow{6], the initial condition has been pre- To investigate the asympotic state of the system, we have

pared by displacing and rescaling velocities so that performeg the simulgtions for much longer times. Figure 3
shows 6U,(t) and T(t)=T(—L/4t) for time up tot

—_ s ; =2000. Both the velocity and the temperature oscillate in
Uy (¥:0)= = 8Uy,(O)sinky, time and are modulated by a slowly varying amplitude rela-
tive to their asymptotic average values. The thermostat force
used in the simulations of Fig. 3 is the same spatially con-
—~ ~ stant force as for the reference state, so that it does not con-
with 6U(0)=0.1 andéU,(0)=—0.03. The technical pa- tro| the temperature, either local or globally, in the perturbed
rameters of the simulations aké= 628 000 particles, a time state. This allows heating even by homogeneous perturba_
stepAt=0.02, and a cell widtl\L=0.05. The data have tjons of the reference state. Thus as the spatial perturbations
been averaged over 10 different realizations in the simulagpproach uniformity they approach a time dependent homo-
tions of Figs. 2, 4, 6, and 7, and over 2 realizations in thosgeneous state, and this is why the temperature in Fig. 3 has
of Figs. 3 and 5. the oscillatory modulations at long timéas can be predicted

First we consider the short time dependence at a fixegrom the hydrodynamics at homogengitirhis latter effect

position y=—L/4. Figure 2 showssU,(t)=8U,(—L/4}) is easily eliminated by allowing spatially homogeneous per-
and 5Uy(t)= 8U,(—L/4}). The dashed lines are the results turbations of the thermostat _adjusted to mqi_ntain a constant
from the hydrodynamic analysis of the BGK model near uni-2verage temperature even in the nonequilibrium state, as
form shear flowf10]. The good agreement up te-50 shows done below. The maximum valu&~9 corresponds tdk
that the instability is not just a consequence of the assump=0.3, which is close to the value(a) at which the uniform
tions behind the hydrodynamic description. This agreementhear flow witha=0.5 would become marginally stat@].
along with that of Fig. 2 of Ref9], also provides an impor- Thus the initial dynamics tends toward stabilization but does

FIG. 2. Plot of 8U,(t1)=U,(—L/4t)—U,,(—L/4) and
5Gy(t)EUy(—L/4,t). The solid lines are Monte Carlo simulation
results and the dashed lines correspond to the analysis of TO&f.
both for the BGK kinetic model. The same spatially constant ther-
stat as for the reference state has been used.

6U,(y,0)=6n(y,0)=6T(y,00=0, 3.2
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FIG. 3. Plot of6U,(t) andT(t)=T(—L/4t), as obtained from FIG. 4. Plot of6U(t) andn(t)=n(—L/4t), as obtained from
Monte Carlo simulations. The thermostat is the same as in Fig. 2Monte Carlo simulations. A global thermostat that maintains the
average temperature constant has been used.
not ever cross over into the stable domain. Consequently, the
asymptotic dynamics is not simply that of stationary uniform The above results indicate the wave character of the
shear flow at a different temperature, but rather a quasiasymptotic state. To confirm this point, we have analyzed the
stationary state with different spatial structure. profiles of the hydrodynamic quantities at relevant times.
As said above, the thermostat used in the above simulaFhe results are consistent with two independent invariance
tions allows a global change in the average temperaturgelations:
which is responsible for the amplitude modulations at long
times. In order to have a more controlled asymptotic state, OY (Y.t )=0y (y+LI2t" + 7/2), (3.4
we have considered a variation of this thermostat that main-
tains the average temperature const@ee the Appendix N )
The quantitiessU,(t) and n(t)=n(—L/4t) are plotted in a1 == 8Ya( =y, 1), (3.5
Fig. 4. After a transient period of lengtt~100, a stable ) o )
oscillatory behavior of the velocity appears with a period Their combination yields oy (y,t")=* dy,(—y—L/2t"
~54. The shape 08y, over one cycle is shown in Fig. 5. +7/2), which implies Eq.{3.3). Figure 6 shows the spatial

L _ variation of sn(y,t’) and §T(y,t’) att’=0, 0.14r, 0.25r,
Heret’'=t—t,, wheret,=463.4, and the curves are aver- ] ,
ages over 20 successive cycles. The valud,ofias been 0.367, and 0.5. Not shown are times 0r5<t’ <7 because

chosen to assure that the transient time is over and also wiltttl1ey can be. reproduced by use O.f the relat@_m). As ob-
o ~ , , served in Fig. 5 for the special poipt= —L/4 it is seen that
the criterion thatﬁuxz_o' att _=O. Inspect|on of the results 5 high (low) temperature is generally correlated to a high
shows several regularities. First, the following symmetry re-q,\)" gensity. The spatial distribution of the temperature is
lation appears: highly nonuniform even though the thermostat maintains a
constant average temperature. Figure 7 shows a vector rep-
8Y o(t'+ 7/2)= £ 8y (1), (3.3  resentation of the components &f throughout the system
at the values ot’. As anticipated from Fig. 58U rotates

where the minus sign applies to the velocity and the plus sig@nticlockwise throughout the system. The layers:0,

applies to the density and the temperature. Next, at tihes = /2 are always nodes ofU and extrema o6T and on.
—0.36r,0.86r, wheresU. have extremasU., 5T, and s The pattern indicated by Figs. 6 and 7 can be described as a
= W [ 1 X y? ]

h q N | hat th o periodic standing wave represented by the superposition of
seem to have nodes. Note also that the veddrrotates 5 symmetrical waves traveling in opposite directions.
anticlockwise and that most of the tind& >0 is correlated  Wwhile a shock-wave-like behavior of the density and tem-

to sn>0 andsT<O0 is correlated toSn<0. perature in Fig. 6 is quite apparent this is less evident in the
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FIG. 5. Plot of 8U,(t'), 8Uy(t"), T(t'), andn(t’) over one
cycle =54, as obtained from Monte Carlo simulations. Héte

=t—jt,, wheret,=463.4, and the results are averages oyer
=1,...,20. Thehermostat is the same as in Fig. 4.

case of the velocity components. A more detailed analysis i yz 0.0

needed before giving a more solid interpretation of the
asymptotic state.

In summary, for initial values ok anda in the predicted
unstable domain small perturbations of the hydrodynamic
fields grow according to the linear hydrodynamic equations
for t<50. Subsequently, nonlinear effects invalidate this the-
oretical analysis. The simulations show a transient period u|
to aboutt~100, after which a quasistationary state is ob-
served for 106ct<2000. In this asymptotic state the vector
guantities oscillate at a period approximately twice that of

all fields considered.

the scalar fields. The oscillations are spatially nonuniform for’ =0, 0.14r, 0.25r, 0.3r, and 0.5, as obtained from Monte Carlo
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FIG. 6. T(y,t') andn(y,t") as a function ofy for (from top to
bottom t'=0, 0.14, 0.25r, 0.36r, and 0.7, as obtained from
Monte Carlo simulations. The thermostat is the same as in Fig. 4.

IV. DISCUSSION

Uniform shear flow has been a prototype state for the
study of fluids far from equilibrium, using both theoretical
and computer simulation methods. Until recently, it has been
assumed that this state is stable except at high densities and
short wavelengths. The results reported here anfb;h0]
show that this simple macroscopic state is unstable at suffi-
ciently large wavelengths. Previous studies via simulation
have not seen this instability due to finite system sizes. How-
ever, theoretical analysis at the hydrodynamic level clearly
shows the mechanism and parameter space for this instabil-
ity. In the present work this theoretical analysis is tested both
qualitatively and quantitatively. At the qualitative level, both
Monte Carlo simulations of a kinetic theory description and
molecular dynamics simulation of the Newtonian dynamics
show clearly that this flow is unstable at long wavelengths.
The Monte Carlo simulation also confirms quantitatively the
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FIG. 7. Vector plot representingU,(y,t") and 6U,(y,t") at

simulations. The thermostat is the same as in Fig. 4.



554 MONTANERO, SANTOS, LEE, DUFTY, AND LUTSKO 57

predictions of the theory on the time scale for which the 200 . ; . . . . . .
linear analysis is valid. At longer times the Monte Carlo
simulation shows clearly that the asymptotic state is spatiall _
nonuniform with a periodic variation in time. A precise the- 8U, 10
oretical description of this final state has not been develope
at this time. 100

The analysis here has been limited to spatial perturbation
along the gradient of the velocity in the stationary state.
More general perturbations will lead to more complex flows
due to the coupling to the convective flow. A theoretical
analysis of this more general case is in progress but is sic 0
nificantly more complex. Due to the fact that the 0 matrix
of the hydrodynamic equations is nondiagonalizafsien-
norma), the corresponding eigenvalues do not fix a unique '500 ' 2'0 ' 4'0 ' 6'0 ' 8'0
eigenspace. The resulting dynamics is not simply a superpc t
sition of decaying or growing modes, but rather includes as
well algebraic growth. The resulting analysis of conditions FIG. 8. The long-wavelength component of the velocity in the
for instability is more complex and will be reported else- flow direction as a function of time from molecular dynamics simu-
where. lation. Units arem=o=kgT=1.

The most extensive prior studies of uniform shear flow
have been for dense systems via molecular dynaiiis) ous hard-sphere simulations is a more frequent application of
simulations. No signature of the instability discussed herghe velocity scaling to control the temperature and better
has been noted in these previous results and this raises thepresent continuous cooling. In our simulations the veloci-
question as to whether the effects discussed here are artifatiss are rescaled whenever the temperature differs by 5%
of the assumptions made in deriving them. There are twdrom its set value. The simulation cell is divided into a fixed
significant differences between the theory and simulatiomumber of subcells, the local velocity field in each subcell is
discussed above and the detailed implementation of earlieralculated and the excess kinetic energy computed relative to
MD simulations. The first, and perhaps most important, hashe local velocity field. The velocities of the particles in each
been the consideration of small system sizes relative to theubcell are then rescaled so that the total excess kinetic en-
wavelengths necessary to see the instability. Typically, sysergy of each subcell is equal to the set value. The amount of
tem size is determined by the simulation time such that aescaling is determined locally, and thus corresponds to a
sound wave will not traverse the system and generate corréacal thermostat)\ (r,t)=A(n(r,t),T(r,t)), as discussed in
lations. At high densities this has led to consideration ofthe Appendix. Our implementation follows Hel$ in that
system sizes small compared to the critical wave vector fowe assume uniformity of all quantities in the directions per-
instability. A second difference from the discussion above igpendicular to the velocity gradient so that the subcells are
the method for imposing a thermostat. In hard-sphere MDhin slabs and the only spatial variations are in the direction
simulations it is efficient to impose the temperature controlof the velocity gradient, as in the Monte Carlo simulations.
by a global rescaling of the velocities only after as many a®Due to the large number of particles in the simulations, the
100 collisions. However, at the shear rates considered thigngth of the simulations is relatively modest 5x 10° col-
implies significant heating between applications of the theriisions. The shear rate was fixed @t 1.77/kgT/ma? and
mostat and the temperature is more like a sawtooth in tim@n initial perturbation withk, = 27/L, was monitored. Our
rather than constant. Thus, given that the choice of thermatheoretical estimates indicate this should correspond to con-
stat can alter the critical wave vector by a factor of t8ee  ditions of instability. Figure 8 shows thecomponent of the
the Appendiy, it is difficult to give a direct theoretical cor- velocity field growing steadily throughout the simulation,
respondence to the MD simulation results. Even recent largeclearly indicating the instability. Conversely, perturbations
scale simulation§16] may not be in the unstable regime for with a wavelength one-quarter of this value appear to be
the choice of potential and shear rates used. stable as expected. Similar results are observed for the den-

To demonstrate the existence of the instability using MDsity field as well. Our primary conclusion from these prelimi-
simulations we have performed exploratory simulations of enary results is that the instability can be observed and studied
system of hard spheres under conditions corresponding 9y MD simulations if larger system sizes are considered and
one of the analyses presented in the Appendix below. Imore care is taken with application of the thermostat.
order to be well within the predicted unstable region, we

50

have used a rectangular unit cell with one side expanded 15 ACKNOWLEDGMENTS
times larger than the other tw@620 hard spheres of diam-
eter o at a density ofno>=0.5 in a cell of size 6x 900 The research of M.L. and J.D. was supported in part by

X 60). The Lees-Edwards boundary conditions are appliedNSF Grant No. PHY 9312723. The research of J.M.M. and
on thex,z surfaces so that the velocity gradient is along theA.S. was supported in part by the DGICYEpain and by
larger dimension of the system, allowing study of muchthe Junta de Extremadura-Fondo Social Europeo through
longer wavelengths in the direction of the gradient than havésrant Nos. PB94-1021 and EIA94-39, respectively. Partial
usually been considerdthe equivalent cubic system would support for this research also was provided by the Division
contain 364 500 particlesA second difference from previ- of Sponsored Research at the University of Florida.



57 STABILITY OF UNIFORM SHEAR FLOW 555

APPENDIX: ROLE OF THE THERMOSTAT 0.20
The analysis of Sec. Il made use of a specific choice for X
the thermostat. Other choices are possible and more conve- _ ]
nient for computer simulation. In this work we use two dif- 0.15 L P
ferent types of thermostats, both obtained from an external o
force at the microscopic level of the form . //
rd
/ .
FO4(r,t)=—mn(n(r,t), T(r,H))[v=U(r,H]. (A1) 0.0 | A
2
The corresponding source tenm in the temperature equa- g
tion (2.2 is &G
0.05 '/
w(n(r,),T(r,t)= = 2K(n(r,t), T(r, AN, T(r 1), /7
(A2) /

where K(n(r,t),T(r,t)) is the kinetic energy density. The 000 o ) o3 oa 05
thermostat parametex,(n(r,t),T(r,t)), is always chosen to a
ensure constant temperature in the reference stage,
=\(ns,Tg)=—aPs,, /2K, as follows from Eq.(2.5. To FIG. 9. Critical lines for stability for hard spheres for the same

linear order in the deviations from the reference state the&lensities as in Fig. 1 with the global thermogiag).
thermostat  parameter therefore has the form

AN(r,t),T(r,t))—=NsgtAgnon(r,t) +Ag16T(r,t), and the A peculiarity of this global thermostat is that it allows the
source term in temperature equation becomes temperature to change even for homogeneous perturbations.
Thus while the temperature in the reference state is constant,
w(n(r,t),T(r,t))——2KAs— 2(KN\)g ,oN(r,t) the average temperature in perturbed states changes. This can

be seen from the homogeneous form of Ef12. To elimi-

nate this effect a second global thermostat can be defined by
allowing a dependence of on homogeneous perturbations,
i.e., A= AgtNgndn+Ag16T, where sn and T are the
tvolume averaged density and temperature. The source term
in this case is

—~2(KN)5 78T(r 1), (A3)

where the subscripts andT on (K\) denote differentiation
with respect tan and T, respectively. The contributions§; ,
andKg 1 are fixed by the thermodynamics of the system, bu
the coefficients\g , and\ ¢ are free parameters defining a
class of different thermostats.

In Sec. Il these parameters are chosen suchatatis- w(n(r,0),T(r,t))— = 2Khs= 2N sKgn(r.1)

cous heating proportional t8n(r,t) and6T(r,t) is compen- CONKoST(r ) —2KINe - SN
sated by the source term, EQ@.14). This does not imply a KsroT(r.) sLhsn
constant local temperature since there is still viscous heating +Ae7OT]. (A5)

due to local shear and coupling to the other hydrodynamic

fields. However, itis eaSin verified that this thermostat hOldS|n Fourier representation the two g|0ba| thermostats give the
the average temperature for the system constant even in tRgme hydrodynamics except for tke-0 dynamics. In this
perturbed state. The hydrodynamics of Sec. Il was restrictegiork we use three different thermostats, one local given by
to Navier-Stokes order and the simple form of E2.14 is  Eq. (2.14), and the two global thermostats just described.
due to the use of Newton’s viscosity law. However, the same Both theory and the Monte Carlo simulations of Sec. IlI
thermostat can be used outside this range with the more gefhdicate that the details of the perturbed dynamics depend on
eral conditionw=P;;4;U;. Since this thermostat has local the thermostat used, but that the mechanism for the instabil-
changes to adjust to the perturbations of local density angy js insensitive to the choice of thermostat. To illustrate this
temperature, we have called it a local thermostat. we repeat the analysis of Sec. Il using the global thermostat
Clearly, there is a range of choices fog, and\stlead-  (A4) (again in the Navier-Stokes limitThere are two new
ing to only partial compensation of the viscous heating. Atterms in the temperature equation. One is due to temperature
the opposite extreme to the local thermostat is that for whiclperturbations and leads to viscous heating even for uniform
Asn=\s1=0. In this case the external force is the same forperturbations. The second is due to density perturbations and
both the reference state and the perturbed state. This |ead5ljfbvides a direck-independent Coup"ng of the temperature
a source on the right side of E(R.12) representing a com- and density equatior@t zero shear rate the density and tem-
petition between the viscous heating and the the”nOStfifJerature are only coupled indirectly via the gradients of the
Since\ is a constant in this case the thermostat is calledongitudinal velocity component and the pressuf&he ma-
glObal. Note that although is constant the source term still tricesB(a) andD are unchanged from Sec. Il, but these new
has local variations due to the dependenc& ain the local couplings replaced,; and A,, in Eqg. (2.17 with nonzero

temperature and density, values proportional t@?,
w(n(r,t),T(r,t))— —2KAs— 2N Kg ,ON(r, 1) Ayy(a) — (a2 + W)
—|_ 2. : (A6)
—2NKs78T(r,1). (A4) Ax(a) ca(a”ns Tt wr)
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wherew,=dw(ng,Ts)/dng, wr=ow(ng,T¢)/dTs. The matrixA(a) —ikB(a) is now diagonalizable and an expansion of the
hydrodynamic modes in powers kfrather thark?? is obtained,

Ayy(a)+d;(a)k?

da(a)k?
ic(a)k—[ds(a)/a®—d4(a)]k?
—ic(a)k—[dg(a)/a®—d,(a)]k?
(75! ps)K?

0 V(k,a)— (A7)

with the coefficients
ps,T( ns77s,n‘512 +ngw,+2 7]532)
psCa( s 1% +Wr)?

2
2a C2775775,T+C1pS,T
2
psCo( ms 7@+ Wr)

di(a)=«ksCot

_ 77s|:ps;,n(az775;,T_WT)"'ps,T(_612”"/5;,n"'V\/n):|
m[nsps,n(a2 775,T+WT) - ps,T(aznsns,n+ Ngwy,+ 2 7]56.2)] ’

dy(a)=

[nsps,n(a2 775,T+WT) - ps,T(aznsns,n+ NwW,+2 773a2)]
ps( a’ Ns 7T WT)

c¥(a)=

2 2
(a ns775,n+nswn+2773a )
2
a‘nsttWr

2
psra

di(a)= o
() 2P5C2(a27ls,T+WT) !

a’ NsNs, T

2nstos
(a2 nsTt WT) .

2ps

1
dy(a)=— Edz(a)_ e (A8)

There are two diffusive modes, two propagating sound The thermostat of this Appendix allows greater viscous
modes, and a time-modulated diffusive mode. The sountheating than that of Sec. Il for states perturbed from uniform
modes are unstable at long wavelengths for shear rates satear flow. The hydrodynamic modes are quite different, re-
isfying ds(a)—a?d,(a)>0. This possibility has been ex- flecting a sensitivity to the choice of thermostat. These quali-
plored in Ref[9] for the special case of hard spheres. In thattative differences can be traced to the mathematical differ-
case bothd;(a) andd,(a) are positive and the modes are ences between diagonalizable and nondiagonalizable
unstable for sufficiently small shear rates. The correspondingatricesA,z. Nevertheless, the mechanism for the instabil-
critical wave vectork.(a), for this thermostat is determined ity described at the end of Sec. Il remains effective in both
from the exact eigenvalues and shown in Fig. 9 for the sameases. These conclusions are not limited to the Navier-Stokes
densities as in Fig. 1. The domain of instability at long wave-approximation, but are confirmed as well for the kinetic

lengths is similar to that of Fig. 1 using the thermostat

model results described in Sec. Il for larger shear rates.
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